Digital Life Project: Autonomous 3D Characters with Social Intelligence

Zhongang Cai∗,1,2,3, Jianping Jiang∗,2, Zhongfei Qing∗,2, Xinying Guo∗,1, Mingyuan Zhang∗,1, Zhengyu Lin2, Haiyi Mei2, Chen Wei2, Ruisi Wang1,2, Wanqi Yin2, Liang Pan1,3, Xiangyu Fan2, Han Du2, Peng Gao2, Zhitao Yang2, Yang Gao2, Jiaqi Li2, Tianxiang Ren2, Yukun Wei2, Xiaogang Wang2, Chen Change Loy1, Lei Yang1,2,3, Ziwei Liu†,1

1S-Lab, Nanyang Technological University, 2SenseTime Research, 3Shanghai AI Laboratory

∗ Equal Contributions, † Corresponding Author

https://digital-life-project.com

Figure 1. Digital Life Project empowers virtual characters to interact with each other using articulated body motions. We demonstrate the interaction of two characters across four occasions (episodes) that leads to evolving relationship.

Abstract

In this work, we present Digital Life Project, a framework utilizing language as the universal medium to build autonomous 3D characters, who are capable of engaging in social interactions and expressing with articulated body motions, thereby simulating life in a digital environment. Our framework comprises two primary components: 1) SocioMind: a meticulously crafted digital brain that models personalities with systematic few-shot exemplars, incorporates a reflection process based on psychology principles, and emulates autonomy by initiating dialogue topics; 2) MoMat-MoGen: a text-driven motion synthesis paradigm for controlling the character’s digital body. It integrates motion matching, a proven industry technique to ensure motion quality, with cutting-edge advancements in motion generation for diversity. Extensive experiments demonstrate that each module achieves state-of-the-art performance in its respective domain. Collectively, they enable virtual characters to initiate and sustain dialogues autonomously, while evolving their socio-psychological states. Concurrently, these characters can perform contextually relevant
bodily movements. Additionally, an extension of DLP enables a virtual character to recognize and appropriately respond to human players’ actions.

1. Introduction

Recent advancements in Large Language Models (LLMs) [53, 62] have transformed the landscape of human-computer interaction, catalyzing the emergence of innovative applications across various domains. Remarkably, many once far-fetched fantasies have gradually become tangible realities. In this work, the term Digital Life Project (DLP), as envisioned in the recent science fiction blockbuster The Wandering Earth II, is adopted to frame our endeavor. What qualifies as a digital life? From the psychological perspective, humans are composed of internal psychological processes (mind, such as thoughts) and external behaviors [32]. In this light, our objective is to harness the sophisticated capabilities of LLM to craft virtual 3D characters that emulate the full spectrum of human psychological processes, and engage in diverse interactions with synthesized 3D body motions.

Recently, Park et al. introduced Generative Agents [42] to advance AI agents capable of simulating human-like behavior. Despite the encouraging progress, this pioneering work is built upon many simplifications of interaction: the agents are represented by pixelated 2D figures. Co-LLM-Agents [73] aims to build collaborative embodied AI and includes 3D agents. However, the 3D agents are still constrained by a small set of actions and do not exhibit the capability to socialize. Existing works thus overlook the importance of sophisticated human body language, through which a crucial amount of information is conveyed [7, 25, 26]. Moreover, there is a notable deficiency in the current modeling of social intelligence. This aspect is critical for the creation of characters that not only mimic human actions but also possess human-like thinking and emotional responses, even the ability to foster long-term relationships.

To achieve the aspirations of DLP, we introduce a framework consisting of two essential components. First, the SocioMind which is a carefully designed “digital brain”, anchoring its design in rigorously applied psychological principles. Utilizing emergent abilities of LLMs [40, 53, 66], the brain generates high-level instructions and plans the character’s behaviors. Notably, SocioMind introduces few-shot exemplars from psychological tests to form guiding instructions for personality modeling, utilizes social cognitive psychology theories in the memory reflection process, and designs a negotiation mechanism between characters for story progression. Second, the “digital body” that introduces the MoMat-MoGen paradigm to address interactive motion synthesis, which exploits the complementary nature of motion matching [12] and motion generation [76]. Here, motion matching is a foundational technique in modern-day industry-level character animation that retrieves high-quality motion clips from a database to ensure motion quality, whereas motion generation is a line of works that rapidly gained popularity recently for their excellent ability to produce diverse human motions.

