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Abstract

Trackers that follow Siamese paradigm utilize similar-
ity matching between template and search region features
for tracking. Many methods have been explored to enhance
tracking performance by incorporating tracking history to
better handle scenarios involving target appearance vari-
ations such as deformation and occlusion. However, the
utilization of historical information in existing methods is
insufficient and incomprehensive, which typically requires
repetitive training and introduces a large amount of com-
putation. In this paper, we show that by providing a tracker
that follows Siamese paradigm with precise and updated
historical information, a significant performance improve-
ment can be achieved with completely unchanged parame-
ters. Based on this, we propose a historical prompt network
that uses refined historical foreground masks and historical
visual features of the target to provide comprehensive and
precise prompts for the tracker. We build a novel tracker
called HIPTrack based on the historical prompt network,
which achieves considerable performance improvements
without the need to retrain the entire model. We con-
duct experiments on seven datasets and experimental results
demonstrate that our method surpasses the current state-of-
the-art trackers on LaSOT, LaSOText, GOT-10k and NfS.
Furthermore, the historical prompt network can seamlessly
integrate as a plug-and-play module into existing trackers,
providing performance enhancements. The source code is
available at https://github.com/WenRuiCai/HIPTrack.

1. Introduction

Visual tracking aims to estimate the position of a target in
subsequent frames of a video, given the initial state in the
first frame [1, 5, 24, 46]. It can be challenging when the
target experiences deformation, scale variation, and partial
occlusion over time. While Transformer-based one-stream
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Figure 1. Visualized comparisons of our approach and other excel-
lent trackers GRM [16] and SeqTrack [6]. Our method performs
better when the target suffer from occlusion, deformation and scale
variation.

trackers [4, 8, 16, 48] have significantly improved the track-
ing accuracy by incorporating feature extraction and inter-
action of template and search regions into a single Trans-
former, they still follow Siamese paradigm that performs
similarity matching between template and search regions.
Only using the template to predict the target in subsequent
frames may not be effective in handling complex scenarios.

There have been numerous attempts to incorporate his-
torical context into trackers using techniques such as space-
time memory networks [13], utilizing a tracked frame as
auxiliary template [8, 47] and incorporating multiple frames
as inputs to the backbone [18, 38]. However, the target po-
sition introduced by space-time memory networks lacks ac-
curacy, while the use of two backbones for the current frame
and tracked frames introduces a substantial number of pa-
rameters. Utilizing a tracked frame as auxiliary template is
insufficient and susceptible to introducing distractors. Em-
ploying multiple frames as inputs introduces considerable
computational complexity while inadequately preserving a
substantial amount of historical context. Recently, autore-
gressive trackers [6, 40] have achieved state-of-the-art per-
formance by tokenizing the target position and incorporat-
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ing a generative decoder to make predictions. Autoregres-
sive trackers can make use of multi-frame historical position
information for prediction, and auxiliary template is also in-
troduced in [6]. However, autoregressive trackers still have
not fully utilized the historical visual features and require
full parameter training with a substantial parameter burden.

In this paper, we conduct an analysis on several trackers
[4, 5, 8, 48] that follow Siamese paradigm. We provide up-
dated templates and more accurately cropped search regions
while keeping the model unchanged. The results in Figure 2
show significant performance improvements, indicating that
high quality historical prompt can improve tracking accu-
racy without the need for a full parameter retraining. Based
on this analysis, we propose HIPTrack, a novel tracker that
features the historical prompt network as its core module.
This lightweight module includes an encoder for encoding
historical target feature with both positions and visual fea-
tures of the target, and a decoder for generating historical
prompt for current search region.

Compared with [13], HIPTrack incorporates more pre-
cise target position information without requiring an addi-
tional backbone. The historical prompt encoder introduces
precise target position by constructing refined foreground
masks, which are then encoded along with the visual fea-
tures of the target as the historical target features. Com-
pared with [6, 8, 40, 47], HIPTrack introduces more suffi-
cient and comprehensive historical information. We store
a large amount of historical target features in the historical
prompt decoder and generate prompts tailored to the current
search region through adaptive decoding. By leveraging the
concept of prompt learning to introduce historical informa-
tion, HIPTrack achieves significant performance improve-
ments while still maintaining tracking efficiency. Addition-
ally, only the historical prompt network and prediction head
need to be trained in HIPTrack, reducing the number of
training parameters by more than 80% compared with [40].

