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Abstract

Representing signals using coordinate networks domi-
nates the area of inverse problems recently, and is widely
applied in various scientific computing tasks. Still, there
exists an issue of spectral bias in coordinate networks, lim-
iting the capacity to learn high-frequency components. This
problem is caused by the pathological distribution of the
neural tangent kernel’s (NTK’s) eigenvalues of coordinate
networks. We find that, this pathological distribution could
be improved using the classical batch normalization (BN),
which is a common deep learning technique but rarely used
in coordinate networks. BN greatly reduces the maximum
and variance of NTK’s eigenvalues while slightly modifies
the mean value, considering the max eigenvalue is much
larger than the most, this variance change results in a shift
of eigenvalues’ distribution from a lower one to a higher
one, therefore the spectral bias could be alleviated (see
Fig. 1). This observation is substantiated by the significant
improvements of applying BN-based coordinate networks to
various tasks, including the image compression, computed
tomography reconstruction, shape representation, magnetic
resonance imaging and novel view synthesis.

1. Introduction
Coordinate networks, which take the coordinates as inputs
and output the signal attributes using multi-layer perceptron
(MLP) models, have become a promising framework for
solving various inverse problems. Different from the clas-
sical convolution-based networks which could only support
up to 3D patterns as input [20, 57], the input coordinates are
organized as 1D vectors in coordinate networks, enabling
the advantage of a general framework for solving inverse
problems with any dimensions. Therefore, coordinate net-
works have been widely applied in different areas of sci-
entific computing [30], such as the hologram/tomography
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Figure 1. Batch normalization significantly alleviates the spectral
bias of coordinate networks. (a) Batch normalization shifts the
NTK’s eigenvalues distribution from a lower one to a higher one,
thus (b) the spectral bias is alleviated and better performance is
achieved compared with the one without batch normalization (e.g.,
the texture on the lion’s left paw). From left to right, each column
refers to the coordinate networks with ReLU activations, and po-
sitional encoding [78] with 1 and 5 Fourier bases, respectively.

imaging in microscopy [39, 83], 3D reconstruction and free-
viewpoint roaming in computer vision/graphics [37, 48],
physical simulation in material design and hydrodynam-
ics [8, 59] and medical imaging [67, 68].

Yet, due to the spectral bias [58] of ReLU-based MLP,
coordinate networks prefer to learn the low-frequency com-
ponents of the signal, while the high-frequency compo-
nents are learned at an extremely slow convergence. Sev-
eral works have been proposed to alleviate the spectral bias,
such as the positional encoding [78] or frequency-related
activation functions [60, 72]. However, these explorations
introduce the ‘frequency-specified spectral bias’ [81], i.e.,
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only the spectrum components matching the pre-encoded
frequencies could be well learned. Therefore, it is essential
to encode different frequency bases as many as possible,
which not only increases the complexity but also incurs the
issue of suppressing lower frequency components [61].

Such a spectral bias problem is related to the training dy-
namics of MLP. According to recent literature, the training
of MLP could be viewed as kernel regression, specifically,
the neural tangent kernel (NTK) [25, 78]. Following this
perspective, the spectral bias is caused by the pathological
distribution of NTK’s eigenvalues, that most of the eigen-
values are very small, limiting the convergence speed on
high-frequency components. In this paper, we find that this
spectral bias could be well alleviated using a classical tech-
nique - batch normalization [24], which has been widely
applied in convolutional neural networks but is rarely used
in the community of coordinate networks.

We theoretically prove that batch normalization tech-
nique could significantly reduce the maximum and variance
of NTK’s eigenvalues while applies almost no changes to
the mean value. Considering the fact that the largest eigen-
value is often much larger than most ones in NTK, this vari-
ance change could increase most of the eigenvalues. This
improvement is not limited to the standard ReLU-based
MLP, actually, it also works for positional encoding-based
MLPs where the ‘frequency-specified spectral bias’ could
also be alleviated (as shown in Fig. 1).

In summary, we make the following contributions,
1. We leverage mean field theory and conduct simple ex-

periments to theoretically and empirically show that the
pathological distribution of NTK’s eigenvalues could be
significantly improved by using batch normalization, en-
abling the coordinate networks to learn high-frequency
components effectively .

2. We substantiate the significant improvements of BN-
based MLP over existing coordinate networks on two
representation tasks and three inverse problems, i.e., im-
age compression, shape representation, computed to-
mography reconstruction, magnetic resonance imaging,
and novel view synthesis.

