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Abstract

We consider a critical issue of false negatives in Vision-
Language Pre-training (VLP), a challenge that arises from
the inherent many-to-many correspondence of image-text
pairs in large-scale web-crawled datasets. The presence of
false negatives can impede achieving optimal performance
and even lead to a significant performance drop. To address
this challenge, we propose MAFA (MAnaging FAlse nega-
tives), which consists of two pivotal components building
upon the recently developed GRouped mIni-baTch sampling
(GRIT) strategy: 1) an efficient connection mining process
that identifies and converts false negatives into positives, and
2) label smoothing for the image-text contrastive (ITC) loss.
Our comprehensive experiments verify the effectiveness of
MAFA across multiple downstream tasks, emphasizing the
crucial role of addressing false negatives in VLP, potentially
even surpassing the importance of addressing false posi-
tives. In addition, the compatibility of MAFA with the recent
BLIP-family model is also demonstrated. Code is available
at https://github.com/jaeseokbyun/MAFA.

1. Introduction

With large-scale web-crawled datasets [3, 50–52], majorities
of vision-language pre-training (VLP) models are trained
in a self-supervised learning manner using the combina-
tion of several pre-tasks and losses [2, 33, 34, 63, 65]: e.g.,
masked language modeling (MLM), image-text contrastive
(ITC), and image-text matching (ITM) losses. Despite their
promising results, one of the pressing challenges they face
is the presence of noisy captions in image-text pairs that
often provide incomplete or even incorrect descriptions
[9, 13, 41, 44, 47, 59, 64]. Several recent works have fo-
cused on addressing such issue of noisy correspondence in
image-text pairs [11, 18, 19, 21, 34, 47]. Notably, BLIP [34]
introduced a caption refinement process by leveraging an
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Figure 1. Examples of positives, negatives, and false negatives
among image-text pairs.

image captioning model and a filter to generate synthetic
clean captions and remove noisy captions. Such process can
be seen as correcting the false positives that were injected
by the noisy captions.

Contrastively, we note that there is another type of chal-
lenge for VLP that stems from the nature of many-to-many
correspondence of image-text pairs. Namely, it is common
for an image (resp. text) to have additional positive con-
nections (blue lines in Figure 1) with another texts (resp.
images), which are paired with their corresponding images
(resp. texts). This is due to the fact that the existing image-
text datasets are constructed by only collecting paired image-
text instances, hence the information regarding non-paired
but semantically close image-text combination can be missed.
Consequently, for each image (resp. text), the text (resp. im-
age) that is given as the pair with the image (resp. text)
is treated as the only positive sample during pre-training,
while the other texts (resp. images) are all treated as nega-
tives. This setup inevitably leads to the prevalence of false
negatives during computing ITC and ITM losses and con-
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fuses the learning process. A naive solution would be to
identify missing positive connections by examining all pos-
sible image-text combinations in the dataset. However, it is
cleaerly infeasible for both manual and model-based eval-
uations due to prohibitive complexity. For example, even
for a dataset of moderate size, e.g., containing 5 million
image-text pairs, the number of combinations that need to
be examined is

(
5M
2

)
, which amounts to approximately 12

trillion.
We note such issue of false negatives has been more or

less overlooked in recent studies [2, 34, 63], which incorpo-
rated the in-batch hard negative sampling for the ITM task
as a standard tool for VLP. This sampling technique, initially
proposed in ALBEF [33], involves selecting hard negative
samples from the mini-batch based on the image-text sim-
ilarity scores computed from the ITC task. More recently,
GRIT-VLP [2] significantly improved the performance by
proposing an improved hard negative sampling by first group-
ing the similar image-text pairs together before forming a
mini-batch. Ideally, if all semantically close image-text pairs
were correctly labeled, hard negative mining could effec-
tively identify only informative hard negatives. However,
in a typical VLP setting where such information is absent,
the hard negatives in fact frequently become false negatives,
resulting in sub-optimal model performance.

To address this challenge of false negatives, particularly
prevalent when hard negative sampling is in action, we have
implemented two significant enhancements. Firstly, we de-
vise an Efficient Connection Mining (ECM) process that
identifies missing positive connections between non-paired
but semantically close images and texts. Rather than re-
viewing all possible combinations, ECM strategically ex-
tracts the plausible candidates which are selected as hard
negatives. These candidates are inspected by a pre-trained
discriminator, which determines their potential to be con-
verted into positives. The candidates identified as positives
by the discriminator are then incorporated as additional pos-
itives for calculating ITC, ITM, and MLM losses during
the training process. Secondly, we introduce Smoothed ITC
(S-ITC) which is based on the principle of label smoothing
[56]. This approach is specifically designed to mitigate the
over-penalization of false negative samples within grouped
mini-batches, without incurring any additional memory or
computational overhead.

