
Instance-level Expert Knowledge and Aggregate Discriminative Attention for
Radiology Report Generation

Shenshen Bu, Taiji Li, Yuedong Yang,* Zhiming Dai *

School of Computer Science and Engineering, Sun Yat-sen University, China
{bushsh, litj5}@mail2.sysu.edu.cn, {yangyd25, daizhim}@mail.sysu.edu.cn

Abstract

Automatic radiology report generation can provide sub-
stantial advantages to clinical physicians by effectively re-
ducing their workload and improving efficiency. Despite
the promising potential of current methods, challenges per-
sist in effectively extracting and preventing degradation of
prominent features, as well as enhancing attention on piv-
otal regions. In this paper, we propose an Instance-level
Expert Knowledge and Aggregate Discriminative Attention
framework (EKAGen1) for radiology report generation. We
convert expert reports into an embedding space and gener-
ate comprehensive representations for each disease, which
serve as Preliminary Knowledge Support (PKS). To prevent
feature disruption, we select the representations in the em-
bedding space with the smallest distances to PKS as Rec-
tified Knowledge Support (RKS). Then, EKAGen diagnoses
the diseases and retrieves knowledge from RKS, creating
Instance-level Expert Knowledge (IEK) for each query im-
age, boosting generation. Additionally, we introduce Ag-
gregate Discriminative Attention Map (ADM), which uses
weak supervision to create maps of discriminative regions
that highlight pivotal regions. For training, we propose a
Global Information Self-Distillation (GID) strategy, using
an iteratively optimized model to distill global knowledge
into EKAGen. Extensive experiments and analyses on IU
X-Ray and MIMIC-CXR datasets demonstrate that EKAGen
outperforms previous state-of-the-art methods.

1. Introduction
Radiology reports play a crucial role in the medical diag-
nosis and treatment process. However, interpreting radiol-
ogy image can be extremely time-consuming, even for ex-
perienced radiologists. Hence, the automatic report gen-
eration [25, 29, 44, 47, 55] has emerged as a prominent
research area within the medical imaging community. In
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1https://github.com/hnjzbss/EKAGen
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Figure 1. (a) displays the feature degradation caused by the dis-
tinction between vanilla methods’ prior knowledge and LGM’s
embedding networks. (b) demonstrates our method that unifies the
embedding network to prevent feature degradation and generates
instance-level expert knowledge based on diseases.

recent years, significant strides have been made in the au-
tomatic generation of radiology reports, benefiting from the
development of image captioning [2, 7, 14, 16, 21].

In addition to the inherent challenges of natural image
captioning, radiology report generation suffers three ad-
ditional bottlenecks [27, 31, 47]. Firstly, radiology im-
ages often lack discriminative features, which results in
a scarcity of reference information for the report genera-
tion models. Secondly, abnormal lesions in medical images
may not always have obvious appearances, making them
challenging even for experienced radiologists to identify.
Thirdly, there is significant data deviation in these datasets
due to the rarity of certain diseases, making it challenging
to collect positive samples. In recent years, several meth-
ods, including the template retrieval structure [8, 31], mem-
ory driven network [5, 6], and knowledge aware module
[27, 34, 49], were developed to address these challenges and
have shown promising results in report generation. For in-
stance, R2GenCMN [6] leveraged a shared memory to cap-
ture the alignment between images and texts. GSKET [49]
proposed a multi-head attention mechanism that enhances
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generation by combining visual features and knowledge.
However, as shown in Figure 1, (a) depicts that vanilla

methods use separate embedding networks such as BERT
[9, 48, 49] and Graph [15, 26, 54] to encode prior knowl-
edge. This inconsistency between the embedding network
for prior knowledge and the Language Generation Model
(LGM) results in feature degradation, which causes predic-
tion shifts when mapping word vectors back to the word
space. As depicted in Figure 1 (b), our approach unifies
the embedding network for prior knowledge and the Lan-
guage Generation Model, and assigns instance-level prior
knowledge to each instance based on the disease category,
which differs to previous methods [15, 27, 49] incorporat-
ing general knowledge for every case, effectively resolving
this issue. Additionally, previous methods [6, 18, 29, 31]
fail to enhance attention on pivotal regions of the radiology
image, thereby presenting certain limitations.