2. Related Work
2.1. Coordinate Networks
Coordinate networks [78] (also termed as implicit neu-
ral representation or neural fields) are gradually replac-
ing traditional discrete representations in computer vision
and graphics. Different from classical matrix-based dis-
crete representation, coordinate networks focus on learn-
ing a neural mapping function with low-dimensional coor-
dinates inputs and the corresponding signal values outputs,
and have demonstrated the advantages of continuous query-
ing and memory-efficient footprint in various signal repre-
sentation tasks, such as images [13, 14, 73], scenes [26, 38,

46, 71] and videos [6, 82]. Additionally, coordinate net-
works could be seamlessly combined with different differ-
entiable physical processes, opening a new way for solving
various inverse problems, especially the domain-specific
tasks where large-scale labelled datasets are unavailable,
such as the shape representation [5, 9, 18, 47, 55], computed
tomography reconstruction [19, 50, 63, 66, 69] and inverse
rendering for novel view synthesis [48, 54, 56, 62, 86].

2.2. Overcoming the Spectral Bias
MLPs with conventional activations such as ReLU en-
counter the issue of spectral bias [2, 58, 78], which re-
stricts their ability to capture the high-frequency compo-
nents present in visual signals. To overcome this limitation,
two types of methods are raised in literature, namely, the
function expansion and the signal re-organization. The first
type of methods treats the coordinate networks as a func-
tion expansion process, e.g., the Fourier, Taylor, Wavelet
and Gaussian expansions, as a result, more pre-encoded
bases could improve the expressive power. Following this
idea, various bases have been introduced to encode the in-
put coordinates or activate the hidden neurons, such as the
Fourier/polynomial encodings [34, 70, 78], periodic/non-
periodic/wavelet activation functions [42, 60, 66, 72], and
compositing multiple filters [15, 38]. However, these meth-
ods are sensitive to the training configurations.

Another type of methods focuses on mapping the input
complex signal to another one which is composed of low-
frequency components [5, 26, 27, 52, 75, 85], thus the orig-
inal signal could be well learned. This mapping function
is often implemented by introducing learnable hash tables
between the input coordinate and the subsequent neural net-
work, such as the single scale full-resolution hash table used
in DINER [85], multi-scale pyramid hash tables in Instant-
NGP [52] and multiple shifting hash tables in PIXEL [27].
These methods achieve high performance for representing
complex signals at the cost of losing ability for interpola-
tion, often requiring additional regularizations [84].

Different from previous methods, this paper raises a
novel way to alleviate the spectral bias by introducing nor-
malization methodology to the coordinate networks area.

2.3. Normalization for Deep Learning
Normalization [1, 24, 49, 64, 79, 80] has been an indis-
pensable methodology for deep learning [4, 22, 40, 41].
As a milestone technique, batch normalization (BN) [24]
is raised to solve the issue of internal covariate shift, which
improves training stability, optimization efficiency and gen-
eralization ability [32, 51]. It has been a fundamental com-
ponent for modern visual models and successfully applied
to a wide range of computer vision tasks [7, 76, 77]. Fur-
thermore, many variants of BN are proposed, such as Con-
ditional BN [11] and Decorrelated BN [21]. In the realm
of theoretical analysis, [23] highlights that BN tends to re-
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duce the dependency on weight initialization in optimiza-
tion trajectories. [12, 65] prove that BN improves optimiza-
tion by mitigating the pathological curvature and smooth-
ing the loss landscape. [3, 44] prove that BN permits using
a larger learning rate according to the gradient dynamics
and random matrix theory. This paper provides a theoretical
analysis and empirical evidence demonstrating that normal-
ization with full-batch dataset can effectively overcome the
spectral issues. Furthermore, it firstly introduces the nor-
malization methodology into coordinate networks, which is
experimentally validated to enhance the model representa-
tional capacity more significantly.

3. Methodology
To lay the foundation for our theoretical analysis, we first
give the background of coordinate networks including the
formulation and the neural tangent kernel. Then, the eigen-
values of NTK matrices with and without batch normaliza-
tion are analysed statistically by leveraging the mean field
theory, revealing an alleviated spectral bias in coordinate
networks after batch normalization.

