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Abstract

We introduce MAGICK, a large-scale dataset of gen-

erated objects with high-quality alpha mattes. While im-

age generation methods have produced segmentations, they

cannot generate alpha mattes with accurate details in hair,

fur, and transparencies. This is likely due to the small size

of current alpha matting datasets and the difficulty in ob-

taining ground-truth alpha. We propose a scalable method

for synthesizing images of objects with high-quality alpha

that can be used as a ground-truth dataset. A key idea

is to generate objects on a single-colored background so

chroma keying approaches can be used to extract the al-

pha. However, this faces several challenges, including that

current text-to-image generation methods cannot create im-

ages that can be easily chroma keyed and that chroma key-

ing is an underconstrained problem that generally requires

manual intervention for high-quality results. We address

this using a combination of generation and alpha extrac-

tion methods. Using our method, we generate a dataset

of 150,000 objects with alpha. We show the utility of our

dataset by training an alpha-to-rgb generation method that

outperforms baselines. Please see our project website at

https://ryanndagreat.github.io/MAGICK/.

1. Introduction

Recent breakthroughs in diffusion models have led to an

abundance of new research in text-to-image generation [22,

25, 27, 29]. Given a short text prompt, an entire image can

quickly be generated. These images can contain complex

foreground objects against complex backgrounds. How-

ever, they do not handle use cases in which a user may want

an isolated object with an accurate alpha channel.

For example, a user may want to guide the generation of

an image with not only a text prompt but also with an accu-

rate alpha mask. While segmentation maps have been used

to guide diffusion models [47], these maps are rough and do

Figure 1. An alpha matte (inverted for visibility) is used to gener-

ate an rgb image using ControlNet trained by our dataset (center)

verses the original (right). Note our version trained with our data

closely follows the alpha matte.

not contain precise details like human hair or transparencies

like in a wine glass. Our attempts to use alpha to condition

the off-the-shelf ControlNet v1.1 yielded results that did not

follow the alpha channel (Fig. 1). Other applications could

include generating objects to insert into images and gener-

ating training data for matting datasets.

The inability of current methods to address genera-

tion involving alpha may be due to the lack of training

data. While many large-scale segmentation datasets ex-

ist [6, 12, 18, 23, 50], they do not contain accurate soft

boundaries, usually because they were segmented manu-

ally using boundary-tracing tools. Matting datasets con-

tain high-quality alpha ground-truth but are too small for

training generation methods due to the difficulty in obtain-

ing ground-truth alpha. For example, the alphamatting.com

dataset [26] only contains 27 images, the Adobe Deep Im-

age Matting (DIM) dataset [44] contains 431 objects, and

the Semantic Matting dataset [35] expands DIM to 726 ob-

jects. Without a suitable large-scale alpha dataset, training

models with accurate boundaries will remain difficult.

To address this lack of data, we proposed MAGICK, a

large-scale dataset of generated objects with high-quality

alpha mattes for use in training future generation models.

MAGICK contains 150,000 generated objects across a wide

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.
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range of object types and includes masks with significant

soft edges or transparencies. To create this dataset, we gen-

erate objects on green screen (or other solid colored) back-

grounds and extract the objects using chroma keying. Sev-

eral significant challenges complicate this approach: 1) an

appropriate background color must be selected (generating

a green leaf on a green background will yield a poor result),

2) current diffusion-based methods are poor at generating

objects on a green screen, producing images with little de-

tail around the edges or producing background that are not

constant colored (Fig. 5), and 3) chroma keying is an under-

constrained problem, often failing to produce high-quality

alpha without manual post-processing.

We overcome these challenges with the following ap-

proach. First, for a given prompt, we generate a sample

object to determine its primary colors, then select the color

least present in the object for the background color. We

then use two generation models to produce a suitable image

for chroma keying: the text-to-image generation method

DeepFloyd [1] which generates solid colored backgrounds

but foregrounds with poor alpha detail, then the image-to-

image generation method proposed in [20] with SDXL [22]

that can generate a good foreground with alpha detail given

the output of DeepFloyd. Finally, we use a combination

of chroma-based and deep-learning based keyers and seg-

menters to extract the object from the image accurately.

This process is shown in Fig. 3.

Given this approach, we produced a dataset of 150,000

images (to be released upon publication), a sample of which

is shown in Fig. 2. To show the utility of MAGICK, we

train a model on one of the many applicable tasks, alpha-to-

image generation. We fine-tune ControlNet [47] with our

dataset to generate RGB images given an input alpha and

show improved performance over using the pretrained Con-

trolNet (Fig. 1), showing the utility of our dataset.

