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“First Meet” “Music Lovers” “Cozy Night”

<speech>We finally meet!
<motion>extends arms
<place>dining table
Acquaintance with 

<speech>Happy to meet you!
<motion>sits upright 
<place>dining table
Acquaintance with

“Shared Interests”

<speech>Oh, it's my new hobby!
<motion>types on the keyboard
<place>desk
Close friend with 

<speech>Cool computer setup!
<motion>takes a step forward
<place>desk
Close friend with 

<speech>Let’s watch a movie.
<motion>suggests thoughtfully
<place>sofa
Best friend with 

<speech>Any weekend plans?
<motion>looks expectantly
<place>sofa
Best friend with 

<speech>Indeed, I love Mozart. 
<motion>raises hand to explain
<place>center
Friend with 

<speech>Are you into art?
<motion>leans forward
<place>center
Friend with

Figure 1. Digital Life Project empowers virtual characters to interact with each other using articulated body motions. We demonstrate the
interaction of two characters across four occasions (episodes) that leads to evolving relationship.

Abstract

In this work, we present Digital Life Project, a frame-
work utilizing language as the universal medium to build
autonomous 3D characters, who are capable of engaging
in social interactions and expressing with articulated body
motions, thereby simulating life in a digital environment.
Our framework comprises two primary components: 1) So-
cioMind: a meticulously crafted digital brain that models
personalities with systematic few-shot exemplars, incorpo-
rates a reflection process based on psychology principles,

and emulates autonomy by initiating dialogue topics; 2)
MoMat-MoGen: a text-driven motion synthesis paradigm
for controlling the character’s digital body. It integrates
motion matching, a proven industry technique to ensure mo-
tion quality, with cutting-edge advancements in motion gen-
eration for diversity. Extensive experiments demonstrate
that each module achieves state-of-the-art performance in
its respective domain. Collectively, they enable virtual
characters to initiate and sustain dialogues autonomously,
while evolving their socio-psychological states. Concur-
rently, these characters can perform contextually relevant
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bodily movements. Additionally, an extension of DLP en-
ables a virtual character to recognize and appropriately re-
spond to human players’ actions.

1. Introduction
Recent advancements in Large Language Models
(LLMs) [53, 62] have transformed the landscape of
human-computer interaction, catalyzing the emergence
of innovative applications across various domains. Re-
markably, many once far-fetched fantasies have gradually
become tangible realities. In this work, the term Digital
Life Project (DLP), as envisioned in the recent science
fiction blockbuster The Wandering Earth II, is adopted to
frame our endeavor. What qualifies as a digital life? From
the psychological perspective, humans are composed of
internal psychological processes (mind, such as thoughts)
and external behaviors [32]. In this light, our objective is
to harness the sophisticated capabilities of LLM to craft
virtual 3D characters, that emulate the full spectrum of
human psychological processes, and engage in diverse
interactions with synthesized 3D body motions.

Recently, Park et al. introduced Generative Agents [42]
to advance AI agents capable of simulating human-like be-
havior. Despite the encouraging progress, this pioneering
work is built upon many simplifications of interaction: the
agents are represented by pixelated 2D figures. Co-LLM-
Agents [73] aims to build collaborative embodied AI and
includes 3D agents. However, the 3D agents are still con-
strained by a small set of actions and do not exhibit the capa-
bility to socialize. Existing works thus overlook the impor-
tance of sophisticated human body language, through which
a crucial amount of information is conveyed [7, 25, 26].
Moreover, there is a notable deficiency in the current model-
ing of social intelligence. This aspect is critical for the cre-
ation of characters that not only mimic human actions but
also possess human-like thinking and emotional responses,
even the ability to foster long-term relationships.