3.1. Background

3.1.1 Coordinate Networks

Given a signal {x⃗i, y⃗i}Ti=1, coordinate networks learn a
function that maps input coordinates to the output corre-
sponding signal values. It is often parameterized by a fully
connected neural network consisting of one input layer with
N0 neurons and L hidden layers (including one output
layer) with N l neurons per hidden layer (l = 1, 2, ..., L).
Without a loss of generality, we focus on a one-dimensional
signal with one attribute (i.e., N0 = NL = 1), addition-
ally all other layers have same N neurons (i.e., N1 = ... =
NL−1 = N ). Thus we can describe the network f(X; θ)
as,

H0 = X = [x⃗1, x⃗2, ..., x⃗T ]

Hl = ϕ(WlHl−1 + Tile(⃗b l))

f(X; θ) = HL = WLHL−1 + Tile(⃗bL),

(1)

where X ∈ RN0×T and T refer to the matrix of all coor-
dinates and number of coordinates in the training dataset,
respectively. θ = {Wl, b⃗ l | l = 1, ..., L} is the network
parameters in f(X; θ). Wl ∈ RN l×N l−1

and b⃗ l ∈ RN l

are the weight matrix and bias vector of the l-th layer, re-
spectively, and are randomly initiated with Gaussian dis-
tribution. ϕ(·) is the nonlinear activation function. Tile(·)
operator repeats the input vector T times and forms a matrix
with T columns.

3.1.2 Neural Tangent Kernel and Spectral Bias
Neural tangent kernel (NTK) [25, 78], which approximates
the training of neural network as kernel regression, has be-

come a popular lens for monitoring the dynamic behaviors
and convergence of a neural network. Given a neural net-
work f(X; θ), its NTK is defined as,

K = (∇θf(X; θ))⊤∇θf(X; θ)

= (∇θH
L)⊤∇θH

L.
(2)

When the network f(X; θ) is trained following an L2 loss
function, SGD optimizer and a learning rate η, the network
output after n training iterations can be approximated by the
NTK as [36, 78]:

Y(n) ≈
(
I− e−ηKn

)
Y, (3)

where I is the identity matrix, Y refers to signal values of
all points in training dataset. Since the NTK matrix K is a
positive semi-definite matrix, it could be decomposed using
SVD as K = QΛQ⊤, where Q and Λ are the eigenvector
matrix and diagonal matrix full of eigenvalues, respectively.
Thus, the training error could be modelled as,

|Y(n) −Y| ≈ eηKt = Qe−ηΛtQ⊤

⇒Q⊤|Y(n) −Y| ≈ e−ηΛtQ⊤.
(4)

It could be noticed that the training error is determined by
the eigenvalues in Λ. The network f(X; θ) could learn the
components with a large eigenvalue rapidly, and has a slow
convergence to small eigenvalues which often refer to the
high frequency components of the signal to be learned [78].
This phenomenon is termed as ‘spectral bias’.

3.2. Batch Normalization Alleviates Spectral Bias

3.2.1 Batch normalization

As the name says, batch normalization aims at normalizing
the network output at different layers along the batch di-
mension. Without a loss of generality, we starts from the
simplest case, i.e., applying BN to the last layer of f(X; θ),
i.e.,

fBN (X; θ) =
HL − µ

σ
γ + β

µ = E[HL], σ =
√

E[(HL)2]− (E[HL])2,

(5)

where the scale and shift parameters γ and β are initialized
as 1 and 0, respectively.

In this case, the NTK changes and could be derived by
substituting the Eqn. 5 into Eqn. 2. The modified NTK
KBN could be written as

KBN = (∇θf
BN (X; θ))⊤∇θf

BN (X; θ)

=
(∇θH)⊤∇θH

σ2
− H⊤H(∇θH)⊤∇θH

Tσ4
,

(6)

where H = HL − µ is introduced for the sake of deriva-
tion. Please refer the supplemental material for details of
the derivation.
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3.2.2 Decomposition of NTK Matrices

According to the mean field theory [28, 29], the T×T NTK
matrix of the coordinate network K = (∇θH

L)⊤∇θH
L

can be calculated and re-written in the explicit numerical
form as:

K = (L−1)NM+O(
√
N) (7)

where M is a T × T matrix:

M =


κ1 κ2 · · · κ2

κ2 κ1

. . .
...

...
. . .

. . . κ2

κ2 · · · κ2 κ1


κ1 =

1

L−1

L∑
l=1

pl−1
t qlt, κ2 =

1

L−1

L∑
l=1

pl−1
st qlst

(8)

κ1 and κ2 are two constant values corresponding to the or-
der parameters of the mean field theory plt, q

l
t, p

l
st, q

l
st [29].