Experiment results demonstrate that SocioMind and MoMat-MoGen outperform existing arts in their respective domains. Specifically, SocioMind demonstrates outstanding alignment between character behavior and psychological states (e.g., personality and relationship); MoMat-MoGen is able to achieve a balance between motion quality and diversity. Equipped with both modules, we further show DLP’s controllability as manual editing of character attributes can result in semantically accurate and aesthetically realistic interactive motions. Moreover, we explore human-character interaction by developing a motion captioning module as an extension of DLP, that translates monocular human video to motion description, thus enabling virtual characters to understand and appropriately respond to human players.

In summary, we contribute DLP, a framework to build autonomous 3D characters with social traits. It features SocioMind: a controllable psychology-based “brain” to enable short-term interactive communication and long-term social evolution, and MoMat-MoGen: a “body” that synthesizes high-quality and diverse interactive motions through synergizing motion matching and motion generation.

2. Related Works

2.1. Motion Synthesis

Motion matching is widely employed in the industry to generate long-lasting, high-quality motion. The classic motion matching [12] retrieves the segment that best matches the current pose and target trajectory. Learned motion matching [30] employs an auto-regressive neural network to predict the next motion state based on a given control signal. The Story-to-motion [47] further incorporates semantic control through LLM and enhances transition using transformer models. Recently, significant strides have been made in motion generative models for text-driven motion generation. Early works aimed to establish a unified latent space for natural language and motion sequences [3, 21, 45, 60]. Guo et al. [23], TM2T [24], and T2M-GPT [74] employ an auto-regressive scheme to generate lengthy motion sequences. Diffusion-based generative models have demonstrated remarkable performance in leading benchmarks for the text-to-motion task. MotionDiffuse [75], MDM [61], and FLAME [34] represent early attempts to apply the diffusion model to the text-driven motion generation field. Subsequent models such as MLD [9], ReMoDiffuse [76], Fg-T2M [65], FineMoGen [77], InsActor [49], and PhysDiff [72] have further advanced this idea, achieving im-
Figure 2. Digital Life Project framework for interactive autonomous characters. The top left part depicts the Active-Passive Mechanism, and the rest of the figure illustrates MoMat-MoGen. SocioMind is shown in details in Fig. 3.

proven text-motion consistency, motion quality, and physical plausibility. Recently, PriorMDM [54] propose a fine-tuning strategy to extend the MDM to human interaction generation. Inter-X [68] and InterGen [35] propose two large-scale datasets for human interaction generation with textual description. In addition, InterGen also proposes a two-stream diffusion architecture, serving as a significant baseline in this field. ReMoS [22] focuses on plausible hand interaction and decomposes the whole generation process into full-body and hand motion generation.

2.2. LLM Agents

With the emergent abilities of large language models (LLM) in reasoning, planning, and learning [17, 40, 62, 66], LLMs swiftly evolve through three phases: the standalone primitive LLM, language agents [2, 31] that directly interact with the environment via text, and cognitive language agents [43, 52, 64, 70, 71] with internal cognitive structures [59]. Under the prime framework of cognitive language agents, the system design hinges on the intended application and objectives: reward systems for game agents [64, 69, 79], chains of API calls for tool agents [44, 52, 56], and so forth. Moreover, the emergence of human-like behaviors in LLMs has prompted researchers to investigate controllable mental behaviors in LLMs, such as a stable personality [51] and human simulation in political science [5] and social psychology [1]. Recently, Social Simulacra [41] and S^6 [20] build agent systems with autonomous posting and reposting skills in internet community space. Generative Agents [43] facilitates the formation of social relationships and information diffusion by daily schedules and brief communications within a 2D sandbox gaming space.

3. Methodology

3.1. Text as the Universal Medium

We define behavior, a dictionary-like structured text message to bridge the “brain” (Sec. 3.4) and the “body” (Sec. 3.3). For example, <speech>Hello! <motion>waves right hand <place>table contains pre-set keys encapsulated by pointy brackets, followed by the respective values, also in natural language. Behaviors are thus interpretable by the LLM and the regular-expression parser. In this work, we focus on <motion>, but we discuss the use of other tokens in the Supplementary Material: <place> triggers navigation and basic state transfer (e.g., sit down), <speech> may be used for face control.