Our method is based on two implicit and valuable priors:
(i) Diseases with the same label should have similar repre-
sentations in the feature space, and vice versa; and (ii) Fea-
tures from pivotal regions offer richer and more meaningful
semantic references. Guided by these priors, we propose an
Instance-level Expert Knowledge and Aggregate Discrim-
inative Attention framework (EKAGen) for radiology re-
port generation. We use an embedding network that shares
parameters with LGM to map the expert report set into an
embedding space as support set. From this, we calculate
the Preliminary Knowledge Support (PKS) for each dis-
ease by taking the mean of its support set in the embedding
space. Then, we compute the distances between the rep-
resentations of each disease in PKS and all representations
of corresponding disease in embedding space and select the
representations with the smallest distances as the Rectified
Knowledge Support (RKS). For a query image, we utilize
a DiagnosisBot to identify diseases and retrieve their corre-
sponding representations from RKS. These representations
are then combined to create Instance-level Expert Knowl-
edge (IEK), which facilitates report generation during the
decoding process. In addition, identifying abnormal regions
in images is crucial for report generation. However, obtain-
ing pixel-level annotations for these regions is laborious and
expensive. To tackle this challenge, we propose the Ag-
gregate Discriminative Attention Map (ADM), which can
generate discriminative regions of multiple diseases in a ra-
diology image and integrate them to enhance attention on
pivotal regions, thereby boosting generation.

Our contributions can be summarized as follows:
• We develop comprehensive embedding representations

for each disease. By diagnosing the health conditions of
different cases, we create Instance-level Expert Knowl-
edge to provide our EKAGen with expert insights during
the decoding process, addressing the issues of complex
knowledge extraction and prominent feature degradation.

• To highlight pivotal regions, we employ weak supervi-
sion to generate activation maps, which are then used to
create Aggregate Discriminative Attention Map (ADM).
The ADM prioritizes key regions for each disease, reduc-
ing background noise and enhancing generation.

• To prevent potential feature erosion and provide more
soft supervision, we propose a Global Information Self-
Distillation (GID) strategy which utilizes an iteratively
optimized model to distill global knowledge into our EK-
AGen, enhancing generation without additional labels.

2. Related Work
2.1. Image Captioning

Traditional image captioning methods typically rely on cu-
rated image-caption pairs to train an encoder-decoder model
for generating text descriptions from input images. Early
approaches [10, 12, 43] in this field employed a CNN-based
encoder to extract visual features and an RNN/LSTM-based
decoder for generating output sentences. To enhance visual
comprehension, certain methods [2, 7, 17, 39] incorporated
an object detector to identify and extract salient image re-
gions. To foster greater interaction between the two modal-
ities, attention mechanisms [7, 35, 36, 53] and graph neural
networks [50, 51] gained widespread adoption. Recently,
several impressive large-scale visual-language pre-training
models [1, 16, 23, 24, 52] emerged, demonstrating outstand-
ing performance in image captioning task. Natural scene
image description focuses on generating concise sentences,
while medical report generation requires detailed descrip-
tions of medical images. Therefore, these approaches may
not be suitable for the field of medical report generation.

2.2. Medical Report Generation

Medical report generation, as an extension of image cap-
tioning, presents greater challenges with higher require-
ments for text description length and accuracy. Extensive
research [4, 22, 42, 46] has yielded significant advance-
ments in this task. PPKED [32] presented an approach
that explored and distilled posterior and prior knowledge
in radiology to mitigate data bias issues in report genera-
tion. Clinical-BERT [48] proposed a visual-language pre-
training model that learned medical domain knowledge to
enhance the performance of report generation. DCL [26]
extracted specific knowledge from retrieved reports to mod-
ify the graph structure and integrated image features with
updated graphs to improve textual representation. ME-
Transformer [47] introduced learnable “expert” tokens in
the encoder and decoder, allowing them to interact with
vision tokens and enabling the model to focus on differ-
ent regions, while an orthogonal loss minimizes overlap to
capture distinct information. However, these methods have
drawbacks such as complex prior knowledge extraction,
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Figure 2. EKAGen consists of four components: Instance-level Expert Knowledge (IEK), Aggregate Discriminative Attention Map (ADM),
Global Information Self-Distillation (GID), and Language Generation Model (LGM). EKAGen utilizes IEK to address the problem of
feature degradation, employs ADM to prioritize pivotal regions, and incorporates GID to distill global knowledge.

prominent feature degradation, and inability to enhance at-
tention on pivotal regions, resulting in certain limitations.

3. Method
In this section, we present a comprehensive analysis of
the generation process for Instance-level Expert Knowledge
and Aggregate Discriminative Attention Map. Addition-
ally, we describe the structure of our Language Genera-
tion Model and elaborate on the Global Information Self-
Distillation strategy. Figure 2 shows our EKAGen structure.