2. Related Work

Synthetic segmentation data generation: Many meth-

ods have recently been proposed to synthetically gener-

ate segmentation data. Early methods utilize GANs for

data synthesis. DatasetGAN [13] proposes to decode GAN

latent codes to generate segmentation data, primarily of

specifc object parts or of limited scenes like bedrooms. Big-

DatasetGAN [49] produces masks for single primary ob-

jects by training a GAN on Imagenet [28].

Diffusion-based model typically take a text prompt as in-

put, then simultaneously synthesize an image along with a

mask. The mask may be of a single primary object [16, 42]

or a semantic segmentation within the domain of an exist-

ing hand-labeled dataset [21, 41]. Variations of this theme

include generating multiple images and object masks at

once [43] or generating the masks first and then the im-

age [45]. Peekaboo [3] generates single objects, the most

closely related method to our own, but the results lack de-

tails like hair and fur. While arguments can be made against

training with generated data [2, 33], these works show that

training with synthetic data, either alone or in conjunction

with real data, yields results that are on par with or surpass

the state-of-the-art set by methods trained with real data.

A drawback of these methods is they all focus on binary

masks and lack transparencies and fine details such as hair

or fur. Our method specifically targets generating images

with alpha mattes that exhibit fine details.

Alpha matting datasets: While our method is the first

to generate images with alpha masks, many alpha matting

datasets already exist. Generating alpha mattes is a difficult

task, requiring complicated image capture methods and/or

excessive user interaction, resulting in the existing matting

datasets being small in size. The early matting dataset from

alphamatting.com [26] was generated using triangulation

matting, a tedious process of photographing the same ob-

ject against multiple backgrounds, resulting in a dataset of

27 training images and 8 test images. This was extended

to video to produce a small number of frames using stop-

motion photography [8].

Manual extraction of the alpha matte from photographs

using existing matting methods has been used to create sev-

eral datasets [32, 35, 38, 44]. However, this approach is

very time consuming and prone to error, generally resulting

in only a few hundred objects.

Video matting datasets often use chroma keying [34] to

generate alpha data [17, 48]. However, high quality chroma

keying requires both careful setup of the green (blue) screen

and lighting as well as manual post-processing to tweak pa-

rameters and manually correct or mask out mistakes.

While these methods can produce high-quality alpha

mattes, they are difficult and tedious to collect. This con-

trasts our approach that can produce large numbers of accu-

rate alpha mattes with the corresponding images with mini-

mal user interaction.

Segmentation and Matting: Arguably, an alternative

method of producing a dataset like ours would be to simply

extract objects from generated images with standard seg-

mentation/matting methods without bothering to produce

them on green screens. Such generated images would con-

tain background details and potentially other foreground ob-

jects that would need to be separated from the object.

While many segmentation datasets exist [6, 12, 18, 50],

as do many methods for segmenting salient objects [14,

15, 24] or multiple objects [9, 11, 23] from images, these

methods would not yield the accurate alpha mattes that our

method produces. Matting methods [4, 7, 19, 30, 36, 44],

despite significant progress recently, are still imperfect and

would include errors or artifacts in the alpha mattes. In-

deed, we hope our dataset will be used to improve matting

methods in future works.
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Figure 2. 100 image and alpha samples from our dataset. Please zoom in to see all the details. Please see the appendix for more examples.

3. Dataset

The MAGICK dataset is a collection of 150,000 objects ex-

tracted from generated images. Each object consists of 1)

an image of the object with pure foreground colors (i.e. no

background color is mixed into edge and transparent pix-

els), 2) the alpha matte of the object, and 3) the caption

used to generate the object. The wide variety of objects is

not restricted to any small set of given object classes. Many

of the objects exhibit details that require a detailed matted

such as hair, fur, thin parts, or transparencies.

Fig. 2 shows 100 examples from our dataset. As can

be seen, the object types vary widely and the alpha mattes

contain accurate details.

Generating a dataset like MAGICK is non-trivial. No ex-

isting generation model can produce accurate images with

alphas. Datasets with accurate alpha are limited, making it

difficult to train such a method. While existing segmen-

tation or matting methods could be applied to generated

images to extract objects, such methods are imperfect and

would not yield results suitable for representing ground-

truth for training. To accomplish this, we needed to use

a combination of generation and alpha extraction methods.

3.1. Dataset Creation

To create MAGICK, we generate objects on a green screen

(or other constant colored screen) so that ground-truth qual-

ity results can be extracted. While chroma keying from

green screen footage is common, doing this at scale with

generation faces several challenges. In addition to requir-

Figure 3. A general overview of our pipeline for image generation.

ing a large set of prompts, we must have a way to select the

background color automatically, to generate a object on a

colored background that is suitable for chroma keying, and

to extract the alpha automatically. We propose a method to

overcome these challenges.