3.2. Active-Passive Mechanism

There exists an intrinsic order in human interaction. For example, “shaking hands” may appear to be a simultaneous action by two subjects, it typically initiates with one person extending a hand first. Moreover, the other person’s action is largely predictable: it is socially appropriate for that person to reciprocate the handshake as a basic courtesy. Another example of real-life collaborative activ-
Short-Term Interactive Communication

Prompt to LLM
Assume you are a person named Xiaotao.
You possess such psychological states:
Personality: lively and sensitive, with high agreeableness.
Relationship: new friend with medium intimacy.

Behavior contexts in this conversation are:
Zhixu showed welcome when we first met.
A person with high agreeableness tends to behave/think:
Think of others first and help them.

You have such relevant events and thoughts:
Zhixu faces coding problems when doing research.

LONG-TERM SOCIAL EVOLUTION

Hierarchical Reflection
Summarize Events
Summarize Thoughts
Update Psychological States
Planning with Topic Proposal
Generate Backgrounds of Next Episode

PERSONAL INSTRUCTION

Database
Core Pathway
Retrieved Data
Module Details Prompt
SocioMind Architecture

3.3. Interactive Motion Synthesis

In our application scenario, the generated actions need to fulfill two main requirements: 1) They must be highly accurate to ensure natural interaction between characters, such as having sufficient contact when shaking hands. 2) They should generate diverse actions to adapt to different plots.

In this paper, we propose a new paradigm called MoMat-MoGen to generate dual-person actions that are both diverse and accurate. As shown in Fig. 2, MoMat-MoGen leverages motion matching (Sec. 3.3.1) to achieve a relevant motion from a small database as a prior, and motion generation (Sec. 3.3.2) afterward to diversify the motion with text input while retaining interactive relations between two characters.

3.3.1 Motion Matching for High-Quality Motion Prior

The motion matching algorithms retrieve motion segments from a database in an auto-regressive manner based on predefined features. The basic motion matching [12] relies on state-based features (e.g., joint position) along with trajectory. The Story-to-Motion [47] further incorporates text-based features to enable semantic control. However, both methods are designed for single-person scenarios.

In this work, we extend the Text-based Motion Matching [47] to accommodate interactive scenarios. Our objective is to find a motion pair for both characters that aligns with the query text and trajectory while maintaining a consistent body pose to ensure coherence with the previous motion. In this light, we use a coarse-to-fine motion search strategy, leveraging the text for a high-level semantic understanding of the desired motion, and kinematic features for the low-level control. First, we incorporate semantic control by employing a pre-trained sentence encoder [36] to extract text embedding from the query text. Then top-\(K_1 \) candidates are selected using cosine similarity for subsequent matching. Second, trajectory and coherence constraints are incorporated through joint kinematics features. For the trajectory constraint, the features include the position of the hip joint and the facing direction. For the coherence constraint, the features include positions, velocities, and rotation in 6D space [78] of the body joints. For the two-person scenario, a new challenge arises: the interaction between the two characters requires that their relative positions and orientations align with the intended motions. Therefore, the rel-
ative position of the other character is taken into account to minimize blending artifacts caused by long-distance movements. To expedite retrieval, the aforementioned features are pre-calculated and Z-Score normalization is applied to account for magnitude differences. During retrieval, query features are calculated based on the current pose and target trajectory, and the Top-2 motions are selected using the Euclidean distance. Random selection is used if multiple suitable candidates exist.

Moreover, motion matching is used for single-person motions. This includes 1) navigation in the scene, where multi-agent path finder [55] is used to plan a collision-free trajectory, follow which walking motions are matched from AMASS, and 2) basic character-object interaction such as “sit down on the chair”. More details are included in the Supplementary Material.

The neural motion blending model is used [47] to generate the transition motion. Hence, the short motion clips are blended into long motions. Notably, the blending model provides smooth transitions to let the character move to the correct place and turn in the correct direction to interact with the other character.