Our experimental results demonstrate that the proposed
method, dubbed as MAFA (MAnaging FAlse negatives), can
substantially improve the VLP performance. For example,
a model trained with MAFA on a standard 4M dataset (i.e.,
4M-Noisy) can almost achieve the performance of a baseline
model trained on a much larger 14M dataset, without exploit-
ing any additional information such as bounding boxes or
object tags. Our systematic ablation analyses demonstrate
that such performance enhancement primarily results from

mitigating effect of false negatives. Another finding from our
experiments is that converting false negatives into additional
positives is more advantageous than merely eliminating them.
Moreover, we also demonstrate that the impact of addressing
the false negative issue is orthogonal to and may outweigh
that of addressing the false positive issue in VLP, which is
done by comparing and combining MAFA with the BLIP
[34] framework. Finally, we show MAFA is also compati-
ble with recently proposed BLIP-2 [35], underscoring the
generality of our method in VLP.

2. Related Work
Vision-language pre-training (VLP). Initial VLP models
[5, 6, 14, 20, 22, 29, 37, 39, 40, 54, 60, 66] which utilized a
single multi-modal encoder, primarily employed random
negative sampling during the ITM task. Recently, ALBEF
[33] incorporated the ITC loss and in-batch hard negative
sampling strategy for ITM by leveraging image-text
contrastive similarity scores. Subsequently, the in-batch hard
negative sampling strategy for ITM became an implicit rule
for the BLIP-family models [1, 2, 26, 27, 34, 35, 63, 65]
which adopt both ITC and ITM as training objectives. While
the significance of hard negative sampling for the ITM task
has been highlighted in GRIT-VLP [2], limited attention has
been given to addressing the issue of false negatives arising
from the hard negative samples. Existing studies have primar-
ily focused on tackling false negatives only in the context of
contrastive learning [2, 8, 33, 53] with particular emphasis
on the vision domain [4, 7, 24, 49]. To that end, we highlight
the need for effective strategies to address false negatives
in VLP and demonstrate that false negatives can be managed.

Label smoothing. Label smoothing [56] is a widely adopted
technique for improving generalization in various classifi-
cation tasks. It converts the one-hot target labels into soft
labels by mixing them with uniform distribution. This sim-
ple technique has demonstrated its efficacy in both visual
[31, 36, 43] and language domains [15, 32]. Its benefits
have also led to its incorporation as a supplementary tech-
nique to enhance the fine-tuning of image-text models like
CLIP [48] for image classification tasks [16, 25, 61]. How-
ever, the application of label smoothing within VLP and its
ability to address false negatives have not been thoroughly
explored. Recently, some studies [2, 33] have introduced
model-generated soft labels in the VLP domain. However,
we show that such soft labels are insufficient for effectively
addressing false negatives, justifying the need to incorpo-
rate label smoothing to the contrastive loss when the hard
negative sampling is employed.

2.1. GRIT-VLP [2]

GRIT-VLP uses ITC, ITM with in-batch hard negative sam-
pling, and MLM as the objectives proposed in ALBEF, ex-
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cept the utilization of the momentum encoder in the pre-
training. However, it significantly extends ALBEF by imple-
menting two key components as follows:
(a) GRouped mIni-baTch (GRIT) sampling aims to
construct mini-batches containing highly similar example
groups. This facilitates the selection of informative hard neg-
ative samples during in-batch hard negative sampling. To
avoid excessive memory or computational overhead, the pro-
cedure of constructing grouped mini-batches for the next
epoch is performed concurrently with the loss calculation at
each epoch. For this, additional queues are used to collect
and search for the most similar examples, one by one, in
which the similarity is measured by the ITC scores. These
queues serve as the search space and are significantly larger
than the mini-batch size B. Thus, the size of the queue, de-
noted as search space M , controls the level of hardness in
selecting hard negative samples.
(b) ITC with consistency loss attempts to address the issue
of over-penalization in ITC that arises when GRIT is com-
bined. Contrary to ALBEF, similar examples are gathered
in the GRIT-sampled mini-batch. Thus, when one-hot labels
are used for ITC, they result in equal penalization of all neg-
atives, and it has been observed that the representations of
similar samples may unintentionally drift apart. To mitigate
this, GRIT-VLP incorporates soft pseudo-targets generated
from the same pre-trained model as a mean of regularization.