To achieve the aspirations of DLP, we introduce a frame-
work consisting of two essential components. First, the So-
cioMind which is a carefully designed “digital brain”, an-
choring its design in rigorously applied psychological prin-
ciples. Utilizing emergent abilities of LLMs [40, 53, 66],
the brain generates high-level instructions and plans the
character’s behaviors. Notably, SocioMind introduces few-
shot exemplars from psychological tests to form guiding in-
structions for personality modeling, utilizes social cogni-
tive psychology theories in the memory reflection process,
and designs a negotiation mechanism between characters
for story progression. Second, the “digital body” that intro-
duces the MoMat-MoGen paradigm to address interactive
motion synthesis, which exploits the complementary nature
of motion matching [12] and motion generation [76]. Here,
motion matching is a foundational technique in modern-

day industry-level character animation that retrieves high-
quality motion clips from a database to ensure motion qual-
ity, whereas motion generation is a line of works that rapidly
gained popularity recently for their excellent ability to pro-
duce diverse human motions.

Experiment results demonstrate that SocioMind and
MoMat-MoGen outperform existing arts in their respec-
tive domains. Specifically, SocioMind demonstrates out-
standing alignment between character behavior and psycho-
logical states (e.g., personality and relationship); MoMat-
MoGen is able to achieve a balance between motion qual-
ity and diversity. Equipped with both modules, we further
show DLP’s controllability as manual editing of charac-
ter attributes can result in semantically accurate and aes-
thetically realistic interactive motions. Moreover, we ex-
plore human-character interaction by developing a motion
captioning module as an extension of DLP, that translates
monocular human video to motion description, thus en-
abling virtual characters to understand and appropriately re-
spond to human players.

In summary, we contribute DLP, a framework to build
autonomous 3D characters with social traits. It features So-
cioMind: a controllable psychology-based “brain” to enable
short-term interactive communication and long-term social
evolution, and MoMat-MoGen: a “body” that synthesizes
high-quality and diverse interactive motions through syner-
gizing motion matching and motion generation.

2. Related Works

2.1. Motion Synthesis

Motion matching is widely employed in the industry to gen-
erate long-lasting, high-quality motion. The classic motion
matching [12] retrieves the segment that best matches the
current pose and target trajectory. Learned motion matching
[30] employs an auto-regressive neural network to predict
the next motion state based on a given control signal. The
Story-to-motion [47] further incorporates semantic control
through LLM and enhances transition using transformer
models. Recently, significant strides have been made in
motion generative models for text-driven motion genera-
tion. Early works aimed to establish a unified latent space
for natural language and motion sequences [3, 21, 45, 60].
Guo et al. [23], TM2T [24], and T2M-GPT [74] employ
an auto-regressive scheme to generate lengthy motion se-
quences. Diffusion-based generative models have demon-
strated remarkable performance in leading benchmarks for
the text-to-motion task. MotionDiffuse [75], MDM [61],
and FLAME [34] represent early attempts to apply the dif-
fusion model to the text-driven motion generation field.
Subsequent models such as MLD [9], ReMoDiffuse [76],
Fg-T2M [65], FineMoGen [77], InsActor [49], and Phys-
Diff [72] have further advanced this idea, achieving im-
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Figure 2. Digital Life Project framework for interactive autonomous characters. The top left part depicts the Active-Passive Mechanism,
and the rest of the figure illustrates MoMat-MoGen. SocioMind is shown in details in Fig. 3.

proved text-motion consistency, motion quality, and phys-
ical plausibility. Recently, PriorMDM [54] propose a fine-
tuning strategy to extend the MDM to human interaction
generation. Inter-X [68] and InterGen [35] propose two
large-scale datasets for human interaction generation with
textual description. In addition, InterGen also proposes a
two-stream diffusion architecture, serving as a significant
baseline in this field. ReMoS [22] focuses on plausible hand
interaction and decomposes the whole generation process
into full-body and hand motion generation.

2.2. LLM Agents

With the emergent abilities of large language models (LLM)
in reasoning, planning, and learning [17, 40, 62, 66], LLMs
swiftly evolve through three phases: the standalone primi-
tive LLM, language agents [2, 31] that directly interact with
the environment via text, and cognitive language agents [43,
52, 64, 70, 71] with internal cognitive structures [59]. Un-
der the prime framework of cognitive language agents, the
system design hinges on the intended application and objec-
tives: reward systems for game agents [64, 69, 79], chains
of API calls for tool agents [44, 52, 56], and so forth. More-
over, the emergence of human-like behaviors in LLMs has
prompted researchers to investigate controllable mental be-
haviors in LLMs, such as a stable personality [51] and hu-
man simulation in political science [5] and social psychol-
ogy [1]. Recently, Social Simulacra [41] and S3 [20] build
agent systems with autonomous posting and reposting skills

in internet community space. Generative Agents [43] fa-
cilitates the formation of social relationships and informa-
tion diffusion by daily schedules and brief communications
within a 2D sandbox gaming space.