3.3.2 Motion Generation for Diversity

The MoMat-MoGen structure shares many similarities with ReMoDiffuse [76], incorporating retrieval techniques to enhance generation quality. However, applying ReMoDiffuse to interaction generation is not trivial. Firstly, it lacks a mechanism for interaction modeling, resulting in a poor correlation between the two generated sequences. Secondly, achieving physical naturalness is challenging if we solely rely on data-driven generation. To address these challenges, we 1) design a Dual-path Semantic-Modulated Attention module (DSMA) to model the interaction between two individuals. 2) During the inference stage, we adaptively extract interaction information from the referenced motion and use it as a constraint for the denoising process, providing additional supervisory signals.

Motion Diffusion Model. In the diffusion process, it repeatedly adds Gaussian noises to the clean motion sequence pair \((x_0, y_0)\) to noised sequence pair \((x_T, y_T)\).

\[
q(x_T, y_T|x_0, y_0) := \prod_{t=1}^T q(x_t, y_t|x_{t-1}, y_{t-1}),
\]

\[
q(x_t, y_t|x_{t-1}, y_{t-1}) := \mathcal{N}(\sqrt{1 - \beta_t}(x_{t-1}, y_{t-1}), \beta_t I),
\]

where \(T\) is the total diffusion steps. \(\beta_1, \ldots, \beta_T\) is a series of pre-defined variance scales for different timesteps. In the reverse process, given the text prompt \(P\), the motion matching result \(\Theta\) and the timestep \(t\), the initial sequence pair is estimated by a network \(S_\theta(x_t, y_t, t, \Theta, P)\).

Network Architecture. Similar to ReMoDiffuse, our network is built upon transformer layers. We modify the design of the attention module in ReMoDiffuse to better capture the interaction. Specifically, in our DSMA module, the input includes motion feature sequences, \(f_x\) and \(f_y\), feature sequences extracted from the motion matching results, \(r_x\) and \(r_y\), and text feature sequences \(p_x\) and \(p_y\). When refining \(f_x\), we utilize the generated global attention from \(f_x, f_y, r_x, p_x\). The process is similar when refining \(f_y\). This approach ensures a more comprehensive fusion of text information, interaction states, and prior information from motion matching.

Training and Inference. In the training stage, we only use the reconstruction loss as the target:

\[
\mathcal{L} = \text{MSE}((x_0, y_0), S_\theta(x_t, y_t, t, \Theta, P)).
\]

In the inference stage, we introduce a contact loss to make the interaction part more natural.

\[
\tilde{S} = S + \lambda \cdot \nabla \left(\sum_{i,j_1,j_2} \left\| \tilde{D}_{i,j_1,j_2} - D_{i,j_1,j_2} \right\| \cdot [\tilde{D}_{i,j_1,j_2} < \gamma] \right),
\]

where \(\tilde{D}_{i,j_1,j_2}\) indicate the distance between the \(j_1\)-th joint and the \(j_2\)-th joint in the \(i\)-th frame from the motion matching results. \(D_{i,j_1,j_2}\) is the distance from the motion generation results. \([\cdot]\) is the Iverson bracket whose value is 1 if and only if the expression inside the parentheses is true. Otherwise the value will be 0. This auxiliary loss enforces the generated results to imitate the interaction pattern from the prior information and will yield more natural motions.

3.4. Controllable Emulation of Human Psychology

We aim to harness the advancements in large language models (LLMs) in building realistic social intelligence. From a social psychology perspective, human social intelligence is characterized by 1) various and patterned interactive behaviors during short-term communication [7], and 2) the evolution of emotions, attitudes, and relationships etc. over long-term interactions [11, 38, 48]. Hence, we propose SocioMind, a text-centric cognitive framework derived from the idea of “from strings to symbolic AGI” [39, 59]. As shown in Fig. 3, when avatars are engaged in communication, SocioMind prompts the LLM with psychological states, persona instructions, relevant memories, and context behaviors, to output behavior to manipulate the 3D character. Moreover, SocioMind autonomously reflects on psychological states at the end of each interaction session, where several rounds of behaviors are generated between characters. We refer to such a session as a episode. It also determines the background for the next episode through planning with topic proposal. We include more implementation details in the Supplementary Material.
3.4.1 Short-Term Interactive Communication

Interactive behaviors are strongly influenced by internal psychological states. Here we adopt the most critical dimensions with psychological theories: Big Five Trait model [33] for personality, long-term and short-term motivations [63], central beliefs [29], and trust [48, 50], intimacy [38], and supportiveness [13, 14] in social relationships. However, the safe alignment restricts current LLMs to a friendly and cooperative personality [40, 51, 62]. We introduce persona instructions to enhance the controllability of psychological states on behaviors below.