The overview is shown in Fig. 3. First, a prompt is cho-

sen. Then, a suitable color for the background is chosen by

generating an image from that prompt and analysing its dis-

tribution of hues. Next, a keyable image, or image that is
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suitable for chroma keying, is created by chaining together

two diffusion models, DeepFloyd [1] and SDEdit [20] with

SDXL [22]. Finally, multiple alpha extraction methods are

run and the best matte is chosen.

3.1.1 Selecting Prompts

The first step in generating our large synthetic image dataset

is to come up with a list of prompts. As we will be en-

gineering the prompts with additional descriptions in later

steps, we will refer to the part of the prompt that describes

the object as the “subject”. The subject must highlight and

meaningfully describe a single subject in each image with-

out mentioning other objects or background details so that

it can be easily isolated from the background.

We obtain the subjects in our dataset from three sources:

1) Outputs from LLMs such as GPT-4 and ChatGPT, 2) Pro-

cedurally generated subjects for humans, and 3) Captions

from an existing image-caption datasets

LLM-Generated Prompts Recent large language mod-

els (LLMs) have proven capable of generating text given

a prompt. We leverage this by using ChatGPT and GPT4

to create subject prompts. We instruct the LLMs to write

a descriptive caption of an object in an image without de-

scribing the background or other objects. We provide LLMs

with a list of object categories, both general objects and ob-

jects with details that require complex mattes like hair, fur,

or transparent parts, but also allow the LLMs to extrapolate

their own categories for additional variety.

Examples of captions created using LLMs in-

clude “A detailed macro shot of a butterfly

wing” and “A piece of amber glass reflecting

sunlight.” Additional examples and the LLM prompt

we use can be found in the appendix.

Procedurally Generated Prompts Because humans are

an important part of our dataset, we created a tem-

plate mechanism for procedurally constructing descrip-

tions of humans. We focused on diversity, attempting

to capture many different professions, ethnicities, cloth-

ing, accessories, genders and hairstyles. Some exam-

ple subjects are “lawyer woman diamond earrings”,

“person wearing gown”, and “hispanic barista

man with black flowing hair”. More examples can

be found in the appendix.

Image Captions While many image captioning datasets

exist [5, 31, 46], their captions typically describe the

scene and potentially multiple objects, such as the cap-

tion “A large bus sitting next to a very tall

building” from [5]. Such captions are not suitable for

our needs as identifying the subject is difficult.

We instead extract subjects from a proprietary image-

caption dataset. In addition to the full scenes present in

Figure 4. Finding the least common hue of a given subject. In this

example, “green” is least common.

prior datasets, this dataset also includes images of iso-

lated objects. The captions of such objects often con-

tain identifying words such as “clipping path”, “green-

screen”, or “on a white background”. We search for

such tags and remove them from the caption. This

yields descriptive subjects such as “‘Close-up of a new

basketball ball” and “White and brown chicken

wings”. More examples can be found in the appendix.

3.1.2 Finding the Least Common Hue

For our approach, we must generate images with solid col-

ored backgrounds for chroma keying. To do this, we must

choose a background color that does not conflict with the

subject, as that would render any chroma keying algorithm

useless. It is well-known that wearing a green shirt against a

green screen will causes your torso disappear in the output.

To find an appropriate background color for a given sub-

ject, we follow the procedure depicted in Fig. 4. First, for

a given subject, we generate an image using SDXL with

the subject (unmodified) as the prompt. While this gener-

ated image will not be on a solid colored background as we

need for alpha extraction, it will typically show the color

distribution for that given subject. We create a histogram of

the hues of the pixels in the generated image weighted by

saturation, then smooth the hue histogram with a Gaussian

kernel with σ = 10◦. We quantize the histogram into re-

gions representing named colors (e.g. green, blue, etc) and

return the color name as a string. This string representing

the hue will be used to generate the image in the next step.

We found that “green” and “blue” are by far the most

common background colors in our dataset, totaling over

90% of images. This matches practical experience where

objects to be chroma keyed are almost always shot against

a green or blue screen. This is also partially due to the wide

band of hues that these colors cover.

3.1.3 Generating Keyable Images

Give a subject and a background color, we can now gener-

ate an image from which we will extract the alpha. For this

to work, the image must be keyable. For an image to be
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Figure 5. We compare results from multiple diffusion models.

Each algorithm produces images that are not keyable, either the

foreground has no fine detail or is tinted green or the background

is not suitable for chroma keying. Please zoom in for details.

keyable, it 1) must have a constant, bright, saturated back-

ground color, 2) must not have any objects or gradients in

the background, 3) must have fine details like hair, fur, and

transparencies in the object when appropriate, and 4) must

not have color spill, or background colors tinting the fore-

ground.