3. Methodology
3.1. Text as the Universal Medium

We define behavior, a dictionary-like structured text
message to bridge the “brain” (Sec. 3.4) and the
“body” (Sec. 3.3). For example, <speech>Hello!
<motion>waves right hand <place>table contains pre-set
keys encapsulated by pointy brackets, followed by the re-
spective values, also in natural language. Behaviors are thus
interpretable by the LLM and the regular-expression parser.
In this work, we focus on <motion>, but we discuss the use
of other tokens in the Supplementary Material: <place>
triggers navigation and basic state transfer (e.g., sit down),
<speech> may be used for face control.

3.2. Active-Passive Mechanism

There exists an intrinsic order in human interaction. For
example, “shaking hands” may appear to be a simultane-
ous action by two subjects, it typically initiates with one
person extending a hand first. Moreover, the other per-
son’s action is largely predictable: it is socially appropri-
ate for that person to reciprocate the handshake as a basic
courtesy. Another example of real-life collaborative activ-
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LLM

Short-Term Interactive Communication

Prompt to LLM

Assume you are a person named Xiaotao.

You possess such psychological states:

Personality: lively and sensitive, with high agreeableness.

Relationship: new friend with medium intimacy.

Current episode backgrounds and topics are:
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Recent AGI progress; Digital life
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think of others first and help them.

Now respond based on the information above:
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Figure 3. Overview of SocioMind. To enable 3D characters with social intelligence, our brain utilizes psychological principles to emulate
controllable behaviors for short-term interactive communication. For long-term social evolution, our brain assures the consistency of
psychological states and plots towards initial settings through psychological reflection and planning with topic proposal.

ities is the partner dance, where the leader/follower roles
alternate [58]. Drawing from these observations, we de-
sign the Active-Passive Mechanism shown in Fig. 2, where
the subject to whom the behavior is assigned becomes the
“active” character, whereas the partner becomes the “pas-
sive” character. The active character generates a motion pair
for both characters engaged in the interaction. Both passive
behavior and the corresponding motion are then passed to
the passive character. However, the passive character can
still retain discretion: it only executes the passive motion
if its brain “approves” the passive behavior (potentially by
prompting the LLM with the suggested behavior and be-
havior context in its memory). Note that the “active” and
“passive” roles constantly swap between characters as the
interaction progresses.

3.3. Interactive Motion Synthesis

In our application scenario, the generated actions need to
fulfill two main requirements: 1) They must be highly ac-
curate to ensure natural interaction between characters, such
as having sufficient contact when shaking hands. 2) They
should generate diverse actions to adapt to different plots.
In this paper, we propose a new paradigm called MoMat-
MoGen to generate dual-person actions that are both di-
verse and accurate. As shown in Fig. 2, MoMat-MoGen
leverages motion matching (Sec. 3.3.1) to achieve a rele-
vant motion from a small database as a prior, and motion
generation (Sec. 3.3.2) afterward to diversify the motion
with text input while retaining interactive relations between
two characters.

3.3.1 Motion Matching for High-Quality Motion Prior

The motion matching algorithms retrieve motion segments
from a database in an auto-regressive manner based on pre-
defined features. The basic motion matching [12] relies on
state-based features (e.g., joint position) along with trajec-
tory. The Story-to-Motion [47] further incorporates text-
based features to enable semantic control. However, both
methods are designed for single-person scenarios.