Furthermore, the NTK matrix with batch normalization
(i.e., Eqn. 6) could be rewritten as,

KBN = A(∇θH
L −∇θµ)

⊤(∇θH
L −∇θµ),

where A =
1

σ2

(
I− 1

T

H⊤H

σ2

)
.

(9)

A is a T ×T matrix corresponding to the variance division.
Here we define the T×T projector matrix G corresponding
to the mean subtraction:

G = I− 1

T
=


T−1
T

− 1
T

· · · − 1
T

− 1
T

T−1
T

. . .
...

...
. . .

. . . − 1
T

− 1
T

· · · − 1
T

T−1
T

. (10)

G satisfies G⊤G = G and ∇θH
LG = (∇θH

L − ∇θµ).
Thus Eqn. 9 becomes:

KBN = AG⊤(∇θH
L)⊤∇θH

LG

= AG⊤KG

= (L−1)NAMBN +O(
√
N)

where MBN = G⊤MG

=


(κ1−κ2)(T−1)

T
κ2−κ1

T
· · · κ2−κ1

T

κ2−κ1
T

(κ1−κ2)(T−1)
T

. . .
...

...
. . .

. . . κ2−κ1
T

κ2−κ1
T

· · · κ2−κ1
T

(κ1−κ2)(T−1)
T

 ,

(11)

thus we have1:

AMBN =
κ1 − κ2

σ2

(
I− 1

Tσ2
(1− 1

T
)H⊤H

)
≈ κ1 − κ2

σ2
I

KBN ≈ (L−1)N
κ1 − κ2

σ2
I+O(

√
N).

(12)

3.2.3 Statistical Characteristics of NTK’s Eigenvalues

Since it is difficult to obtain all eigenvalues {λi}Ti=1 of the
NTK, we focus on analysing its statistic characteristics, i.e.,
mean value mλ, variance vλ and the maximum value λmax.
According to the matrix theory [16], these values could be
calculated or estimated by,

mλ =
1

T
Trace(K), vλ = sλ −m2

λ

sλ
mλ

=

∑T
i=1 λ

2
i∑T

i=1 λi

≤ λmax ≤

√√√√ T∑
i=1

λ2
i =

√
Tsλ,

(13)

where sλ = 1
T Trace(KK⊤) is the second momentum. Ac-

cording to the decomposition of the NTK matrices in the
above section, these values could be obtained directly,

Standard MLP:

mλ =
(L−1)NTκ1 +O(

√
N)T

T
∼ O(N)

vλ ∼ O(N3)−O(N2) ∼ O(N3)

O(N2) ≤ λmax ≤ O(N2), λmax ∼ O(N2).

BN-based MLP:

mλ =
(L−1)

σ2

NT (κ1 − κ2)

T
+

O(
√
N)T

T
∼ O(N)

vλ ∼ O(N2) +O(N
3
2 )−O(N2) ∼ O(N

3
2 )

O(N) ≤ λmax ≤ O(N
3
2 ).

(14)
Comparing these statistical values without and with

batch normalization, it is observed that the mean values
are slighted changed and have the same scale of O(N).
However, the variances are significantly reduced (O(N3) vs
O(N

3
2 )), considering the largest eigenvalue is also largely

reduced (O(N2) vs O(N
3
2 )), this variance change indicates

a shift of eigenvalues’ distribution from a lower one to a
higher one (as shown in Fig. 1a). As a result, the spectral
bias could be alleviated. Although the analysis mentioned
above is built upon the assumption of applying BN to the
last layer, it could be expanded to a general case by model-
ing deep BN-based coordinate networks as a stacking pro-
cess layer by layer.