Unfortunately, all the publicly available methods we

tested were incapable of consistently creating keyable im-

ages. As shown in Fig. 5, SDXL, Midjourney, Dalle, and

Stable Diffusion often produce backgrounds that are not

suitable for extraction (being too dark, desaturated, or hav-

ing gradients or objects) or have color spill. DeepFloyd

is quite good at generating vibrant clean backgrounds and

foreground with no color spill but fails to produce soft edges

(see the lion’s mane in Fig. 5).

Because of these shortcomings, we propose combin-

ing multiple generation methods (namely DeepFloyd and

SDEdit) with the goal of overcoming these weaknesses

through the combination. Our process is described below.

Prompt engineering We first augment the subject to indi-

cate the background color. For example, if the background

color were “green”, we augment the subject with the phrase

“isolated on a solid green background”.

Image generation To create a keyable image, we use both

the text-to-image generation method DeepFloyd followed

by the image-to-image generation methods SDEdit. This

process is illustrated in Fig. 6.

First, we use our prompt with DeepFloyd to generate

an initial image. We found that DeepFloyd could consis-

tently produce suitable backgrounds but the foregrounds

were lacking detail in the alpha. However, the backgrounds

are often not as bright and saturated needed for SDEdit. To

address this, we perform an initial extraction of the object

and composite it onto a brighter, more saturated background

with the approximately same hue. We use Photoshop’s Sub-

ject Selection feature, a method that uses deep-learning-

based segmentation and matting to compute masks for pri-

DeepFloyd Output Photoshop Subject Selection Composite on pure green background SDXL img2img Output

Prompt:

subject + “isolated on a 

solid” + least common hue 

+ “background”

= “young beautiful girl 

with hair blowing in wind

isolated on a solid

green background”

Construct Prompt

Figure 6. We generate the RGB images in our dataset using a

combination of both DeepFloyd, Photoshop’s Subject Selection

feature, and Stable Diffusion XL. The resulting images have near-

perfect, high saturation backgrounds that are ideal for chroma key-

ing. Please zoom in for details.

mary objects in an image and can be run in batch mode.

This method does not perfectly extract the object and may

leave green pixels in regions like hair, but these typically do

not cause a problem as the object is immediately compos-

ited onto a similar colored background.

We then use SDEdit [20], the image-to-image version

of SDXL implemented by Huggingface [10], to regenerate

the final image. In this step, we need to guarantee that the

object has fine details, that it has no color spill, and that

the background is solid, bright, and saturated enough for

chroma keying. To produce fine details, we set SDEdit’s

strength parameter to .95. This parameter, ranging from 0

to 1, determines how closely the generation follows the in-

put image by modulating the amount of noise added to the

image. This allows enough freedom for SDEdit to gener-

ate a new version of the same object with better details, not

only at the edges but often in the interior of the object as

well. To prevent color spill, we add the background color

as a negative prompt. This suppresses that color in the fore-

ground object, but because the background is so bright and

saturated from the previous step it fails to suppress the color

in the background.

Fig. 7 shows the impact of this process. The images in

the column “Before Img2Img” are the outputs from Deep-

Floyd after being matted by Photoshop Subject Selection

and composited onto a solid background, and the “After-

Img2Img” column are the outputs of SDEdit. Note the fi-

delity of the image increases and any color spill corrected

due to the negative prompt. (e.g. the submarine’s green tint

or the girl’s green dress). Also note the mistakes made by

Photoshop Subject Selection are corrected as well - the dan-

delions look poorly extracted before SDEdit but look natu-

ral after.

Despite these efforts to make the images as keyable as

possible, our process is imperfect, sometimes yielding re-

sults with gradients in the background color or tinting of

the foreground object. To deal with this, we require a ro-

bust alpha computation method.

3.1.4 Alpha extraction

Once we have a keyable image, we must extract the alpha

from the image. Unfortunately, this is also a difficult pro-
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Before Img2Img After Img2Img Before Img2Img After Img2Img

Figure 7. Examples of image before and after applying image-to-

image SDEdit. The before images are outputs of DeepFloyd after

being extracted by Photoshop Subject Selection and composited

onto a new background. Please zoom in for details.

cess. Chroma keying is an underconstrained problem. Even

with a solid background color, chroma keying methods can

fail to correct compute the alpha, and in practice users must

manually change parameters or correct the mattes for a high

quality result. This time-consuming process does not scale

to large datasets.