3. Motivation
In order to quantify the tendency of the number of false
negatives in the ITM task, we report a quantitative analysis
result in Table 1. We estimated the number of false nega-
tive pairs during a single epoch while training the ITM task,
employing two distinct mini-batch sampling strategies: ran-
dom sampling and GRIT sampling. These strategies were
evaluated on both the original 4M dataset (4M-Noisy) and
the BLIP-generated clean dataset (4M-Clean). Given the
infeasibility of manually examining every negative pair to
determine whether it is a false negative, we utilized a strong
ITM model pre-trained on a large-scale 129M dataset from
BLIP — i.e., a negative pair is regarded as false negative if
the strong ITM model predicts it is “matched”. While the
ITM model does not always classify false negatives with
perfect accuracy, its reliability is deemed adequate for ap-
proximating the trend in false negative counts. More details
and analyses regarding counting the number of false nega-
tives can be found in the Supplementary Material (S.M).

From the table, we observe that GRIT sampling exhibits
significantly more false negatives than random sampling, as
mentioned in the Introduction. The reason is that GRIT sam-
pling generates challenging in-batch hard negatives, which
are beneficial for learning fine-grained representations, but
they also often end up being false negatives. Moreover, we
observe this trend exacerbates in the 4M-Clean dataset.

Table 1. Estimated number of false negatives (FN) for random
sampling and GRIT sampling. The FNs are counted for each anchor
image and text separately. The ratio (%) represents the estimated
proportion of FNs with respect to the total number of negative pairs
used in ITM during a single epoch. We set the batch size B as 96
for both samplings and M = 4800 for GRIT sampling.

Dataset Sampling FN w.r.t. image FN w.r.t. text

4M-Noisy Random 127,130 (2.5%) 118,080 (2.3%)
GRIT 817,991 (16.4%) 8111,145 (16.2%)

4M-Clean Random 153,006 (3.1%) 148,729 (3.0%)
GRIT 1,114,851 (23.2%) 1,096,485 (22.2%)

Figure 2. Comparison of IRTR average scores and false negatives
(%) in the 4M-Noisy dataset for GRIT-VLP and MAFA across
different search spaces (M ) when applying GRIT sampling. Here,
IRTR average score is defined as the average image-text retrieval
accuracy across (TR/R@1, TR/R@5, TR/R@10, IR/R@1, IR/R@5,
IR/R@10) on COCO 5k test set. For all models, we set the batch
size B as 96. Thus, when M = 96, GRIT sampling becomes
equivalent to random sampling.

In Figure 2, we examine the impact of an increasing num-
ber of false negatives on the downstream performance of
GRIT-VLP. Specifically, we measured the average IRTR
score of GRIT-VLP across different search space (queue)
sizes M , while keeping the batch size B constant. We first
clearly observe that the number of false negatives rises as M
increases. This is expected since expanding the search space
for GRIT sampling leads to more similar examples being
grouped together in a mini-batch, thereby generating more
false negatives. In terms of the downstream performance
of GRIT-VLP, we notice a decline when the value of M
exceeds a certain threshold (M = 960). We attribute this de-
cline to the introduction of “noise” caused by the increasing
presence of false negatives, which subsequently hampers the
effectiveness of hard negative sampling in GRIT-VLP. Based
on this analysis, we anticipate that effectively addressing
the issue of false negatives while leveraging the potential
of hard negative samples will be crucial for enhancing VLP
models even further. In S.M, we further explore the impact
of varying batch sizes on the occurrence of false negatives
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Figure 3. Overall framework of MAFA.

under the random sampling scenario, which highlights the
significance of handling false negatives even in the typical
VLP setting (large batch size under random sampling).

In response to this challenge, we propose MAFA, which
effectively addresses the issue of false negatives and im-
proves the downstream performance significantly compared
to GRIT-VLP. The preview of the performance of MAFA is
also shown in Figure 2 — it is evident that the IRTR score
of MAFA continues to improve despite an increase in the
number of false negatives.

4. Main Method: MAFA
Our MAFA consists of two integral components: we first
present the intuition and details of the Efficient Connection
Mining (ECM), then delineate the Smoothed ITC (S-ITC).