Additionally, BN also works for the successful positional
encoding-based MLP (PEMLP) [78]. According to NTK

1Please refer the supplemental material for details of derivation.
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2D Image

Model SIREN ReLU BN MFN WIRE PE BN+PE
5×20 23.18 21.21 23.39 22.03 21.95 22.10 24.26
5×30 24.57 22.57 24.39 23.34 23.10 23.47 25.54
10×28 25.52 23.25 26.27 25.25 25.05 24.63 26.85
10×40 28.32 23.56 27.95 26.92 27.34 26.66 28.71
13×49 29.42 24.33 29.08 28.14 29.02 28.23 30.84

2D CT

Model SIREN ReLU BN MFN WIRE PE BN+PE
2×128 28.30 26.31 28.50 24.82 28.30 28.16 30.14
2×256 16.16 26.78 28.41 27.97 28.26 28.11 31.60
4×128 18.31 28.21 30.42 29.15 28.31 30.42 32.45
4×256 18.32 28.30 30.48 30.92 28.70 30.00 32.64
8×256 18.37 29.93 31.24 31.18 18.61 30.79 33.64

3D Shape

Model SIREN ReLU BN MFN WIRE PE BN+PE
2×128 0.954 0.905 0.952 0.886 0.956 0.957 0.983
2×256 0.964 0.904 0.958 0.972 0.964 0.968 0.992

3D MRI

Model SIREN ReLU BN MFN WIRE PE BN+PE
2×256 26.04 24.52 28.97 27.24 25.31 30.17 32.42
4×256 27.89 26.11 30.62 29.74 30.24 32.12 34.56

5D NeRF

Metrics Plenoxels NeRF BN+NeRF DVGO DINER BN+DINER
PSNR↑ 30.99 31.04 31.37 33.23 33.11 33.31
SSIM↑ 0.956 0.953 0.956 0.966 0.967 0.968
LPIPS↓ 0.050 0.054 0.050 0.034 0.034 0.033

Table 1. Results of different coordinate networks on different
tasks. The values in the 2D Image, 2D CT, and 3D MRI tasks refer
to the PSNR values, while the values in the 3D Shape task refer to
the IoU values. We color code each cell as best , second best ,
and third best .

analysis in [78], the role of Fourier-based positional en-
coding could be viewed as adding an additional term hγ

to the original NTK, i.e., a composed NTK function K◦hγ ,
where hγ is a linear combination of the used Fourier bases
and is independent of the subsequent network. As a re-
sult, the mean and variance of the PEMLP’s NTK will also
change following the rule summarized in Eqn. 14, and the
‘frequency-specified spectral bias’ in PEMLP could also be
alleviated by batch normalization.
Simple examples for fitting a 1D signal and a 2D image.
Fig. 1a compares the NTK’s eigenvalues without and with
batch normalization for learning a 1D signal. It is observed
that most of NTK’s eigenvalues are increased when batch
normalization is added, e.g., most of eigenvalues are in-
creased from ∼ 10−4 to ∼ 101, from ∼ 10−3 to ∼ 101,
from ∼ 10−1 to ∼ 101 in standard MLP, PEMLP with 1
and 5 Fourier bases, respectively. Additionally, the largest
eigenvalues are all reduced when BN is applied, verifying
the analysis in Eqn. 14. As a result, more high-frequency
details are provided when applying the BN for fitting a 2D
image compared with the one without batch normalization,
as shown in Fig. 1b. In summary,

Proposition 1 Batch normalization alleviates the spectral

Figure 2. Rate-distortion curves of various coordinate networks
under different bpps trained on the Kodak dataset.

bias by making a shift of NTK’s eigenvalues distribution
from a lower one to a higher one.

4. Experiments
Tasks. We validate the effectiveness of applying batch nor-
malization to coordinate networks on five separate tasks,
i.e., 2D image representation and compression, 2D com-
puted tomography (CT) reconstruction, 3D shape represen-
tation, 3D magnetic resonance imaging (MRI) reconstruc-
tion, and 5D novel view synthesis.

Compared methods. For the first four tasks, a total of
seven methods are compared, including the network with
traditional activation ReLU (ReLU) [53], ReLU based net-
work with Fourier features positional encoding (PE) [78],
network with sinusoidal nonlinearity (SIREN) [72], mul-
tiplicative filter network (MFN) [15] and complex Gabor
wavelet nonlinearity (WIRE) [66]. Because the BN is a
universal tool, the results of batch normalization on the
ReLU (BN) and positional encoding ReLU (BN+PE) are
both compared. For BN and BN+PE, we add one batch
normalization layer immediately after the ReLU activation
of each fully-connected layer. As a common practice, the
encoding scale of PE is set as 10 [48], the frequency param-
eter ω0 of SIREN is set as 30 [72], the frequency parame-
ter ω and the spread parameter s of WIRE are respectively
set as 20 and 10 [66]. The weights of all the networks are
randomly initialized. For SIREN and MFN, we utilize the
specific weight initialization schemes as raised in [72] and
[15], respectively. For the left five methods, we utilize the
default LeCun random initialization [35].
4.1. 2D Image Representation and Compression
Configurations. We first use an image representation task
to evaluate the performance of applying batch normaliza-
tion to the coordinate networks. We perform experiments
on the Kodak image dataset [13] consisting of 24 RGB im-
ages with a high resolution of 768 × 512. To utterly ex-
plore the representational capacity of various methods, we
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(a) Ground truth