3.1. Instance-level Expert Knowledge

In order to address the problem of feature degradation of
prior knowledge during the embedding process and the
sparsity of features in radiology images, we propose the
Instance-level Expert Knowledge (IEK) to boost generation.

Preliminary Theory of Knowledge Support Given an
expert report set X = {x1, ..., xN} with C types of dis-
eases, we compute the average similarity between xi be-
longing to class cwith the remaining cases within that class,
and take the average as the panoptic score for xi. The case
with the highest panoptic score is selected as the Knowledge
Support. This process formulated as follows:

Kc = argmax
F(xi)

1

|Xc|
∑

xj∈Xc

S(F(xi),F(xj)), xi ∈ Xc (1)

where S(·) is similarity metric, and F(·) is the embedding

network that shares parameters with LGM, used to map re-
ports to embedding space. Xc ⊆ X is all cases in class c.

Preliminary Knowledge Support (PKS) The computa-
tional complexity of Equation 1 isO(

∑
cN

2
c ), which incurs

high time cost. Inspired by the prototype [28, 41] paradigm,
we first calculate the mean of all cases in class c as the PKS,
serving as a compressed representation for each disease:

Pc =
1

|Xc|
∑

xi∈Xc

F(xi) (2)

Rectified Knowledge Support (RKS) As shown in Fig-
ure 1 (b), Formula 2 directly operates on the embedding
features, potentially causing disruption to the original word
features and leading to catastrophic forgetting. To tackle
this issue, we compute the cosine similarity between Pc and
all cases in class c. The cases with the highest similarity are
considered as the Rectified knowledge Support K:

Kc = argmax
F(xi)

PT
c F(xi)

||Pc|| · ||F(xi)||
, xi ∈ Xc (3)

where Kc ∈ Rlc×d, lc is the number of tokens and d is the
embedding dimension. The combined computational com-
plexities of Equation 2 and Equation 3 is O(

∑
cNc), sig-

nificantly lower than that of Equation 1.
Expert Knowledge Navigator (EKN) In order to ob-

tain the instance level expert knowledge, we utilize a multi-
classification method as DiagnosisBot to detect diseases for
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a given image I . By applying a threshold operation, we
derive the category matrix Ci for the i-th disease:

logit = DiagnosisBot(I) (4)

Ci =

{
E, if σ(logiti)>threi
0, otherwise

(5)

where E ∈ Rd×d represents the identity matrix and 0 ∈
Rd×d represents the zero matrix. We conduct matrix multi-
plication between the Ki and Ci, followed by concatenation
to generate Instance-level Expert Knowledge KI :

KI = concat(K1C1, ...,KiCi) (6)

3.2. Aggregate Discriminative Attention Map

The radiology image differs from natural scene images in
that it contains more noise and the discriminative areas are
often blurry. Inspired by Grad CAM [40], we introduce the
Aggregate Discriminative Attention Map (ADM), which
leverages weak supervision signal to generate discrimina-
tive regions while attenuating the background.

Gradient-weighted Class Activation Mapping To ob-
tain the class discrimination localization map Lc

GradCAM ,
Grad-CAM initially calculates the gradient of yc with re-
spect to the feature maps A. These gradients utilize GAP to
calculate the weight αc

k for k-th feature map and c-th class:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(7)

where Z are the number of pixels, yc is activation class
score for the c-th class, andAk

ij is activation of cell at spatial
location i, j for k-th feature map. Then, a weighted combi-
nation is performed followed by ReLU activation:

Lc
GradCAM = ReLU

∑
k

αc
kA

k
ij (8)

Multi-diseases Aggregate Attention We utilize Grad-
CAM to generate activation maps highlighting the salient
regions. Specifically, a multi-classification method is used
as Anomaly Locator, which produces logit scores, with the
scores exceeding the threshold considered valid. For image
I withK valid classes, we combine the activation maps and
apply thresholding to identify regions with strong signals:

M I =
K∑
c=1

ReLU
∑
k

αc
kA

k
ij (9)

MI
i,j =

{
1, if Mi,j>θ

0, otherwise
(10)

During visual analysis, we notice multiple gaps inMI .
Therefore, we fill these gaps using morphological dilation

to generate Aggregate Discriminative Attention Map AI :

AI
ij = max

(i′ ,j′ )∈S
MI

i+i′ ,j+j′
(11)

where S defines the neighborhood range, we can then use
AI as the foreground mask to diminish the background
thereby boosting the discriminative regions in the image I:

Imgaug = AI � I + γ(1−AI)� I (12)

where γ represents the scaling factor for the background,
and � denotes the Hadamard Product operation.