To address this, we generate three alpha mattes and

choose between them. These three methods operate dif-

ferently and in difficult cases one algorithm may compute

accurate results when the other cannot. The algorithms we

use are:

1. A pixel-based chroma key method. We modified a tradi-

tional color difference chroma key algorithm [40] that takes

a single rgb color representing the background as input to

instead take a background rgb color per pixel. We conser-

vatively delete the foreground object and inpaint the back-

ground using [37] to provide the background color at each

pixel. This allows us to better handle subtle gradients in the

background color. Note that this also performs color decon-

tamination in the same step.

2. A deep-learning based chromakey model that was trained

on an internal dataset and takes in an input RGB image and

a background RGB image and returns the alpha and fore-

ground color.

3. Photoshop’s Subject Selection which uses proprietary

segmentation and matting algorithms to select the primary

object in an image. It works well on images with simple

backgrounds and is robust to color spill.

Fig. 8 compares the three methods on three examples,

highlighting cases where the methods have inconsistent re-

sults. In such cases, one of the methods is able to compute

an accurate alpha.

Recalling the image matting equation:

I = αF + (1− α)B, (1)

we require not just the alpha but also F , the pure foreground

color of the pixel with any background color B removed.

Each of our three alpha extraction methods generate a pre-

Figure 8. A comparison of our three matting methods on different

input images. The green dotted rectangles indicate the best result

for each example.

dicted F . However, the method that predicts the best al-

pha does not necessarily also produce the best F . Experi-

mentally, we chose the best seven combinations as possible

choices for the final alpha and F .

3.1.5 Image Selection Process

The last step in our dataset creation pipeline is to select the

best matte. Each subject will have multiple matted results,

and the goal of this step is to choose the best one. We pro-

pose a simple automatic process that can approve a large

number of the images. For those failing the automatic pro-

cess, we fall back to having humans select the best option.

Automatic Selection Process Each of our alpha extrac-

tion methods operate differently, with one being color-

based, one being trained for computing alpha from green-

screen images, and one being designed for general object

extraction. Because of this, they tend to make different mis-

takes. However, for cases where our method successfully

produced a keyable image, the three alpha extraction meth-

ods often produce nearly identical results. We use this as

an indication that the alpha computation was successful and

each of the resulting alphas are good.

To measure the similarity, we devise a similarity score

metric taking into account both their alpha and RGB val-

ues - but not penalizing differences in RGB values if the

alpha values are both low. To do this, we compare both

RGBA images composited on different backgrounds (white

and black) and take the mean similarity between these two

composite images. We measure this similarity using MSS-

SIM [39] (multi-scale structural image similarity) as we
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Example of Low Similarity Score: .802 Example of High Similarity Score: .995

Pixel-Wise
Chromakey

Deep-Learning
Chromakey

Photoshop
Subject Select

Pixel-Wise
Chromakey

Deep-Learning
Chromakey

Photoshop
Subject Select

Figure 9. A qualitative comparison of a high and low similarity

score. Note how the alpha masks and colors are different between

samples on the one with low similarity, but nearly identical on the

one with high similarity.

found it gave the best results empirically.

MSSSIM is a metric that measures similarity between

images on a scale from 0 to 1, assuming the pixel values are

also between 0 and 1. Given our three RGBA images I0, I1,

and I2, a white image W , a black image B, the composition

function C and the MSSSIM function M, we compute our

similarity score S as:

S = min(a,b)F(Ia, Ib) where a, b ∈ {0, 1, 2}

F(Ia, Ib) =
1

2
(M[C(Ia,W ), C(Ib,W )]

+M[C(Ia, B), C(Ib, B)])

(2)

Fig. 9 shows a visual comparison between images with a

high and a low similarity score.

Fig. 10 shows the distribution of similarity scores. Most

images have very high similarity scores, indicating our pro-

cess to make the images keyable was largely successful.

The median score is 0.984. We found that the top 50% of

samples (measured by similarity score) yield decent results,

resulting in 110,000 images in our dataset being automati-

cally selected. These objects tend to be solid objects includ-

ing objects with hair or fur, and tend to not be objects with

significant transparencies. For these automatically-selected

images, we choose the pixel-wise chroma keying algorithm

as it often gives the highest detail.

Manual Selection Process For images that do not fall

above the threshold of automatic selection, we rely on hu-

mans to select the best alpha for us. These tend to be sub-

jects that contain difficult transparencies such as glass, wa-

ter, smoke, or fire. We acquired 40,000 images using man-

ual selection of the computed mattes.

We’ve created a program that will be released to the pub-

lic along with our dataset to aid in manual selection. It

presents multiple combinations of alpha and F and allows

changing the background colors and zooming for accurate

assessment of details, as well as additional features such as

tagging images. It also serves as an efficient way to quickly

view and audit the dataset. See the Appendix for details.