4.1. Efficient Connection Mining (ECM)

As outlined in the Introduction, the issue of false negatives
originates from missing positive connections within a paired
dataset, a challenge that is computationally infeasible to ad-
dress naively. To tackle this, ECM process is strategically
designed to exclusively examine hard negatives with signifi-
cantly higher likelihoods of being false negatives. Namely,
as described in Figure 4 and Algorithm 1 in S.M, the training
model selects the hardest negatives for each anchor based on
ITC similarity in the GRIT-sampled mini-batches. Once hard
negatives are selected, a separate pre-trained ITM model,
Connection Discriminator (Con-D), is employed to deter-
mine whether these hard negatives are true (hard) negatives
or false negatives. If Con-D assigns a probability to a candi-
date image-text pair of being positive higher than a threshold
τ (which was set to 0.8), that candidate is adopted as a new
positive pair in the pre-training losses.

We note that ECM process can be seamlessly integrated
with the training process of BLIP-family models (ALBEF

[33], BLIP [34], BLIP-2 [35]) as well by adopting GRIT
sampling and Con-D, given that ITC and ITM are used as
their training objectives. Moreover, due to the inherent ran-
domness of mini-batches, Con-D encounters a variety of
hard negatives in each batch and epoch, which enables ECM
to create diverse positive connections during training.

Now, we will elaborate on the details of the three pre-
training losses (ITC, ITM, and MLM) utilized in our model,
and then explain how false negatives identified by ECM are
integrated into these losses. Briefly, for ITC and ITM, the
labels for identified false negatives are revised from negatives
to positives. Moreover, these new positives are additionally
used as inputs for MLM.
[ITC with ECM] In ITC, to measure the similarity be-
tween images and texts, the [CLS] tokens from the uni-
modal encoders are utilized, as illustrated in Figure 3. We
denote the cosine similarity between image i and text t as
s(i, t) = gI(i

cls)T gT(t
cls), where gI(·) and gT(·) are linear

projections for [CLS] tokens of image and text embeddings,
respectively. The objective of ITC is to maximize the similar-
ity of positive pairs while minimizing that of negative pairs;
hence, the loss becomes

LITC =
1

2
E(i,t)∼D

[
CE

(
yI2T(i),pI2T(i)

)
+ CE

(
yT2I(t),pT2I(t)

)]
, (1)

in which yI2T(i) and yT2I(t) stand for the one-hot vectors
for the correct sample pairs for image i and text t, respec-
tively. CE(·) denotes the cross-entropy loss. The softmax-
normalized image-to-text and text-to-image similarities be-
tween image i and text t, pI2T

t (i) and pT2I
i (t), are defined as

pI2T
t (i) =

es(i,t)/τ∑N
k=1 e

s(i,tk)/τ
,pT2I

i (t) =
es(i,t)/τ∑N

k=1 e
s(ik,t)/τ

,

(2)
in which τ is the temperature and N is the number of con-
sidered texts and images.

To incorporate missing positive connections identified by
Con-D, the one-hot label y is adjusted to ỹITC. For example,
for an anchor image i, a single text tk is picked by in-batch
hard negative sampling. Then, if tk is recognized as a new
positive by Con-D, the k-th element of the one-hot vector
yI2T(i) changes from 0 to 0.5. Simultaneously, the original
label value of 1 in yI2T(i) becomes 0.5, ensuring that the sum
remains 1. If a positive connection is not newly established,
the label remains unchanged. The above process is applied
identically for text t and image ik. Now, we denote the new
ITC loss equipped with ỹITC as LECM

ITC .
[ITM with ECM] ITM task aims to predict whether the
provided pair is matched or not. Similar to ITC, the labels for
ITM are revised based on the missing positive connections
identified by Con-D. We employ a re-sampling strategy for
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Figure 4. Efficient Connection Mining (ECM).

the ambiguous samples, which are uncertain whether they
are false negatives or not (those with a probability of being
positive between 0.5 and 0.8). These ambiguous samples
are discarded, and the second hardest text (or image) is re-
sampled for the anchor image (or text) to obtain a more
certain negative for ITM. Thus, the form of the ITM loss is
as follows:

LECM
ITM = E(i,t)∼D

[
CE

(
ỹITM,pITM(i, t)

)]
, (3)

in which ỹITM represents the corrected one-hot label from
Con-D.
[MLM with ECM] For MLM, the model is asked to predict
masked tokens in the caption using unmasked text tokens
and visual information. In addition to the original positive
pairs in the dataset, new positive pairs detected by Con-D
are additionally used:

LECM
MLM = E(i,t)∼D∪DECM

[
CE

(
yMLM,pMLM(i, tmask)