In this work, we extend the Text-based Motion Matching
[47] to accommodate interactive scenarios. Our objective
is to find a motion pair for both characters that aligns with
the query text and trajectory while maintaining a consistent
body pose to ensure coherence with the previous motion.
In this light, we use a coarse-to-fine motion search strategy,
leveraging the text for a high-level semantic understanding
of the desired motion, and kinematic features for the low-
level control. First, we incorporate semantic control by em-
ploying a pre-trained sentence encoder [36] to extract text
embedding from the query text. Then top-K1 candidates
are selected using cosine similarity for subsequent match-
ing. Second, trajectory and coherence constraints are incor-
porated through joint kinematics features. For the trajec-
tory constraint, the features include the position of the hip
joint and the facing direction. For the coherence constraint,
the features include positions, velocities, and rotation in 6D
space [78] of the body joints. For the two-person scenario,
a new challenge arises: the interaction between the two
characters requires that their relative positions and orien-
tations align with the intended motions. Therefore, the rel-
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ative position of the other character is taken into account to
minimize blending artifacts caused by long-distance move-
ments. To expedite retrieval, the aforementioned features
are pre-calculated and Z-Score normalization is applied to
account for magnitude differences. During retrieval, query
features are calculated based on the current pose and target
trajectory, and the Top-K2 motions are selected using the
Euclidean distance. Random selection is used if multiple
suitable candidates exist.

Moreover, motion matching is used for single-person
motions. This includes 1) navigation in the scene, where
multi-agent path finder [55] is used to plan a collision-free
trajectory, follow which walking motions are matched from
AMASS, and 2) basic character-object interaction such as
“sit down on the chair”. More details are included in the
Supplementary Material.

The neural motion blending model is used [47] to gen-
erate the transition motion. Hence, the short motion clips
are blended into long motions. Notably, the blending model
provides smooth transitions to let the character move to the
correct place and turn in the correct direction to interact
with the other character.

3.3.2 Motion Generation for Diversity

The MoMat-MoGen structure shares many similarities with
ReMoDiffuse [76], incorporating retrieval techniques to en-
hance generation quality. However, applying ReMoDiffuse
to interaction generation is not trivial. Firstly, it lacks a
mechanism for interaction modeling, resulting in a poor cor-
relation between the two generated sequences. Secondly,
achieving physical naturalness is challenging if we solely
rely on data-driven generation. To address these challenges,
we 1) design a Dual-path Semantic-Modulated Attention
module (DSMA) to model the interaction between two indi-
viduals. 2) During the inference stage, we adaptively extract
interaction information from the referenced motion and use
it as a constraint for the denoising process, providing addi-
tional supervisory signals.
Motion Diffusion Model. In the diffusion process, it re-
peatedly adds Gaussian noises to the clean motion sequence
pair (x0,y0) to noised sequence pair (xT ,yT ).

q(xT ,yT |x0,y0) :=

T∏
t=1

q(xt,yt|xt−1,yt−1),

q(xt,yt|xt−1,yt−1) := N (
√

1− βt(xt−1,yt−1), βtI),
(1)

where T is the total diffusion steps. β1, · · · , βT is a series
of pre-defined variance scales for different timesteps. In
the reverse process, given the text prompt P , the motion
matching result Θ̄ and the timestep t, the initial sequence
pair is estimated by a network Sθ(xt,yt, t, Θ̄, P ).

Network Architecture. Similar to ReMoDiffuse, our net-
work is built upon transformer layers. We modify the de-
sign of the attention module in ReMoDiffuse to better cap-
ture the interaction. Specifically, in our DSMA module, the
input includes motion feature sequences, fx and fy , fea-
ture sequences extracted from the motion matching results,
rx and ry , and text feature sequences px and py . When
refining fx, we utilize the generated global attention from
fx, fy, rx, px. The process is similar when refining fy . This
approach ensures a more comprehensive fusion of text in-
formation, interaction states, and prior information from
motion matching.
Training and Inference. In the training stage, we only use
the reconstruction loss as the target:

L = MSE((x0,y0), Sθ(xt,yt, t, Θ̄, P )). (2)

In the inference stage, we introduce a contact loss to make
the interaction part more natural.