Persona instructions. In CoT [67], constructing accurate few-shot exemplars can effectively enhance the reasoning capability of LLMs. When prompting LLMs to infer behavior based on human psychological states, crafting precise and reliable exemplars presents a challenging task due to the lack of an exemplar database with high quality. Considering that lots of psychological tests [15, 19, 27, 37] measure psychological traits through observable behavior, we build a database of trait-to-behavior relationships from psychological tests. For psychological tests, we choose International Personality Item Pool (IPIP) [16, 18, 57], an open-sourced tool with over 3,000 items and 250 scales for creating advanced measures of personality, motivations, and etc. Each item, called persona instruction, in this database follows the format: “A person with {extent} {trait dimension} tends to behave/think: {behavior}”, where {extent} are “high” or “low” according to the test questionnaire setup. For interactive behavior generation, we retrieve the most similar persona instructions by text embeddings to obtain few-shot exemplars, and include it in the prompt.

3.4.2 Long-Term Social Evolution

Long-term social intelligence requires consistency in two aspects with the initial character setup: 1) the evolution of psychological states such as emotions, relationships, and motivations etc. towards others [11, 13, 38, 48]; 2) the progression of overall plots or events [4]. SocioMind achieves the former aspect through psychological reflection and the latter aspect through planning with the topic proposal.

Psychological Reflection. Theories in social cognitive psychology [6, 10, 28] suggest that humans learn, attribute, and form judgments about others from past experiences. Therefore, we introduce a reflection mechanism based on psychological principles. Within each episode, agents introspect on their emotions periodically. At the end of each episode, agents summarize events and their thoughts into a memory system based on the behavior contexts. Events represent occurrences or facts perceived by the agent, whereas thoughts are ideas, musings, or attitudes generated by the agent based on their personality and past experiences. Leveraging current events and thoughts, agents retrieve past relevant events and thoughts, and reflect on their motives, central beliefs, and social relationships. For instance, after ‘knowing they share the same interests’, it is observed that the intimacy of two characters typically increases with psychological reflection.

Planning with Topic Proposal. We create a planning module with a topic proposal mechanism for diverse and plausible story progression. After each psychological reflection, each agent independently proposes new topics for the next episode based on past memories and character settings, followed by the background and initial states of both agents for the upcoming episode. The two agents collect the topics proposed by them and select the most important one for the next episode. Through this mechanism, the two agents can continuously interact with each other from one episode to the next. For example, after the topic proposal, the character wants to start several topics (such as the movie ‘Mountains may depart’ with the highest emergency and poignancy) and generate the background ‘Weekend Plan’ for next episode. The two characters, based on the proposals offered by each, will select an option that holds both high priority and significance, forming the background for the subsequent episode.

4. Experiments

To the best of our knowledge, Digital Life Project is the first comprehensive framework to enable autonomous social characters with articulated 3D bodies. In addition to MoMat-MoGen and SocioMind, we also evaluate a motion captioning module as an extension of DLP, on the KIT-ML [46] and HumanML3D datasets in the Supplementary Material.