3.3. Language Generation Model

Multi-modal Aligner We leverage linear layers to process
the expert knowledge KI for image I and the hidden fea-
turesHi−1 ∈ Rn×d from the previous (i-1)-th decoder out-
put. These features are then concatenated and projected to
generate the multi-modal featureMi ∈ Rn×d:

KI
p,Hi−1

p = KIW i
1+b

i
1,Hi−1W i

2 + bi2

Mi = concat(KI
p,Hi−1

p )W i
3 + bi3

(13)

where W i
1,W

i
2 ∈ Rd×d, W i

3 ∈ R2d×d and concat(·) is
concatenation operation in the embedding dimension.

Encoder-Decoder We use encoder-decoder structure as
Language Generation Model based on the Pre-Norm Trans-
former [45]. Specifically, the encoder is formulated as:

SI = Encoder(VI) (14)

where VI ∈ Rm×d is the visual features extracted by the
Visual Extractor (e.g., ResNet [13], ViT [11]), SI ∈ Rm×d,
with m patches and embedding dimension d. The decoding
process of predicting the current word is:

Hi
t =

{
Decoder(Y<t,SI), if i = 1

Decoder(Mi
<t,SI), if i > 2

(15)

where Y<t is the sequence feature of the previously gener-
ated sentence before time step t, and Hi

t is the hidden state
output by i-th decoder to predict the current word.

3.4. Training Strategy

Global Information Self-Distillation The utilization of
ADM to attenuate background information may result in the
issue of feature erosion where a small number of critical ar-
eas are also weakened. To prevent potential feature erosion,
we employ a pre-trained model with a structure identical to
EKAGen as a teacher network, taking the entire image as
input to distill knowledge into the EKAGen model. In ad-
dition, our strategy differs from vanilla knowledge distilla-
tion, where the parameters are frozen. Instead, we transfer
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the student’s weights to the teacher when the student out-
performs the teacher network in a new epoch. We use KL
divergence as distillation loss to align the probability distri-
butions of the teacher model and EKAGen:

LKL =
1

N

N∑
c=1

KL[pt(c, I)||ps(c, I)] (16)

where pt(c, I), ps(c, I) is the probability distribution of the
teacher model and EKAGen, respectively, for word index c
and image I . N is the dimensionality of the word space.

Training Loss The language generation process is opti-
mized by minimizing the cross-entropy loss:

Llg = −
n∑

t=1

logp(y∗t |y∗<t,KI , I) (17)

where y∗<t denotes the ground truth of the report sequence.
KI is IEK generated by Equation 6, and I is input image.
The final training objective L is the combination of Llg and
LKL, with LKL scaled by factor δ:

L = Llg + δLKL (18)

4. Experiments
4.1. Datasets, Metrics and Settings

We evaluate our model on two widely-used benchmarks for
report generation: IU X-Ray [8] and MIMIC-CXR [20].

IU X-Ray IU X-Ray dataset, developed by Indiana Uni-
versity, is a widely-used dataset containing 7,470 X-ray im-
ages and 3,955 corresponding reports. We follow the estab-
lished training-validation-testing splits of previous research
[33, 47] with a distribution ratio of 70% : 10% : 20%.

MIMIC-CXR MIMIC-CXR dataset, released by Beth
Israel Deaconess Medical Center, is a comprehensive chest
X-ray dataset containing 473,057 radiographs and 206,563
corresponding reports. Following previous works [5, 6,
26, 32, 33], we utilize the official split, where the training
set consists of 368,960 images, the validation set contains
2,991 images, and the test set comprises 5,159 images.

Metrics We evaluate the quality of the generated reports
using widely adopted natural language generation (NLG)
metrics including BLEU [37], METEOR [3], and ROUGE-
L [30] following the standard evaluation protocol 2. Follow-
ing [5, 6, 26, 47, 48], we utilize the CheXpert [19] to label
the generated reports and employ Precision, Recall, and F1-
Score to evaluate clinical efficacy (CE) metrics. The align-
ment score is defined as the proportion of cosine similarities
greater than 0.5 between the features of report pairs.