S̄ = S+λ · ∇(
∑

i,j1,j2

∥D̄i,j1,j2 −Di,j1,j2∥ · [D̄i,j1,j2 < γ]),

(3)
where D̄i,j1,j2 indicate the distance between the j1-th joint
and the j2-th joint in the i-th frame from the motion match-
ing results. Di,j1,j2 is the distance from the motion gen-
eration results. [·] is the Iverson bracket whose value is 1
if and only if the expression inside the parentheses is true.
Otherwise the value will be 0. This auxiliary loss enforces
the generated results to imitate the interaction pattern from
the prior information and will yield more natural motions.

3.4. Controllable Emulation of Human Psychology

We aim to harness the advancements in large language mod-
els (LLMs) in building realistic social intelligence. From
a social psychology perspective, human social intelligence
is characterized by 1) various and patterned interactive be-
haviors during short-term communication [7], and 2) the
evolution of emotions, attitudes, and relationships etc. over
long-term interactions [11, 38, 48]. Hence, we propose So-
cioMind, a text-centric cognitive framework derived from
the idea of “from strings to symbolic AGI” [39, 59]. As
shown in Fig. 3, when avatars are engaged in communi-
cation, SocioMind prompts the LLM with psychological
states, persona instructions, relevant memories, and con-
text behaviors, to output behavior to manipulate the 3D
character. Moreover, SocioMind autonomously reflects on
psychological states at the end of each interaction session,
where several rounds of behaviors are generated between
characters. We refer to such a session as a episode. It also
determines the background for the next episode through
planning with topic proposal. We include more implemen-
tation details in the Supplementary Material.
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3.4.1 Short-Term Interactive Communication

Interactive behaviors are strongly influenced by internal
psychological states. Here we adopt the most critical
dimensions with psychological theories: Big Five Trait
model [33] for personality, long-term and short-term mo-
tivations [63], central beliefs [29], and trust [48, 50], inti-
macy [38], and supportiveness [13, 14] in social relation-
ships. However, the safe alignment restricts current LLMs
to a friendly and cooperative personality [40, 51, 62]. We
introduce persona instructions to enhance the controllability
of psychological states on behaviors below.

Persona instructions. In CoT [67], constructing accurate
few-shot exemplars can effectively enhance the reasoning
capability of LLMs. When prompting LLMs to infer behav-
ior based on human psychological states, crafting precise
and reliable exemplars presents a challenging task due to the
lack of an exemplar database with high quality. Consider-
ing that lots of psychological tests [15, 19, 27, 37] measure
psychological traits through observable behavior, we build a
database of trait-to-behavior relationships from psycholog-
ical tests. For psychological tests, we choose International
Personality Item Pool (IPIP) [16, 18, 57], an open-sourced
tool with over 3,000 items and 250 scales for creating ad-
vanced measures of personality, motivations, and etc. Each
item, called persona instruction, in this database follows the
format: “A person with {extent} {trait dimension} tends
to behave/think: {behavior}”, where {extent} are “high”
or “low” according to the test questionnaire setup. For in-
teractive behavior generation, we retrieve the most similar
persona instructions by text embeddings to obtain few-shot
exemplars, and include it in the prompt.

3.4.2 Long-Term Social Evolution

Long-term social intelligence requires consistency in two
aspects with the initial character setup: 1) the evolution of
psychological states such as emotions, relationships, and
motivations etc. towards others [11, 13, 38, 48]; 2) the pro-
gression of overall plots or events [4]. SocioMind achieves
the former aspect through psychological reflection and the
latter aspect through planning with the topic proposal.

Psychological Reflection. Theories in social cognitive
psychology [6, 10, 28] suggest that humans learn, attribute,
and form judgments about others from past experiences.
Therefore, we introduce a reflection mechanism based on
psychological principles. Within each episode, agents in-
trospect on their emotions periodically. At the end of each
episode, agents summarize events and their thoughts into a
memory system based on the behavior contexts. Events rep-
resent occurrences or facts perceived by the agent, whereas

thoughts are ideas, musings, or attitudes generated by
the agent based on their personality and past experiences.
Leveraging current events and thoughts, agents retrieve past
relevant events and thoughts, and reflect on their motives,
central beliefs, and social relationships. For instance, af-
ter ‘knowing they share the same interests’, it is observed
that the intimacy of two characters typically increases with
psychological reflection.