Figure 10. The distribution of similarity scores in the dataset.

4. Application: Alpha-to-RGB Generation

This dataset has many potential applications It could be

used to train a direct RGBA generation method or for train-

ing improved matting methods. To illustrate the usefulness

of the dataset, we investigated the application of alpha-to-

RGB generation. Given an alpha matte and a prompt as

input, we train a model to generate an accompanying RGB

image.

Method We trained ControlNet [47] with Stable Diffu-

sion 1.5 (SD1.5) on our dataset. As the output is RGB, we

must decide on a background for our target images. We

chose to composite our objects onto gray backgrounds. The

pure foreground color F can easily be derived with:

F =
1

α
(I −G) +G (3)

where G is the color of the gray background. Only G needs

to be estimated to compute Eq. (3) which is trivial as the

G is nearly constant. Because gray is a neutral color, any

small errors in estimating G will not shift the hue of F .

We used ControlNet’s default settings for training. For

testing, we also use the default settings except we set our

guidance scale to 7.5 and our control strength to 1.2 as we

found empirically this generates better results.

Baselines We are unaware of any baselines that directly

take alpha and produce a corresponding RGB with adher-

ence to detailed edges. SegGen [45] proposes a mask-

to-image model, but it assumes multiple objects and does

not produce matted details. While ControlNet v1.1 can

take segmentation masks as guidance, it was trained on

ADE20K [50] and so has a limited set of classes it covers

and its adherence to the matted details is too poor to provide

a meaningful comparison (see Fig. 1 top).

Instead, we convert our mask into edges and compare to

ControlNet using canny edges and sketch edges as guidance

as proposed in [47]. For fair comparison, we use SD1.5, the

same base model we trained on our dataset.
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Figure 11. Interface for user study.

Experiment We used the 27 alpha masks from the al-

phamatting.com training set [26] as the test set for our ex-

periment. This dataset contains interesting, complex al-

pha mattes that were not seen by any of the algorithms be-

fore testing. Prompts were generated for the images using

GPT4. Each method generated three RGB images for each

of the 27 examples given their alpha mattes and prompts.

Results We asked 52 participants to rate our results verses

those from SD1.5 Canny edges and sketch edges. As shown

in Fig. 11, the users were presented with the prompt and two

row of images, with each row showing results from one ran-

domly chosen method. The users were asked to select the

better row of images according to their appearance and ad-

herence to the prompt. As shown in Table 1, our results

were preferred 82% of the time over SD1.5 Canny Edges

and 77% of the time over SD1.5 Sketch edges. Fig. 12

shows example results from our experiment. Despite dif-

ferences from the original image (shown for reference and

not used in the study), the model trained with our dataset is

able to create aesthetically pleasing objects that follow the

given alpha. The captions and results from all three meth-

ods are shown in the Appendix.

Fig. 13 shows examples of our alpha-to-rgb generation.

The mask of the letter “S” was given to our model along

with eight different captions to create a number stylized

glyphs. The shapes of the generated letters conform to the

input mask. Despite not being explicitly trained for glyph

generation, the model produced a variety of aesthetically

pleasing results. Surprisingly, several results show consis-

tent 3d effects such as realistic extrusion or shadowing (e.g.

the top left and bottom right examples). Semantic features

also emerged, such as the cookie and pizza examples both

showing overcooking along the edges of the glyphs but not

User preference

SD guidance SD1.5 Ours

Canny Edges .16 .82

Sketch Edges .23 .77

Table 1. Results of user study on alpha-to-rgb generation.

Figure 12. Generation results from our user study. The original

images were the original images from [26], shown as reference

and not used in the study. Given the alpha values and captions

(not shown), images were generated using SD1.5 trained with our

dataset, SD1.5 Sketch Edges, and SD1.5 Canny edges.

Figure 13. Example of alpha-to-rgb generation. The letter “S” is

generated using different prompts to generate stylized text.

the interiors as can happen with real food.

5. Conclusion

We present MAGICK, a novel dataset consisting of 150,000

generated objects with accurate alpha mattes. The dataset

covers a wide variety of objects and has high quality mattes

with details such as hair, fur, thin parts, and transparencies.

We hope this dataset will be useful for future research, such

as for training rgba generation, alpha-to-rgb, or natural im-

age matting networks.