(h) BN+PE(g) PE(f) WIRE(e) MFN

(b) SIREN (d) BN(c) ReLU

30.34 dB 22.40 dB 29.74 dB

30.89 dB26.37 dB29.27 dB26.14 dB

Figure 3. Comparisons of different methods for representing the
Lena. The corresponding Fourier spectra are also visualized.

use networks with limited parameters as introduced in [13],
namely, networks with the configurations of (in the format
of [hidden layers × hidden features]) [5×20], [5×30],
[10×28], [10×40], and [13×49]. Thus it can be regarded
as the image compression task using coordinate networks.
We use the L2 distance between the network output and the
ground truth as the loss function. All the models are trained
for 50,000 iterations using Adam optimizer [31]. The ini-
tial learning rate is set as 2e−4, except for BN and BN+PE,
which use a larger initial learning rate of 1e−2 thanks to
the insensitivity to the learning rate of batch normalization.
The batch size is equal to the number of image pixels.

Results. Tab. 1 exhibits the average PSNR (Peak Signal-
to-Noise Ratio) of these methods. Accordingly, we plot the
rate-distortion curves of these methods under various bpps
(bits-per-pixel = number-of-parameters×bits-per-parameter
/ number-of-pixels) as shown in Fig. 2. As can be ob-
served, ReLU consistently presents the worst performance
due to the spectral bias, while applying batch normalization
can significantly enhance the performance of networks with
ReLU. For example, BN improves the PSNR of ReLU by
up to 4.39dB and 4.75dB with the network of [10×40], and
[13×49], respectively. BN also exhibits competitive perfor-
mance compared to other existing method for that it con-
sistently obtains higher PSNR than PE (up to 1.64dB with
the network of [10×28]), WIRE (up to 1.44dB with the net-
work of [5×20]) and MFN (up to 1.36dB with the network
of [5×20]), and BN also surpasses SIREN with the network
of [5×20], and [10×28]. Moreover, BN can also signifi-
cantly improve the performance of PE. It is worth empha-
sizing that BN+PE consistently achieves the highest PSNR
among all the seven methods, which further validates the
effectiveness of BN.

Visualization. We visualize the reconstructed images

(b) SIREN

(f) WIRE (h) BN+PE(g) PE(e) MFN

(d) BN(c) ReLU(a) Ground truth

16.03 dB

27.62 dB

26.15 dB 28.75 dB

27.96 dB 27.65 dB 30.64 dB

Figure 4. Comparisons of different coordinate networks for CT
reconstruction. The corresponding error maps are also visualized.

and corresponding Fourier frequency spectra of various
methods in Fig. 3. The target visual signal is 2D image
Lena with a resolution of 512 × 512, and the network is
of [10×28]. As can be obviously observed in Fig. 3c, the
reconstructed image of ReLU is over-smoothed and poor-
quality, failing to present the details of the target image.
For PE, the quality of the reconstructed image (Fig. 3g) is
poor for that the overall image is blurry and the finer details
are failed to be restored. Moreover, both low- and high-
frequencies are learned limitedly. However, after applying
batch normalization to the networks, the quality of the re-
constructed images (Fig. 3d, h) is significantly improved,
and the details are clearly represented. Furthermore, as
clearly shown by the Fourier spectra in Fig. 3d and Fig. 3h,
more low- and high-frequency components are learned ef-
fectively with the application of BN, illustrating the effec-
tiveness of our method on alleviating the spectral bias.

For SIREN (Fig. 3b), MFN (Fig. 3e) and WIRE (Fig. 3f),
the presence of artifacts is clearly observable, resulting from
over-fitting to high-frequency components. This, in turn,
leads to noticeable noise and compromises the quality of re-
construction. This issue is particularly severe for MFN and
WIRE, as indicated by their corresponding Fourier spec-
tra, both methods tend to emphasize high frequencies while
neglecting low-frequency components. In contrast, the co-
ordinate networks with BN produce clean background re-
constructions with minimal artifacts and noise. This phe-
nomenon further demonstrates the robustness of BN to
noise and its superior capability in representing the target
visual signal.