Planning with Topic Proposal. We create a planning
module with a topic proposal mechanism for diverse and
plausible story progression. After each psychological re-
flection, each agent independently proposes new topics for
the next episode based on past memories and character set-
tings, followed by the background and initial states of both
agents for the upcoming episode. The two agents collect
the topics proposed by them and select the most important
one for the next episode. Through this mechanism, the two
agents can continuously interact with each other from one
episode to the next. For example, after the topic proposal,
the character wants to start several topics (such as the movie
‘Mountains may depart’ with the highest emergency and
poignancy) and generate the background ‘Weekend Plan’
for next episode. The two characters, based on the propos-
als offered by each, will select an option that holds both
high priority and significance, forming the background for
the subsequent episode.

4. Experiments

To the best of our knowledge, Digital Life Project is the
first comprehensive framework to enable autonomous so-
cial characters with articulated 3D bodies. In addition to
MoMat-MoGen and SocioMind, we also evaluate a motion
captioning module as an extension of DLP, on the KIT-
ML [46] and HumanML3D [23] datasets in the Supplemen-
tary Material.

4.1. Interactive Motion Synthesis

We evaluated the proposed MoMat-MoGen module on two
datasets: the public InterHuman dataset [35] and DLP-
MoCap, an optical motion capture dataset for interactive
motion generation. Due to space constraints, the test re-
sults on the DLP-MoCap are included in the Supplemen-
tary Material. Tab. 1 presents a comparative analysis of
our proposed interactive motion generation method against
three existing approaches: ReMoDiffuse [76], MotionDif-
fuse [75], and InterGen [35]. Our method exhibits signif-
icant improvements on the InterGen dataset, especially in
R precision, FID, MM Dist, and Diversity metrics. It is
noteworthy that we achieve an impressive balance between
precision and diversity, which is essential for our applica-
tion, ensuring that the generated motions closely resemble
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Table 1. Interactive Motion Synthesis results on the InterHuman test set. ‘↑’(‘↓’) indicates that the values are better if the metric is
larger (smaller). We run all the evaluations 20 times and report the average metric and 95% confidence interval is. The best results are in
bold and the second best results are underlined.

Methods
R Precision↑

FID↓ MM Dist↓ Diversity↑ MultiModality↑
Top 1 Top 2 Top 3

Real motions 0.452±.008 0.610±.009 0.701±.008 0.273±.007 3.755±.008 7.948±.064 -
TEMOS [45] 0.224±.010 0.316±.013 0.450±.018 17.375±.043 6.342±.015 6.939±.071 0.535±.014

T2M [23] 0.238±.012 0.325±.010 0.464±.014 13.769±.072 5.731±.013 7.046±.022 1.387±.076

MDM [61] 0.153±.012 0.260±.009 0.339±.012 9.167±.056 7.125±.018 7.602±.045 2.355±.080

ComMDM [54] 0.223±.009 0.334±.008 0.466±.010 7.069±.054 6.212±.021 7.244±.038 1.822±.052

MotionDiffuse [75] 0.401±.004 0.541±.004 0.622±.005 12.663±.083 3.805±.001 7.639±.035 1.176±.027

ReMoDiffuse [76] 0.442±.004 0.589±.005 0.666±.003 6.366±.102 3.802±.001 7.956±.030 1.226±.044

InterGen [35] 0.371±.010 0.515±.012 0.624±.010 5.918±.079 5.108±.014 7.387±.029 2.141±.063

Ours (MoMat-MoGen) 0.449±.004 0.591±.003 0.666±.004 5.674±.085 3.790±.001 8.021±.035 1.295±.023
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Figure 4. Ablation results on consistency with 95% confidence.
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Figure 5. Results on controllibility with 95% confidence.

the high-quality motion references with strong priors yet ex-
hibit a broad range of variety.

4.2. Social Intelligence

To evaluate the social intelligence of SocioMind, we mea-
sure the controllability of behaviors in short-term interactive
communication and the consistency of psychological states
and plots in long-term social evolution. Following the pre-
vious evaluation approach [43], we engage 47 human eval-
uators to review the behavioral records of the agents. More
details are included in the Supplementary Material.