Settings Our baseline consists of a pre-trained ResNet-
101 and a Pre-Norm transformer with 6 layers, initialized

2https://github.com/tylin/coco-caption

randomly. Our EKAGen offers two versions for the Vi-
sual Extractor: ResNet-101 [13] and ViT-B/16 [11]. The
transformer has 8 heads and a dimensionality of 256. We
utilize swin transformer and ResNet34 as the DiagnosisBot
and Anomaly Locator, respectively, to generate diagnostic
logits and activation maps. For the generation process of
ADM, the threshold value θ is set to 0.6 to filter out the
salient regions, and the scaling factor γ is set to 0.4 to sup-
press the background. The loss LKL scaling factor δ is set
to 0.01. We utilize the AdamW optimizer with learning
rates of 1 × 10−5 for the Visual Extractor and 1 × 10−4

for the language generation model. The training batch sizes
for MIMIC-CXR and IU X-Ray are set to 32 and 16, re-
spectively. All experiments are run on the RTX 4090 GPU.

4.2. Quantitative Analysis

Comparison with State-of-the-Art Methods We compare
our experimental results with state-of-the-art (SOTA) meth-
ods on the IU X-Ray and MIMIC-CXR datasets. The con-
trastive methods include five categories: Knowledge Based
[18, 32, 47, 49], Pre-training [24, 48], Memory Driven
[6, 38], Contrastive Based [26, 33], and Image Captioning
[7, 56]. As shown in Table 1, EKAGen (RN-101) achieves
the SOTA performance across most metrics, such as a 2.6%
increase in BLEU-1 and a 0.8% improvement in BLEU-
2 on MIMIC-CXR dataset. EKAGen’s scores are slightly
lower than KiUT [18] and METransformer [47] in a few
metrics, possibly due to KiUT’s proficiency in synonym
representation within the symptom graph and METrans-
former’s word voting strategy favoring phrase alignment.

Analysis on Backbone Table 1 also presents a compar-
ison of the results achieved by EKAGen when utilizing the
ResNet-101 [13] and ViT-B/16 [11] visual extractors on the
IU X-Ray and MIMIC-CXR datasets. In comparison to
ResNet-101, ViT-B/16 exhibited a decrease in performance
on both datasets. A potential reason for this observation is
that the CNN structure of ResNet-101 is more sensitive to
capturing local fine-grained features, which are crucial for
the model’s understanding of pathological features in the
human body and their translation into reports.

Analysis on Clinical Efficacy Metrics The CE metrics
are more effective in evaluating the accuracy of pathological
description. As shown in Table 2, Our method has shown a
significant improvement compared to previous approaches,
with Precision, Recall, and F1-Score increasing by 4.6%,
4.8%, and 8.4% respectively. The reason is that EKAGen
synthesizes patient conditions, generates expert knowledge
at the instance-level, and focuses on pivotal regions to pro-
duce reports with more accurate disease assessments.

Analysis on Embedding Network Table 3 presents
the experimental results of the unified embedding network
in EKAGen and the separate BERT [9] prior knowledge
embedding network on the MIMIC-CXR and IU X-Ray
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Type Model IU X-Ray MIMIC-CXR
BL-1 BL-2 BL-3 BL-4 MTOR RG BL-1 BL-2 BL-3 BL-4 MTOR RG

Image
Captioning

M2transformer [7] 0.463 0.318 0.214 0.155 - 0.335 0.212 0.128 0.083 0.058 - 0.240
Grounded [56] 0.446 0.301 0.237 0.176 - 0.343 0.271 0.174 0.122 0.094 - 0.257

Contrastive
Based

CA [33] 0.492 0.314 0.222 0.169 0.193 0.381 0.350 0.219 0.152 0.109 0.151 0.283
DCL [26] - - - 0.163 0.193 0.383 - - - 0.109 0.150 0.284

Memory
Driven

R2GenCMN [6] 0.475 0.309 0.222 0.170 0.191 0.375 0.353 0.218 0.148 0.106 0.142 0.278
R2GenRL [38] 0.494 0.321 0.235 0.181 0.201 0.384 0.381 0.232 0.155 0.109 0.151 0.287

Pre
Training

BLIP [24] 0.471 0.294 0.216 0.157 0.186 0.358 0.351 0.215 0.146 0.107 0.151 0.265
Clinical-BERT [48] 0.495 0.330 0.231 0.170 - 0.376 0.383 0.230 0.151 0.106 0.144 0.275

Knowledge
Based

GSKET [49] 0.496 0.327 0.238 0.178 - 0.381 0.363 0.228 0.156 0.115 - 0.284
PPKED [32] 0.483 0.315 0.224 0.168 - 0.376 0.360 0.224 0.149 0.106 0.149 0.284
KiUT [18] 0.525 0.360 0.251 0.185 0.242 0.409 0.393 0.243 0.159 0.113 0.160 0.285
METransformer [47] 0.483 0.322 0.228 0.172 0.192 0.380 0.386 0.250 0.169 0.124 0.152 0.291