4.2. 2D Computed Tomography
Configurations. In the CT reconstruction task, we observe
integral projections of a density field instead of direct super-
visions. In our experiments, we train a network that takes
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Figure 5. Meshes generated with occupancy volumes by various
coordinate networks.

in 2D pixel coordinates and predicts the corresponding vol-
ume density at each location. We conduct the experiments
on the x-ray colorectal dataset [10, 66], each image has a
resolution of 512× 512 and is emulated with 100 CT mea-
surements. We use networks with five architecture configu-
rations, namely, [2×128], [2×256], [4×128], [4×256], and
[8×256]. To solve the inverse problem, the network is in-
directly supervised by the MSE loss between a sparse set
of ground-truth integral projections and integral projections
computed from the network’s output. All the models are
trained for 20,000 iterations using Adam optimizer with a
initial learning rate of 5e−3 and a minimal learning rate of
5e−4. The batch size is the total number of coordinates.

Results. Tab. 1 exhibits the results of various methods,
measured in PSNR. As can be observed, BN+PE consis-
tently achieves the highest PSNR and SSIM with all the net-
work configurations. Furthermore, simple applying BN to
the network surpasses all the other existing methods except
for MFN with the network of [4×256], which has a slightly
higher PSNR of 0.44dB. For WIRE, the performance de-
grades significantly when the network is deepened to 8 lay-
ers. While SIREN can only achieve moderate performance
with the network of [2×128], for other network configu-
rations, SIREN fails to reconstruct the target signal effec-
tively. For other methods, the performances are enhanced
when the network is deepened.

Visualization. Fig. 4 visualizes the CT images recon-
structed by different methods with the network of [2×256],
the corresponding error maps are also visualized in the bot-
tom right corner of each method. As can be observed,

(a) Ground truth (b) SIREN (d) BN(c) ReLU

26.36 dB 26.49 dB 29.47 dB

(h) BN+PE(g) PE(f) WIRE(e) MFN

27.32 dB 31.25 dB 33.17 dB25.12 dB

Figure 6. MRI reconstruction from various coordinate networks.

ReLU (Fig. 4c) leads to excessively smooth results, only
displaying blurry patterns. The result of PE (Fig. 4g) is
noisy, failing to exhibit the precise details. When apply-
ing batch normalization to ReLU and PE, the reconstruc-
tion quality (Fig. 4d and Fig. 4h) is significantly improved
as the finer details are effectively represented. The other
methods of novel nonlinear activations all results in obvious
artifacts, especially for SIREN, which achieves a extremely
low PSNR of only 16dB. This phenomenon may be caused
by the over-fitting of these methods to the high frequencies,
thus introducing tremendous noise.

4.3. 3D Shape Representation
Configurations. In this section, we demonstrate the repre-
sentational capacity of batch normalization for representing
3D shapes as occupancy networks. To be specific, the input
data is a mesh grid with 5123 resolution, where the voxels
inside the volume are assigned as 1, and the voxels outside
the volume are assigned as 0. Then we use the occupancy
network to implicitly represent a 3D shape as the “decision
boundary” of coordinate networks, which is trained to out-
put 0 for points outside the shape and 1 for points inside
the shape. Test error is calculated using cross-entropy loss
between the network output and the ground truth points.
We conduct the experiments on the data from Stanford 3D
Scanning Repository [33]. We use networks of two archi-
tecture configurations, namely, [2×128] and [2×256]. In
the experiment, all the models are trained for 200 epochs
using Adam optimizer with a initial learning rate of 5e−3
and a minimum learning rate of 5e−4. 200,000 points are
randomly sampled in each iteration during the training pro-
cess. The network outputs are extracted as a 5123 grid using
marching cubes [43] with a threshold of 0.5 for evaluation
and visualization.