4.1. Interactive Motion Synthesis

We evaluated the proposed MoMat-MoGen module on two datasets: the public InterHuman dataset [35] and DLP-MoCap, an optical motion capture dataset for interactive motion generation. Due to space constraints, the test results on the DLP-MoCap are included in the Supplementary Material. Tab. 1 presents a comparative analysis of our proposed interactive motion generation method against three existing approaches: ReMoDiffuse [76], MotionDiffuse [75], and InterGen [35]. Our method exhibits significant improvements on the InterGen dataset, especially in R precision, FID, MM Dist, and Diversity metrics. It is noteworthy that we achieve an impressive balance between precision and diversity, which is essential for our application, ensuring that the generated motions closely resemble
Table 1. Interactive Motion Synthesis results on the InterHuman test set. ‘↑’ (‘↓’) indicates that the values are better if the metric is larger (smaller). We run all the evaluations 20 times and report the average metric and 95% confidence interval. The best results are in bold and the second best results are underlined.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Top 1 FID(\downarrow)</th>
<th>Top 2 MM Dist(\downarrow)</th>
<th>Top 3 Diversity(\uparrow)</th>
<th>MultiModality(\uparrow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RealMotions</td>
<td>0.452±0.005</td>
<td>0.610±0.003</td>
<td>0.701±0.008</td>
<td>7.948±0.041</td>
</tr>
<tr>
<td>TEMOS [45]</td>
<td>0.221±0.012</td>
<td>0.316±0.006</td>
<td>0.450±0.015</td>
<td>17.375±0.042</td>
</tr>
<tr>
<td>T2M [23]</td>
<td>0.238±0.012</td>
<td>0.325±0.010</td>
<td>0.464±0.014</td>
<td>6.342±0.013</td>
</tr>
<tr>
<td>MDM [61]</td>
<td>0.153±0.012</td>
<td>0.260±0.009</td>
<td>0.339±0.012</td>
<td>13.769±0.072</td>
</tr>
<tr>
<td>ConvMDM [54]</td>
<td>0.223±0.009</td>
<td>0.334±0.008</td>
<td>0.466±0.010</td>
<td>5.731±0.013</td>
</tr>
<tr>
<td>MotionDiffuse [75]</td>
<td>0.401±0.004</td>
<td>0.541±0.004</td>
<td>0.622±0.005</td>
<td>9.167±0.056</td>
</tr>
<tr>
<td>ReMoDiffuse [76]</td>
<td>0.442±0.004</td>
<td>0.589±0.005</td>
<td>0.666±0.003</td>
<td>7.069±0.054</td>
</tr>
<tr>
<td>InterGen [35]</td>
<td>0.371±0.010</td>
<td>0.515±0.012</td>
<td>0.624±0.010</td>
<td>12.663±0.083</td>
</tr>
<tr>
<td>Ours (MoMat-MoGen)</td>
<td>0.449±0.004</td>
<td>0.591±0.003</td>
<td>0.666±0.003</td>
<td>6.366±0.102</td>
</tr>
</tbody>
</table>

Figure 4. Ablation results on consistency with 95% confidence.

Figure 5. Results on controllibility with 95% confidence.

To evaluate the social intelligence of SocioMind, we measure the controllability of behaviors in short-term interactive communication and the consistency of psychological states and plots in long-term social evolution. Following the previous evaluation approach [43], we engage 47 human evaluators to review the behavioral records of the agents. More details are included in the Supplementary Material.

4.2. Social Intelligence

To evaluate the social intelligence of SocioMind, we measure the controllability of behaviors in short-term interactive communication and the consistency of psychological states and plots in long-term social evolution. Following the previous evaluation approach [43], we engage 47 human evaluators to review the behavioral records of the agents. More details are included in the Supplementary Material.

4.2.1 Controllability

Controllability is measured by whether altering psychological traits can cause noticeable different behaviors in short-term communication. We show evaluators the behavioral records of 64 episodes, ask them to select the corresponding psychological traits from multiple options, and subsequently calculate the accuracy. Results in Fig. 5 show that SocioMind significantly outperforms Generative Agents [43] in key attributes: central belief, motivation, personality, and relationship, demonstrating the effective guidance of persona instructions for the LLM in simulating interactive human behavior.

4.2.2 Consistency

Long-term social evolution consistency implies that the plot development and internal state changes are coherent with initial settings. To measure this, we use four different types of initial settings (family, crime, romance, and military) to generate records with multiple episodes. Human evaluators use the records to rate the degrees of consistency on plots and psychological states on a scale of 1 to 9. Thus we evaluate the effectiveness of modules in the SocioMind for social evolution. Results in Fig. 4 show that SocioMind demonstrates superior performance over Generative Agents [43] on consistency over plots and psychological states, and abating results show that persona instruction, psychological reflection, and planning with topic proposal are crucial for long-term social evolution.

4.3. Integrated Evaluation

We further conduct a user study with 30 human participants to evaluate the entire pipeline. We use SocioMind and Generative Agents (GA) [42] as the “brain” to generate full episode scripts given various contexts (e.g., “Xiaotao is sad lately”), and MoMat-MoGen and InterGen [35] as the behavioral records of 64 episodes, ask them to select the corresponding psychological traits from multiple options, and subsequently calculate the accuracy. Results in Fig. 5 show that SocioMind significantly outperforms Generative Agents [43] in key attributes: central belief, motivation, personality, and relationship, demonstrating the effective guidance of persona instructions for the LLM in simulating interactive human behavior.