22602



References

[1] Deepfloyd. https://github.com/deep-floyd/if. 2, 4

[2] Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi,

Ahmed Imtiaz Humayun, Hossein Babaei, Daniel LeJeune,

Ali Siahkoohi, and Richard G. Baraniuk. Self-consuming

generative models go mad, 2023. 2

[3] Ryan Burgert, Kanchana Ranasinghe, Xiang Li, and

Michael S. Ryoo. Peekaboo: Text to image diffusion models

are zero-shot segmentors, 2023. 2

[4] Shaofan Cai, Xiaoshuai Zhang, Haoqiang Fan, Haibin

Huang, Jiangyu Liu, Jiaming Liu, Jiaying Liu, Jue Wang,

and Jian Sun. Disentangled image matting. In ICCV, 2019.

2

[5] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedan-

tam, Saurabh Gupta, Piotr Dollar, and C. Lawrence Zit-

nick. Microsoft coco captions: Data collection and evalu-

ation server, 2015. 4

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In CVPR,

2016. 1, 2

[7] Yutong Dai, Brian Price, He Zhang, and Chunhua Shen.

Boosting robustness of image matting with context assem-

bling and strong data augmentation. In CVPR, 2022. 2

[8] Mikhail Erofeev, Yury Gitman, Dmitriy Vatolin, Alexey Fe-

dorov, and Jue Wang. Perceptually motivated benchmark for

video matting. In BMVC, 2015. 2

[9] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In ICCV, 2017. 2

[10] Hugging Face. Image-to-image - stable diffusion.

https://huggingface.co/docs/diffusers/

api/pipelines/stable_diffusion/img2img,

2023. Accessed: 2023-11-16. 5

[11] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten

Rother, and Piotr Dollár. Panoptic segmentation. In CVPR,

2019. 2

[12] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-

jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan

Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig,

and Vittorio Ferrari. The open images dataset v4: Unified

image classification, object detection, and visual relationship

detection at scale. IJCV, 2020. 1, 2

[13] Daiqing Li, Huan Ling, Seung Wook Kim, Karsten Kreis,

Sanja Fidler, , Antonio Torralba Torralba, and Sanja Fidler.

Datasetgan: Efficient labeled data factory with minimal hu-

man effort. In CVPR, 2021. 2

[14] Guanbin Li, Yuan Xie, Liang Lin, and Yizhou Yu. Instance-

level salient object segmentation. In CVPR, 2017. 2

[15] Yin Li, Xiaodi Hou, Christof Koch, James M. Rehg, and

Alan L. Yuille. The secrets of salient object segmentation.

In CVPR, 2014. 2

[16] Ziyi Li, Qinye Zhou, Xiaoyun Zhang, Ya Zhang, and Yan-

feng Wang. Open-vocabulary object segmentation with dif-

fusion models. In ICCV, 2023. 2

[17] Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta,

Brian L Curless, Steven M Seitz, and Ira Kemelmacher-

Shlizerman. Real-time high-resolution background matting.

In CVPR, 2021. 2

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir

Bourdev, Ross Girshick, James Hays, Pietro Peronaand Deva

Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft

coco: Common objects in context. ECCV, 2014. 1, 2

[19] Hao Lu, Yutong Dai, Chunhua Shen, and Songcen Xu. In-

dices matter: Learning to index for deep image matting. In

ICCV, 2019. 2

[20] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jia-

jun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit: Guided

image synthesis and editing with stochastic differential equa-

tions. In International Conference on Learning Representa-

tions, 2022. 2, 4, 5

[21] Quang Nguyen, Truong Vu, Anh Tran, and Khoi Nguyen.

Dataset diffusion: Diffusion-based synthetic dataset genera-

tion for pixel-level semantic segmentation, 2023. 2

[22] Dustin Podell, Zion English, Kyle Lacey, Andreas

Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and

Robin Rombach. Sdxl: Improving latent diffusion models

for high-resolution image synthesis. arXiv, 2023. 1, 2, 4

[23] Lu Qi, Jason Kuen, Tiancheng Shen, Jiuxiang Gu, Wenbo

Li, Weidong Guo, Jiaya Jia, Zhe Lin, and Ming-Hsuan Yang.

High quality entity segmentation. In ICCV, 2023. 1, 2

[24] Xuebin Qin, Hang Dai, Xiaobin Hu, Deng-Ping Fan, Ling

Shao, and Luc Van Gool. Highly accurate dichotomous im-

age segmentation. In ECCV, 2022. 2

[25] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,

and Mark Chen. Hierarchical text-conditional image gener-

ation with clip latents, 2022. 1

[26] Christoph Rhemann, Carsten Rother, Jue Wang, Margrit

Gelautz, Pushmeet Kohli, and Pamela Rott. A perceptually

motivated online benchmark for image matting. In CVPR,

2009. 1, 2, 8

[27] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Bj¨orn Ommer. High-resolution image

synthesis with latent diffusion models. In CVPR, 2022. 1

[28] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. IJCV, 2015. 2

[29] Chitwan Saharia, William Chan, Saurabh Saxena, Lala

Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed

Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,

Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J

Fleet, and Mohammad Norouzi. Photorealistic text-to-

image diffusion models with deep language understanding.