)]
,

(4)
in which DECM denotes the set of newly constructed pairs,
yMLM represents the one-hot label for the masked token,
and pMLM(i, tmask) indicates the model’s prediction for the
masked token.
Remark: Con-D is pre-trained with the following pre-
training objectives: S-ITC, MLM, and ITM with GRIT sam-
pling. Then, it is fine-tuned on the Karpathy training split
of MS-COCO [38], and the output of ITM head of Con-D
serves as the probability for a candidate image-text pair to
be a positive pair. The additional computation overhead of
ECM during training depends only on the number of samples
provided to Con-D and the number of new positives given
to the multi-modal encoder of the training model for MLM.
Since only labels are corrected for ITC and ITM, it does

not require additional forward passes for the model being
trained. Thus, despite the inclusion of additional forwarding
passes for ECM, the extra overhead introduced by ECM is
relatively low compared to the momentum distillation tech-
nique employed in ALBEF and BLIP. Detailed information
regarding the computational cost is described in S.M.

4.2. Smoothed ITC (S-ITC)

To overcome the challenge of false negatives in ITC under
GRIT sampling, we additionally introduce a computation-
free approach named S-ITC, which employs label smoothing
to contrastive loss, which has not been extensively explored
in VLP. Specifically, we take the following loss form:

LS-ITC =
1

2
E(i,t)∼D

[
CE

(
(1−α)yI2T(i)+

α

N
1,pI2T(i)

)
+ CE

(
(1− α)yT2I(t) +

α

N
1,pT2I(t)

)]
, (5)

in which α represents a mixing parameter, and 1 denotes
all-one vector.

We emphasize that label smoothing has not been widely
adopted in typical VLP settings since it has not been very
effective. As we show in Table 6 (Section 5), performance
is significantly degraded when S-ITC is applied under the
random sampling scenario. This decline is largely due to the
detrimental effect of providing soft labels for the examples
in the randomly sampled batch where true negatives are
prevalent. In contrast, under GRIT sampling where each
mini-batch is predominantly composed of samples that are
likely to be false negatives, we observe that S-ITC, which
ensures relatively high soft labels for all negatives, becomes
highly effective.

There also have been other attempts to address the is-
sue of false negatives in ITC, such as momentum distilla-
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Table 2. Values of soft labels assigned to samples in ITC for differ-
ent methods. The batch size B is set to 96, and the queue size Q
is set to 48000. The soft labels were computed in the last epoch of
the training.

Method Sum of soft labels
Top 1 ∼ 5 Top 6 ∼ B Top B + 1 ∼ B +Q

S-ITC 0.5260 0.4740 ·
Consistency Loss 0.9822 0.0178 ·

Momentum Distillation 0.6746 0.0009 0.3245

tion [33] and consistency loss [2]. Here, we explain only
I2T-related terms for simplicity; T2I-related terms are simi-
larly computed. Momentum distillation replaces yI2T

t (i) by
yMD
t (i) = (1 − α)yI2T

t (i) + αsg[p̃I2T
t (i)], where sg[·] is

the stop gradient operator, and p̃ denotes the probability
obtained from the momentum encoder. Here, N is equal to
batch-size B+Q since the model is accompanied by a queue
of size Q that stores embeddings to provide additional nega-
tives. However, this approach suffers from inefficiency due to
the additional forwarding of the momentum model, and it re-
sults in increasing the model size. In consistency loss, yI2T

t (i)
is substituted with yCS

t (i) = (1− α)yI2T
t (i) + αsg[pT2I

i (t)],
where pT2I

i (t) is computed by the model itself. Here, N is
the same as B since it does not involve a queue.

However, as shown in Table 6 (in Section 5), the effec-
tiveness of momentum distillation and consistency loss is
limited. To explore the reason behind this, we examine the
soft labels from the above methods in the GRIT sampling
scenario as reported in Table 2, aiming to uncover the dis-
tribution shapes of the soft labels. The values in the table
are obtained through the following process: the soft labels
are sorted in descending order, and then averaged across
all samples. Further details on the computation process are
described in S.M. We observe that momentum distillation
continues to assign almost zero labels to negative samples,
which are likely to be false negatives under GRIT sampling.
This result may stem from the large number of negatives in
the queue, which prevents each negative sample from receiv-
ing non-negligible labels. On the other hand, consistency
loss assigns comparatively higher soft labels (0.0178) than
momentum distillation (0.0009) but overly concentrates on a
few pairs, resulting in negligible labels for most negatives.
In S.M, we provide an analysis that this phenomenon cannot
be resolved by merely tuning α.