Table 2. User study on the integrated performance.

<table>
<thead>
<tr>
<th>“Brain”</th>
<th>“Body”</th>
<th>Script(\uparrow)</th>
<th>Motion(\uparrow)</th>
<th>Overall(\uparrow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA [42]</td>
<td>InterGen [35]</td>
<td>5.57</td>
<td>5.03</td>
<td>4.93</td>
</tr>
<tr>
<td>GA [42]</td>
<td>MoMat-MoGen</td>
<td>5.88</td>
<td>6.12</td>
<td>6.07</td>
</tr>
<tr>
<td>SocioMind</td>
<td>InterGen [35]</td>
<td>6.28</td>
<td>4.60</td>
<td>4.78</td>
</tr>
</tbody>
</table>

SocioMind MoMat-MoGen 7.17 6.77 6.88
Episode Background: Xiaotao is feeling sad lately.

Couples Story Progression

- <motion>pats on shoulder
 <place>center
- <motion>gets patted
 <place>center

Friends Story Progression

- <motion>raises fist
 <place>center
- <motion>shows encouragement
 <place>center

Figure 6. We explore the controllability of DLP. Given the same background, manually editing the relationship state between characters, results in different social behaviors. Interestingly, “couples” tend to have more intimate interactions than “friends”. The crown indicates the active player. The story progression bar is color-coded in accordance with the stages represented by boxes: gray boxes represent behaviors, whereas yellow boxes represent active-passive swapping in between behaviors.

Figure 7. Our motion captioning module translates human motion into text description, allowing a virtual character to respond to the human player’s “fist bump”. Top Left: RGB video of the human player; Bottom Left: motion capture [8] result; Top right: first-person view of the human-driven character; Bottom right: third-person view of the interaction. More details are included in the Supplementary Material.

“body” to synthesize character motions based on the motion descriptions. We then render videos of the characters and ask evaluators to rate the script quality, motion quality, and overall quality from 1 to 9. in Tab. 2 shows our SocioMind and MoMat-MoGen deliver better results with convincing margins.

4.4. Visualization

As shown in Fig. 6, our framework possesses a rational correlation between psychological states and physical behaviors. In addition, our system has the potential to add human players in the virtual world to interact with the digital avatars (Fig. 7, elaborated in the Supplementary Material).

5. Conclusion

In this paper, we introduce Digital Life Project, an innovative and comprehensive system that harnesses the latest advancements in generative models to create autonomous 3D characters. DLP integrates SocioMind, a text-centric cognitive framework that simulates sophisticated internal psychological processes, and MoMat-MoGen, a text-driven motion synthesis pipeline that replicates diverse external physical behaviors. Both modules achieve state-of-the-art performance in the respective domains, enabling the entire system to engage in natural interactions with social intelligence.

Acknowledgement

This study is supported by the Ministry of Education, Singapore, under its MOE AcRF Tier 2 (MOET2EP20221-0012), NTU NAP, and under the RIE2020 Industry Alignment Fund – Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s). We extend our sincere gratitude to Fei Wang, Jingyi Jiang, Jinyun Lyu, Wanying Zu, Bo Li, Yuanhan Zhang, Jiawei Ren, and Cunjun Yu for their insights and helpful discussions.
References

[37] Isabel Briggs Myers, Mary H McCaulley, and Robert Most. Manual: A guide to the development and use of the myers-briggs type indicator. (No Title), 1985. 6

[38] Theodore M Newcomb. The prediction of interpersonal attraction. American psychologist, 1956. 5, 6

[40] OpenAI. Gpt-4 technical report, 2023. 2, 3, 6

[50] Li Siyao, Tianpei Gu, Zhitao Yang, Zhengyu Lin, Ziwei Liu, Henghui Ding, Lei Yang, and Chen Change Loy. Duolando: Follower gpt with off-policy reinforcement learning for dance accompaniment. 2024. 4

[76] Mingyuan Zhang, Huirong Li, Zhongang Cai, Jiawei Ren, Lei Yang, and Ziwei Liu. Finemogen: Fine-grained spatio-temporal motion generation and editing. Advances in Neural Information Processing Systems, 36, 2024. 2