Ours
EKAGen (ViT-B/16) 0.517 0.351 0.258 0.191 0.211 0.409 0.415 0.254 0.166 0.117 0.154 0.285
EKAGen (RN-101) 0.526 0.361 0.267 0.203 0.214 0.404 0.419 0.258 0.170 0.119 0.157 0.287

Table 1. Comparing the performance of our EKAGen with other state-of-the-art methods on IU X-Ray and MIMIC-CXR datasets. The
comparison scores are cited from the primary publication and paper [46], with the highest performing results highlighted in bold. The
abbreviations BL, MTOR, and RG correspond to BLEU, METEOR, and ROUGE, respectively.

MODEL MIMIC-CXR
Precision Recall F1-Score

R2GenCMN [6] 0.334 0.275 0.278
GSKET [49] 0.458 0.348 0.371
Clinical-BERT [48] 0.397 0.435 0.415
KiUT [18] 0.371 0.318 0.321
DCL [26] 0.471 0.352 0.373
METransformer [47] 0.364 0.309 0.311

EKAGen (RN-101) 0.517 0.483 0.499

Table 2. The comparison of the clinical efficacy metrics on
MIMIC-CXR dataset, with the highest scores highlighted in bold.

datasets. Compared with unified embedding, BERT embed-
ding dramatically decreased on both datasets, with metrics
such as BLEU-1 and BLEU-2 scores dropping by 1.9% and
1.3% respectively on the IU X-Ray dataset. The experimen-
tal observation validates that the unified encoding network
of EKAGen can effectively preserve the textual features of
prior knowledge during the embedding process, thus avert-
ing the problem of feature degradation during decoding.

4.3. Ablation Study

Effect of IEK As shown in Table 4, compared models
(a,b,c) with the BASE model reveals that incorporating di-
agnostic knowledge to specific cases can enhance perfor-
mance. Compared with the BASE model, (a) achieves
a BLEU-1 improvement of 1.2%, while (b) achieved a
BLEU-1 improvement of 3.1%. This indicates that (a),
which utilizes expert knowledge and performs operations
in the embedding space as the knowledge support, can en-
hance generation but has limited capability. (b) by search-

Dataset Embedding BL-1 BL-2 MTOR RG

IU X-Ray
BERT 0.507 0.348 0.211 0.399

Uniform 0.526 0.361 0.214 0.404

MIMIC-
CXR

BERT 0.409 0.251 0.153 0.276
Uniform 0.419 0.258 0.157 0.287

Table 3. Comparing the performance of a unified prior knowledge
encoding network with separate BERT encoding in report genera-
tion on the IU X-Ray and MIMIC-CXR datasets.

ing for the nearest features in the original embedding space
to form the knowledge support, effectively corrects feature
disruption caused by operations. Compared (c) with (b), by
accurately retrieving knowledge features in RKS based on
patient diagnosis, brings further gains, e.g., 0.494 → 0.501
and 0.156 → 0.170 in BLEU-1 and BLEU-4 scores.

Effect of ADM During patient examinations, clinical ex-
perts typically rely on observations of critical regions as a
reference for report writing. ADM simulates this process
by leveraging weak supervision to generate activation maps
that enhance attention on pivotal regions. In Table 4, models
(d) and (c) demonstrate significant performance improve-
ments achieved by our ADM, with BLEU-4 and ROUGE-L
scores increased by 2.8% and 1.1% respectively. Figure 4
(a) shows the BLEU-1 scores for different background scal-
ing factors, with the highest score achieved when γ is set to
0.4. These experimental results validate the effectiveness of
ADM. By focusing more attention on pivotal regions, our
approach can generate smoother descriptions that demon-
strate a higher semantic similarity to expert reports.

Effect of GID Models (e) and (d) in Table 4 demonstrate
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DATA SETTING IEK ADM GID NLG METRICS

PKS RKS EKN BL-1 BL-2 BL-3 BL-4 MTOR RG

IU X-Ray

BASE 0.463 0.287 0.200 0.149 0.178 0.346
(a) X 0.475 0.307 0.209 0.148 0.199 0.365

(b) - X 0.494 0.319 0.217 0.156 0.199 0.379
(c) - X X 0.501 0.328 0.230 0.170 0.206 0.386

(d) - X X X 0.509 0.349 0.259 0.198 0.212 0.397

(e) - X X X X 0.526 0.361 0.267 0.203 0.214 0.404

Table 4. Quantitative analysis of EKAGen on the IU X-Ray dataset. The BASE model comprises of a Feature Extractor and an Encoder-
Decoder structure. The abbreviations BL, MTOR, and RG correspond to the metrics BLEU, METEOR, and ROUGE, respectively.