Given that both consistency loss and the momentum dis-
tillation fail to achieve the intended objective of assigning
non-negligible soft labels to the majority of negatives, we
argue that S-ITC, which explicitly assigns higher soft labels
to all negatives, can be a simple but effective solution. In
S.M, we include an analysis of its robustness to α.

Consequently, as illustrated in Figure 3 and Algorithm 1
in S.M, we adopt the following pre-training objective:

L = LECM
S-ITC + LECM

MLM + LECM
ITM , (6)

where LECM
S-ITC represents the integrated ITC loss of LECM

ITC and
LS-ITC, which adopts the target labels as (1− α)ỹITC + α

N 1.

5. Experimental Results
5.1. Data and experimental settings

During our training process, we utilize four datasets (MS-
COCO [38], Visual Genome [30], Conceptual Captions [52],
and SBU Captions [45]) with a total of 4M unique images
(5M image-text pairs), as proposed by ALBEF [33] and
UNITER [5]. We refer to this collective dataset as the “4M-
Noisy” dataset due to a significant number of captions that
offer either incomplete or incorrect descriptions, which can
be seen as false positives. To analyze the impact of our
approach in handling false negatives relative to the effect of
removing false positives, we construct an additional same-
sized training set named “4M-Clean” which is composed of
clean image-text pairs, refined by the BLIP captioner [34].
Note that all the models are pre-trained with the “4M-Noisy”
unless specifically stated as “4M-Clean” in our results table
below. Further details on constructing the 4M-Clean dataset
are in S.M.

Following ALBEF, we adopt our image encoder as a 12-
layer Vision Transformer [12] with 86 million parameters,
pre-trained on ImageNet-1k [57]. Both the text and multi-
modal encoders utilize a 6-layer Transformer [58], initializ-
ing the former with the first 6 layers and the latter with the
last 6 layers of BERT-base model (123.7M parameters) [10].
We use the same data augmentation method used in ALBEF
and train our model for 20 epochs using 4 NVIDIA A100
GPUs, but excluding the momentum encoder in ALBEF.
For Con-D, we use the exact same model architecture as
the training model. Unless otherwise noted, we set B = 96
and M = 4800 for GRIT sampling, and for all other hyper-
parameter settings, we follow GRIT-VLP [2]. More details
on the dataset, training, and hyperparameters are in S.M.

5.2. Downstream vision and language tasks

After completing the pre-training phase, we proceed to fine-
tune our model on three downstream vision and language
tasks: image-text retrieval (IRTR) [38], visual question an-
swering (VQA) [17], and natural language for visual reason-
ing (NLVR2) [55]. For IRTR, we utilize the MS-COCO [38]
and Flickr30K (F30K) [46] datasets, with F30K being re-
splitted according to [28]. Following BLIP [34], we exclude
the SNLI-VE dataset [62] due to reported noise in the data.
Our fine-tuning and evaluation process mostly follows that
of GRIT-VLP. More details of downstream tasks are in S.M.

5.3. Comparison with baselines

In Table 3, we observe that our approach consistently outper-
forms other baselines in multiple downstream tasks (IRTR,
VQA, NLVR2). Notably, MAFA even surpasses ALBEF
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Table 3. Comparison with various methods on downstream vision-language tasks. Bold denotes the best result among models trained with
4M dataset. * refers to the reproduced models by the authors. Methods without explicit designation are trained on 4M-Noisy dataset.

Method Pre-train
# Images

COCO R@1 Flickr R@1 NLVR2 VQA
TR IR TR IR dev test-P test-dev test-std

UNITER [5] 4M 65.7 52.9 87.3 75.6 77.18 77.85 72.70 72.91
VILLA [14] 4M - - 87.9 76.3 78.39 79.30 73.59 73.67
OSCAR [37] 4M 70.0 54.0 - - 78.07 78.36 73.16 73.44
ALBEF [33] 4M 73.1 56.8 94.3 82.8 80.24 80.50 74.54 74.70

TCL [63] 4M 75.6 59.0 94.9 84.0 80.54 81.33 74.90 74.92
BLIP* (4M-Clean) [34] 4M 75.5 58.9 94.3 82.6 79.70 80.87 75.50 75.76

GRIT-VLP* [2] 4M 76.6 59.6 95.5 82.9 81.40 81.23 75.26 75.32
MAFA 4M 78.0 61.2 96.1 84.9 82.52 82.08 75.55 75.75

MAFA (4M-Clean) 4M 79.4 61.6 96.2 84.6 82.66 82.16 75.91 75.93
ALBEF 14M 77.6 60.7 95.9 85.6 82.55 83.14 75.85 76.04
BLIP 14M 80.6 63.1 96.6 87.2 82.67 82.30 77.54 77.62

Table 4. Ablation study on the proposed method. Bold denotes the best result among models trained with 4M-Noisy, 4M-Clean dataset,
respectively.