4.2.1 Controllability

Controllability is measured by whether altering psycho-
logical traits can cause noticeable different behaviors in
short-term communication. We show evaluators the be-

Table 2. User study on the integrated performance.
“Brain” “Body” Script↑ Motion↑ Overall↑
GA [42] InterGen [35] 5.57 5.03 4.93
GA [42] MoMat-MoGen 5.88 6.12 6.07

SocioMind InterGen [35] 6.28 4.60 4.78
SocioMind MoMat-MoGen 7.17 6.77 6.88

havioral records of 64 episodes, ask them to select the
corresponding psychological traits from multiple options,
and subsequently calculate the accuracy. Results in Fig. 5
show that SocioMind significantly outperforms Generative
Agents [43] in key attributes: central belief, motivation, per-
sonality, and relationship, demonstrating the effective guid-
ance of persona instructions for the LLM in simulating in-
teractive human behavior.

4.2.2 Consistency

Long-term social evolution consistency implies that the plot
development and internal state changes are coherent with
initial settings. To measure this, we use four different types
of initial settings (family, crime, romance, and military) to
generate records with multiple episodes. Human evaluators
use the records to rate the degrees of consistency on plots
and psychological states on a scale of 1 to 9. Thus we evalu-
ate the effectiveness of modules in the SocioMind for social
evolution. Results in Fig. 4 show that SocioMind demon-
strates superior performance over Generative Agents [43]
on consistency over plots and psychological states, and ab-
lating results show that persona instruction, psychological
reflection, and planning with topic proposal are crucial for
long-term social evolution.

4.3. Integrated Evaluation

We further conduct a user study with 30 human partici-
pants to evaluate the entire pipeline. We use SocioMind
and Generative Agents (GA) [42] as the “brain” to generate
full episode scripts given various contexts (e.g., “Xiaotao is
sad lately”), and MoMat-MoGen and InterGen [35] as the
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<motion>pats on shoulder
<place>center

<motion>gets patted
<place>center

Episode Background: Xiaotao is feeling sad lately.

C
ouples Story Progression

<motion>hugs
<place>center

<motion>rests head
<place>sofa

<motion>extends arm
<place>sofa

<motion>hugs
<place>center

Story Progression

Friends

<motion>raises fist
<place>center

<motion>shows encouragement
<place>center

Figure 6. We explore the controllability of DLP. Given the same background, manually editing the relationship state between characters,
results in different social behaviors. Interestingly, “couples” tend to have more intimate interactions than “friends”. The crown indicates the
active player. The story progression bar is color-coded in accordance with the stages represented by boxes: gray boxes represent behaviors,
whereas yellow boxes represent active-passive swapping in between behaviors.

Figure 7. Our motion captioning module translates human motion into text description, allowing a virtual character to respond to the human
player’s “fist bump”. Top Left: RGB video of the human player; Bottom Left: motion capture [8] result; Top right: first-person view of the
human-driven character; Bottom right: third-person view of the interaction. More details are included in the Supplementary Material.

“body” to synthesize character motions based on the mo-
tion descriptions. We then render videos of the characters
and ask evaluators to rate the script quality, motion qual-
ity, and overall quality from 1 to 9. in Tab. 2 shows our
SocioMind and MoMat-MoGen deliver better results with
convincing margins.

4.4. Visualization

As shown in Fig. 6, our framework possesses a rational
correlation between psychological states and physical be-
haviors. In addition, our system has the potential to add hu-
man players in the virtual world to interact with the digital
avatars (Fig. 7, elaborated in the Supplementary Material).

5. Conclusion
In this paper, we introduce Digital Life Project, an innova-
tive and comprehensive system that harnesses the latest ad-
vancements in generative models to create autonomous 3D

characters. DLP integrates SocioMind, a text-centric cogni-
tive framework that simulates sophisticated internal psycho-
logical processes, and MoMat-MoGen, a text-driven motion
synthesis pipeline that replicates diverse external physical
behaviors. Both modules achieve state-of-the-art perfor-
mance in the respective domains, enabling the entire system
to engage in natural interactions with social intelligence.
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