Lung volumes are low compared to the previous study. Left-sided AICD device is 
noted with single lead terminating in unchanged position in the right ventricle. Heart 
size appears at least mildly enlarged. The mediastinal and hilar contours are unrema-
rkable. There is crowding of the bronchovascular structures without overt pulmonary 
edema. Streaky opacities in the lung bases likely reflect areas of atelectasis. No pleur-
al effusion or pneumothorax is present. There are no acute osseous abnormalities.
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Frontal and lateral views of the chest were obtained. The patie-
nt is status post median sternotomy and cabg. Left sided aicd is 
again seen with leads extending to the expected positions of the 
right atrium and right ventricle. Bibasilar opacities are seen wh-
ich may be due to atelectasis although aspiration or infection is 
not excluded. No pleural effusion or pneumothorax is seen.

Frontal and lateral views of the chest were obtained. There 
are low lung volumes which accentuate the bronchovascular 
markings. There is mild bibasilar atelectasis. No definite foc-
al consolidation is seen. There is no pleural effusion or pneu-
mothorax. The cardiac and mediastinal silhouettes are stable. 
Left sided aicd is again seen with lead extending to the expe-
cted position of the right ventricle.

Lung volumes are low. The heart size is mildly enlarged. The 
mediastinal and hilar contours are unremarkable. There is cro-
wding of the bronchovascular structures but no overt pulmon-
ary edema is present. Patchy opacities in the lung bases likely 
reflect areas of atelectasis. No pleural effusion or pneumotho-
rax is present. No acute osseous abnormalities are detected.

Left-sided aicd device is noted with single lead terminating in 
the right ventricle. Lung volumes are low. Heart size is mildly 
enlarged. Mediastinal and hilar contours are unremarkable. Th-
ere is crowding of the bronchovascular structures but no overt 
pulmonary edema is present. Patchy opacities in the lung bases 
likely reflect areas of atelectasis. No pleural effusion or pneum-
othorax is present. There are no acute osseous abnormalities.heart
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volume 
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Figure 3. Image-text attention visualizations and captioning results from EKAGen and other models on the MIMIC-CXR dataset. Gold
indicates complete alignment with the ground truth, while blue represents semantic alignment.
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Figure 4. (a) is the impact of scaling factor γ on BLEU-1, while
(b) is the variation of BLEU-1 on the GID iterations.

the effectiveness of our Global Information Self-Distillation
strategy. By using the model trained on complete images as
the teacher network to distill knowledge into our EKAGen,
significant improvements in performance are observed, e.g.,
0.509 → 0.526 and 0.349 → 0.361 in BLEU-1 and BLEU-2
scores. Figure 4 (b) is the variation of BLEU-1 scores for
different iteration steps, with highest score achieved at step
7. This shows that GID, using soft labels, enhances supervi-
sion and effectively tackles global information loss, leading
to improved accuracy without needing additional labels.

Analysis on alignment scores: To evaluate the simi-
larity of the reports generated by various models with the
ground truth on a holistic level, we calculate the alignment
scores of different models. As shown in Figure 6 (a), we

can observe that BASE, BASE+IEK, BASE+IEK+ADM
and EKAGen achieve scores of 0.597, 0.733, 0.752, and
0.785, respectively. This demonstrates EKAGen in implic-
itly aligning generated features with ground truth features.

4.4. Qualitative analysis

Report Analysis In Figure 3, we present the reports gen-
erated by our models. Compared with (a), the model de-
tects more pathological information, such as “low lung vol-
umes”, when incorporating instance-level prior knowledge.
Furthermore, when using ADM to highlight key regions in
(c), the model can detect more abnormal contour such as
“heart mildly enlarged”. Additionally, by introducing GID
to prevent feature loss, the model generates medical device-
related terms like “left-sided aicd”. Notably, among all set-
tings, the reports generated by EKAGen are the most com-
prehensive and closest in length to the ground truth.