Results. Tab. 1 exhibits the experimental results eval-
uated by IoU (Intersection over Union). As can be ob-
served, BN significantly enhances the performance of sim-
ple ReLU, up to 5.19% and 5.97% higher IoU with the
network of [2×128] and [2×256], respectively. Moreover,
BN+PE consistently achieves the best performance with ev-
ery network configurations.
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Visualization. Fig. 5 visualizes the grids of thai-statue
scene represented by these methods with the network of
[2×256]. As shown in Fig. 5, ReLU makes the surface over-
smooth, while BN significantly improves such phenomenon
allowing finer details to emerge. Besides, MFN introduces
too many undesired textures and fluctuations on the surface,
indicating over-fitting to high-frequencies and noise. Fur-
thermore, BN+PE achieves the best representational result,
without incurring artifacts or noise.
4.4. 3D Magnetic Resonance Imaging
Configurations. For the 3D MRI task, we observe mea-
surements which are the Fourier transform coefficients of
the atomic response to radio waves under a magnetic field.
We train an MLP that takes in 3D voxel coordinates and pre-
dicts the corresponding intensity at each location with an in-
direct supervision. We conduct experiments on the ATLAS
brain dataset [78], each sample has a volume resolution of
963. We use networks of two architecture configurations,
that is, [2×256] and [4×256]. In the experiment, all the
models are trained for 1,000 iterations using Adam opti-
mizer with an initial learning rate 2e−3.

Results. Tab. 1 exhibits the experimental results of var-
ious methods evaluated by PSNR. As can be observed, BN
significantly enhances the performance of simple ReLU,
up to 4.45dB and 4.51dB higher PSNR with the network
of [2×256] and [4×256], respectively. BN also signifi-
cantly surpasses the methods with frequency-related activa-
tion functions (e.g., SIREN, MFN and WIRE). Moreover,
BN+PE consistently achieves the highest PSNR among all
the seven methods for both network configurations.

Visualization. Fig. 6 visualizes one MRI slice recon-
structed by these methods with the network of [2×256]. For
the methods with frequency-related activation functions, the
reconstructed slices are full of unpredictable textures, indi-
cating the over-fitting to the noise. While networks with
BN have distinct details and clear background, indicating
the superior representational capacity for the target signal
and robustness to the noise.
4.5. 5D Novel View Synthesis
Configurations. In this section, we demonstrate the im-
provements of BN on novel view synthesis using the neural
radiance fields (NeRF) [48]. NeRF models the 3D world
as a 5D radiance fields using coordinate networks, where
the input contains the 3D position and 2D viewing direction
of a point and the output attributes include the RGB color
and point density. Then the color of each pixel is calcu-
lated by querying the above attributes along the ray defined
by the pixel position and camera’s parameters and applying
the volume rendering techniques [45]. Finally, the radiance
field is optimized by supervising rendered color with the
ground truth one. Once the radiance field is convergent, the
image from any view could be synthesized by following the
second step mentioned above.

30.68 dB 30.86 dB 31.58 dB

29.39 dB 28.93 dB 29.42 dB

(b) Plenoxel (d) BN+NeRF(c) NeRF

(g) BN+DINER(f) DINER(e) DVGO

(a) Ground truth

Figure 7. Neural radiance fields optimization with various meth-
ods. The corresponding error maps are also visualized.

To better verify the effectiveness, we apply BN to two
popular NeRF baselines, i.e., the original NeRF [48] which
models the radiance field as a continuous function, and the
DINER [85] which adopts a discrete form. We compare our
results with four baselines, namely, NeRF, DINER, Plenox-
els [17], and DVGO [74]. In the experiment, we follow all
authors’ default configurations.

Results and visualization. Tab. 1 lists the quantita-
tive comparisons on the down-scaled Blender dataset [48]
(resolution of 400 × 400). Compared with original results
(NeRF and DINER), applying BN improves the PSNR up to
0.33dB and 0.20dB, respectively. In addition, BN-enhanced
DINER achieves the best results among all the methods.
Fig. 7 qualitatively compares the reconstructed details on
the ‘Ship’ dataset. The corresponding error maps are also
visualized. It is noticed that additional BN significantly re-
duce the errors (BN+NeRF vs NeRF and BN+DINER vs
DINER), and more details are reconstructed such as the
zoomed-in cable wind rope (BN+NeRF vs NeRF).

5. Conclusion
In this paper, we leverage the mean field theory to prove
that batch normalization can optimize the NTK’s eigen-
values distribution, enabling the coordinate networks over-
come the spectral bias, namely, better suited for learning the
high-frequency components. We also empirically show that
adding batch normalization transits the NTK’s eigenvalues
distribution towards larger values for both standard MLP
and position encoding-enhanced version. Extensive experi-
ments substantiate that BN-based network significantly out-
performs existing methods on various representation and
inverse optimization tasks. In the future, we will explore
the evolution of NTK’s properties when other normaliza-
tion techniques are applied to the coordinate networks.
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