Pre-train
dataset

MAFA COCO R@1 Flickr R@1 NLVR2 VQA
S-ITC ECM TR IR TR IR dev test-P test-dev test-std

4M-Noisy

✗ ✗ 76.6 59.6 95.5 82.9 81.40 81.23 75.26 75.32
✗ ✓ 77.4 60.2 95.5 83.3 82.03 81.76 75.39 75.52
✓ ✗ 77.5 60.5 96.1 84.2 81.74 81.33 75.42 75.51
✓ ✓ 78.0 61.2 96.1 84.9 82.52 82.08 75.55 75.75

4M-Clean ✗ ✗ 77.7 60.7 95.2 84.2 81.44 81.39 75.50 75.57
✓ ✓ 79.4 61.6 96.2 84.6 82.66 82.16 75.91 75.93

(14M) and competes with BLIP (14M) on certain metrics, de-
spite being trained on a significantly smaller dataset. Specifi-
cally, MAFA achieves significant improvements over GRIT-
VLP, with a substantial margin of +1.4% IR/R@1, +1.6%
TR/R@1 on MS-COCO and +1.1% on NLVR2 dev. These
results clearly show the significance of addressing false neg-
atives when leveraging hard negative mining. Additionally,
we believe that the comparison between BLIP (4M-Clean)
and our MAFA shows that the effectiveness of managing
false negatives may surpass the impact of mitigating false
positives. Furthermore, the enhanced performance of MAFA
(4M-Clean) over MAFA shows the synergistic effect of ad-
dressing both false positives and negatives.

5.4. Ablation studies

Table 4 presents the effectiveness of two proposed compo-
nents: efficient connection mining (ECM) and smoothed
ITC (S-ITC). Here, all model variants adopt GRIT sampling,
with row 1 representing the original GRIT-VLP model. The
results clearly demonstrate that applying either the S-ITC
(row 3) or the ECM (row 2) individually leads to perfor-
mance improvements compared to a model that does not
consider false negatives (row 1). By combining both S-ITC
and ECM in our final model (row 4), we observe significant
performance enhancements on the 4M-Noisy dataset. This

Table 5. Analysis of the effect of MAFA with GRIT sampling.
“ECM-E” denotes eliminating false negatives rather than using
them as positives.

Method COCO R@1 NLVR2 VQA
GRIT MAFA IR TR dev test-P test-dev test-std

✗ ✗ 74.4 57.6 79.75 79.94 74.49 74.67
✗ ✓ 74.3 57.8 81.20 81.03 74.61 74.78
✓ ✗ 76.6 59.6 81.40 81.23 75.26 75.32
✓ ✓(ECM-E) 77.1 61.1 82.33 81.95 75.50 75.54
✓ ✓ 78.0 61.2 82.52 82.08 75.55 75.75

tendency is validated again in the 4M-Clean dataset, confirm-
ing the consistent effectiveness of the proposed components
(row 6). Moreover, by comparing the performance gap be-
tween MAFA trained on the noisy dataset (row 4) and GRIT-
VLP trained on the clean dataset (row 5), we reaffirm that
addressing false negatives outweighs the impact of handling
false positives. Beyond the 4M dataset, we present additional
results across a broader range of data scales (1M, 2M, and
14M) in S.M, demonstrating the robustness of MAFA with
respect to data scale variations.

Table 5 provides an additional comparative analysis on
the effectiveness of MAFA, based on whether GRIT sam-
pling and ECM are either applied or not. Here, row 1 denotes
the ALBEF model without momentum distillation. Since S-
ITC is ineffective under random sampling (as we show in
Table 6 below), S-ITC is excluded when GRIT sampling is
not utilized (row2). We observe that MAFA enhances the
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performance for both random and GRIT sampling. However,
the effect of MAFA is much more vivid for GRIT sampling
(row 4, 5), underscoring the critical role of managing false
negatives in hard negative sampling. Moreover, our experi-
ments reveal that converting false negatives into additional
positives (row 5) is considerably more beneficial than merely
removing them (row 4), which highlights the effect of lever-
aging new positive connections constructed by the model
within the dataset itself.