Attention Visualization Figure 3 visualizes the ADM
and image-text attention mapping generated by our models.
Compared with (a), after integrating IEK, (b) demonstrates
more accurate localization of organ regions (e.g., cardiac,
lung). Additionally, (c) and (d) show improved perception
of anatomical features such as “heart”, through ADM rein-
forcement of key areas. In (c), the model exhibits increased
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The monitoring and support devices are unchanged.  At 
low lung volumes there is moderate cardiomegaly and 
mild fluid overload but no overt pulmonary edema. No 
pleural effusions.  No visible pneumothorax.

Rank1: 0.623

Rank75:  0.355                       Ground Truth                

Unchanged extent of moderate bilateral pleural 
effusions and moderate pulmonary edema.  Unchanged 
monitoring and support devices.  Unchanged size of 
the cardiac silhouette.  No pneumothorax.

Rank13:  0.482                       Ground Truth     

Rank1:  0.654

Monitoring and support devices are constant in 
appearance. Constant low lung volumes with 
bilateral small pleural effusions and  subsequent 
areas of atelectasis.  Moderate cardiomegaly.  No 
new parenchymal opacities. 

Rank1 0.815

Rank10: 0.610                       Ground Truth     

The monitoring and support devices are constant.  
Moderate cardiomegaly with minimal fluid overload.  
Retrocardiac atelectasis, combined to a small right 
pleural effusion.  Volume loss in the middle lobe.  No 
newly appeared focal parenchymal opacities.   No 
evidence of pneumonia.

Rank2:0.731

Rank1  0.753                         Ground Truth       

BASE

BASE+IEK+ADM EKAGen

BASE+IEK

The monitoring and support devices are in unchanged position. Moderate cardiomegaly with moderate right pleural effusion, 
accompanied by areas of bilateral basal atelectasis, right more than left. Mild fluid overload. No newly appeared parenchymal opacities.Image Query

Rank1 Rank2 Rank1 Rank2

Rank1 Rank2 Rank1 Rank2

Rank1541: Ground Truth     Rank244  Ground Truth     

Rank2: Ground Truth     Rank42: Ground Truth     

Ground Truth 

Figure 5. Our models for image retrieval and report retrieval are evaluated using the MIMIC-CXR dataset. In report retrieval, accurate
statements are indicated by gold and statements with semantic similarity are highlighted in blue. We utilize ranking and cosine similarity
as evaluation metrics for assessing the importance level.
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Figure 6. (a) displays the alignment scores of different models, while (b-e) show heatmaps of pairwise cosine similarity among all test
samples on the MIMIC-CXR dataset. EKAGen fits better across the entire dataset compared with other models.

sensitivity in capturing anomalies such as “enlarge”, while
(d) provides more fine-grained supervision through GID’s
soft label, accurately identifying the “base” region of the
lungs and the position of the “heart”, enabling the capture
of small targets in the ventricle area for a “single lead”.

Image and Report Retrieval Figure 5 illustrates the
results of image and report retrieval using our EAKGen
and other models. Observations reveal that compared with
other models, EAKGen exhibits a higher cosine similarity
with the ground truth report. By incorporating IEK, ADM,
and GID into the BASE model, it exhibits an increased re-
trieval rank, indicating a growing probability of retrieving
the query images and ground truth reports. Additionally,
the reports retrieved by EAKGen exhibit a closer resem-
blance to the ground truth in terms of content. For instance,
in the case of EKAGen’s rank 2, it accurately identifies and
diagnoses “right pleural effusion,” providing precise infor-
mation about both the disease and its location. These find-
ings indicate that our method produces semantic informa-
tion that better aligns with the ground truth report.

Pairwise Cosine Similarity As depicted in Figure 6, (b)
indicates that BASE has a limited number of samples sim-
ilar to the query sample. Comparing (e) and (b), EKAGen
generates diagnostic reports that are closer to those of clin-
ical experts than the BASE. From (c-e) and (b), it is evi-
dent that removing IEK, ADM or GID significantly reduces

the similarity between generated reports and expert reports.
This reinforces our method’s ability to narrow the gap be-
tween report generation methods and human experts.

5. Conclusion

In this paper, we initially develop comprehensive embed-
ding representations for pulmonary disease and introduce
IEK to mitigate the issue of feature degradation. Subse-
quently, we utilize weak supervision to generate activation
maps that highlight crucial regions and create ADM to pri-
oritize discriminative regions. Lastly, we propose the GID
strategy to prevent feature erosion and provide soft supervi-
sion, distilling global knowledge into our model. Extensive
experiments and analyses on the IU X-Ray and MIMIC-
CXR datasets validate the efficacy of our EKAGen, which
achieves state-of-the-art performance on both datasets.
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