NeurIPS, 2022. 1

[30] Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve

Seitz, and Ira Kemelmacher-Shlizerman. Background mat-

ting: The world is your green screen. In CVPR, 2020. 2

[31] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu

Soricut. Conceptual captions: A cleaned, hypernymed, im-

age alt-text dataset for automatic image captioning. In Pro-

ceedings of ACL, 2018. 4

22603

https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img
https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img


[32] Xiaoyong Shen, Xin Tao, Hongyun Gao, Chao Zhou, and

Jiaya Jia. Deep automatic portrait matting. In BMVC, 2016.

2

[33] Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal,

Nicolas Papernot, and Ross Anderson. The curse of recur-

sion: Training on generated data makes models forget, 2023.

2

[34] Alvy Ray Smith and James F Blinn. Blue screen matting. In

Siggraph, 1996. 2

[35] Yanan Sun, Chi-Keung Tang, and Yu-Wing Tai. Semantic

image matting. In CVPR, 2021. 1, 2

[36] Jingwei Tang, Yagiz Aksoy, Cengiz Oztireli, Markus Gross,

and Tunc Ozan Aydin. Learning-based sampling for natural

image matting. In CVPR, 2019. 2

[37] Alexandru Telea. An image inpainting technique based on

the fast marching method. Journal of Graphics Tools, 9(1):

23–34, 2004. 6

[38] Tiantian Wang, Sifei Liu, Yapeng Tian, Kai Li, and Ming-

Hsuan Yang. Video matting via consistency-regularized

graph neural networks. In ICCV, 2021. 2

[39] Z. Wang, E.P. Simoncelli, and A.C. Bovik. Multiscale struc-

tural similarity for image quality assessment. In The Thrity-

Seventh Asilomar Conference on Signals, Systems Comput-

ers, 2003, 2003. 6

[40] Steve Wright. Digital compositing for film and video. Taylor

Francis, 2010. 6

[41] Weijia Wu, Yuzhong Zhao, Hao Chen, Yuchao Gu, Rui Zhao,

Yefei He, Hong Zhou, Mike Zheng Shou, and Chunhua

Shen. Datasetdm: Synthesizing data with perception anno-

tations using diffusion models. In NeurIPS, 2023. 2

[42] Weijia Wu, Yuzhong Zhao, Mike Zheng Shou, Hong Zhou,

and Chunhua Shen. Diffumask: Synthesizing images with

pixel-level annotations for semantic segmentation using dif-

fusion models. In ICCV, 2023. 2

[43] Jiahao Xie, Wei Li, Xiangtai Li, Ziwei Liu, Yew Soon Ong,

and Chen Change Loy. Mosaicfusion: Diffusion models as

data augmenters for large vocabulary instance segmentation,

2023. 2

[44] Ning Xu, Brian Price, Scott Cohen, and Thomas Huang.

Deep image matting. In CVPR, 2017. 1, 2

[45] Hanrong Ye, Jason Kuen, Qing Liu, Zhe Lin, Brian Price,

and Dan Xu. Seggen: Supercharging segmentation models

with text2mask and mask2img synthesis, 2023. 2, 7

[46] Peter Young, Alice Lai, Micah Hodosh, and Julia Hocken-

maier. From image descriptions to visual denotations: New

similarity metrics for semantic inference over event descrip-

tions. Transactions of the Association for Computational

Linguistics, 2014. 4

[47] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding

conditional control to text-to-image diffusion models, 2023.

1, 2, 7

[48] Yunke Zhang, Chi Wang, Miaomiao Cui, Peiran Ren, Xuan-

song Xie, Xian-Sheng Hua, Hujun Bao, Qixing Huang, and

Weiwei Xu. Attention-guided temporally coherent video ob-

ject matting. In ACM MM, 2021. 2

[49] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-

Francois Lafleche, Adela Barriuso, Antonio Torralba, and

Sanja Fidler. Bigdatasetgan: Synthesizing imagenet with

pixel-wise annotations. In CVPR, 2022. 2

[50] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela

Barriuso, and Antonio Torralba. Scene parsing through

ade20k dataset. CVPR, 2017. 1, 2, 7

22604


	. Introduction
	. Related Work
	. Dataset
	. Dataset Creation
	Selecting Prompts
	Finding the Least Common Hue
	Generating Keyable Images
	Alpha extraction
	Image Selection Process


	. Application: Alpha-to-RGB Generation
	. Conclusion