Furthermore, in Table 6, we provide a comparative analy-
sis on S-ITC, which supports our discussion in Section 4.2;
S-ITC brings out a unique synergy only when combined
with GRIT-sampling. Namely, in random sampling, we ob-
serve that S-ITC rather detrimentally affects performance
(row 2). Conversely, under GRIT sampling, we verify that
assigning relatively high nonzero labels to most negatives
enhances performance. Namely, consistency loss (row 4),
which assigns relatively higher soft labels to samples in a
batch, outperforms momentum distillation (row 5). S-ITC
significantly outperforms the other two variants, which high-
lights the importance of assigning substantial labels to the
majority of negatives, rather than just a few.

5.5. Compatibility of MAFA with BLIP-2 [35]

In Tables 7 and 8, we demonstrate that our MAFA can be
successfully integrated with the recent BLIP-2 [35], which
is quite a successful vision-language pre-training framework.
As described in S.M., the stage-1 of BLIP-2, which adopts
ITC, ITM, and (auto-regressive) LM losses as objectives,
closely resembles the pre-training procedures of both BLIP
and ALBEF. Thus, MAFA can be effortlessly incorporated
into stage-1 of BLIP-2, following the identical way described
in Section 4.

In Table 7, we observe the performance of BLIP-2+GRIT
is significantly degraded (row 2), which indicates that solely
applying GRIT sampling leads to a failure of learning. We
believe this performance degradation primarily stems from
more frequent occurrences of false negatives in BLIP-2. In
BLIP-2, due to the significantly enhanced capacity of the
model, GRIT sampling, which mines hard negatives based
on contrastive similarities calculated from the training model,
includes a substantially higher number of false negatives in
each batch. The integration of MAFA with BLIP-2 leads to
enhanced performance, highlighting the importance of man-
aging false negatives to increase the stability of the training
process.

We further explore whether the integration of MAFA in
stage-1 leads to improved generative learning capabilities af-
ter additional stage-2 training where the model is connected
to a frozen LLM and pre-trained only with LM loss. We
evaluate the performance of models in various zero-shot vi-
sual question answering benchmark datasets including GQA
[23], OKVQA [42], and VQA [17]. Moreover, we assess the

Table 6. Comparison of soft-labeling methods for ITC.

Method COCO R@1 Flickr R@1
GRIT Soft labeling TR IR TR IR

✗
✗ 74.4 57.6 93.5 81.7

Momentum Distillation 74.2 57.4 93.5 81.9
S-ITC 73.5 56.1 92.9 79.9

✓
Consistency Loss 76.6 59.6 95.5 82.9

Momentum Distillation 76.1 58.9 94.4 82.7
S-ITC 77.5 60.5 96.1 84.2

Table 7. Fine-tuned IRTR results with BLIP-2 framework on MS-
COCO datasets.

Model TR IR
R@1 R@5 R@10 R@1 R@5 R@10

BLIP-2 82.6 96.3 98.2 66.1 86.8 92.0
BLIP-2 + GRIT 65.9 89.1 95.0 52.5 79.4 87.3
BLIP-2 + MAFA 83.7 96.6 98.4 66.7 86.8 91.9

Table 8. Zero-shot visual question answering and image captioning
results with BLIP-2 framework.

Model VQAv2 OK-VQA GQA
COCO zero-shot

Karpathy test
val test test-dev BLEU@4 CIDEr

BLIP-2 46.6 23.8 29.1 35.6 118.8
BLIP-2 + MAFA 50.8 29.0 31.8 37.6 125.4

zero-shot image captioning ability on the Karpathy test split
of MS-COCO [38]. Table 8 shows that MAFA significantly
improves zero-shot performance across various VQA and
image captioning tasks. This result not only underscores the
compatibility of MAFA with BLIP-2 but also emphasizes
that the exclusive integration of MAFA in stage-1 is also
beneficial in generative learning capability (stage-2) as well.
More detailed results, including those from fine-tuned image
captioning and an analysis on how extra positive examples
from ECM influence the BLIP-2 stage-2 performance, are
provided in S.M.

6. Concluding Remarks
We introduce MAFA, a novel approach equipped with two
key components (ECM, S-ITC), specifically designed to
tackle the prevalent issue of false negatives in VLP. Our com-
prehensive experiments demonstrate that addressing false
negatives plays a crucial role in VLP. Moreover, we believe
that the concept of converting false negatives into additional
positives paves the way for future research that leverages the
inherent missing positive connections within a dataset.
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