We evaluate the performance of our method on 7 datasets
and experimental results show that HIPTrack achieves state-
of-the-art performance on LaSOT, LaSOText, GOT-10k and
NfS. Figure 1 clearly demonstrates the improved capability
of our method in handling scenarios that involve occlusion,
deformation and scale variation. The main contributions of
this work can be summarized as: 1) We propose the his-
torical prompt network, a module that encode high qual-
ity historical target features and generate effective historical
prompts for tracking. 2) We propose a novel tracker called
HIPTrack based on the historical prompt network that elim-
inates the need for retraining the entire model. 3) Exper-
imental results show that HIPTrack outperforms all track-
ers on LaSOT, LaSOText, GOT-10k, and NfS; Additional
experimental results demonstrate that the historical prompt
network can serve as a plug-and-play component to improve
the performance of current trackers.

2. Related Work
2.1. Trackers without Historical Information

Trackers that follow Siamese paradigm perform similarity
matching between template and search region for tracking
[1, 24, 46, 50], which do not leverage historical information.
These trackers rely on the predicted bounding box from the
previous frame to crop the current search region. Recently,
several trackers have employed Transformers to enhance the
template-search region interaction, such as TransT [5], DTT
[49] and SparseTT [14]. One-stream trackers such as OS-
Track [48], SimTrack [4], GRM [16] and DropTrack [42]
integrate feature extraction and interaction into one Trans-
former and significantly boost the tracking performance.
However, these methods still do not incorporate any his-
torical information and underperform in complex scenarios
such deformation, scale variation and partial occlusion.

2.2. Trackers with Historical Information

STMTrack [13] utilizes space-time memory networks [33]
to integrate historical information, but its non-shared back-
bones result in an excessive number of parameters. The
template-free design may lead to the neglect of essential in-
formation and the target position description is not precise.
STARK [47] and MixFormer [8] utilize one search region
with high score as an auxiliary template, which is vulner-
able to distractors. TATrack [18] and TrDiMP [38] design
backbones capable of processing multiple frames to extract
historical features, but the computational overhead makes it
challenging to retain more historical frames. ARTrack [40]
and SeqTrack [6] utilize predicted coordinates of bounding
box and employ a generative decoder to integrate histori-
cal positions across multiple frames with the current search
region feature and make prediction. However, although Se-
qTrack [6] introduces an auxiliary template, both methods
still have not fully exploited the historical visual features of
the target. Additionally, autoregressive trackers require full
parameter training, ARTrack [40] even requires two-stage
training, leading to significant training resource overhead.

2.3. Prompt Learning

Prompt learning is a technique used to customize pre-
trained models for specific tasks, which has been ap-
plied in the fields such as computer vision [20, 39], nat-
ural language processing [23, 25], and multimodal studies
[21, 34, 35, 51, 52]. Prompt learning typically adjusts the
model input or utilizes adapters at various layers to mod-
ify the input-output space. In the field of visual tracking,
trackers that follow Siamese paradigm can be conceptual-
ized as pre-trained models for feature similarity matching.
By incorporating historical information prompts, the simi-
larity matching ablity of these trackers can be extended to
the temporal dimension.
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Figure 2. (a) shows the varying performance of trackers on LaSOT
[11] as the template update intervals change. (b) shows the vary-
ing performance of trackers on LaSOT as the crop factor of cur-
rent search regions change. A larger crop factor indicates coarser
cropping. Each cross symbol represents the baseline of the corre-
sponding color method. Note that TransT [5] does not have a fixed
crop factor, so we choose to use an average crop factor instead.

3. Method
3.1. Revisit Current Trackers

To explore the performance ceiling of current trackers that
follow Siamese paradigm, we conduct two experiments on
OSTrack [48], MixFormer [8], SimTrack [4] and TransT
[5]. Firstly, we update the template every n frames, which
is cropped with ground truth boxes. Despite a decrease in
tracker performance with larger update intervals, as shown
in Figure 2(a), when updating the template even with an
interval as large as 200, the performance of trackers still re-
main superior to using only the initial frame as template,
which means using more updated target visual features can
significantly improve tracking performance. Secondly, we
crop the search regions using ground truth boxes in the
previous frame instead of the predicted boxes. Although
the performance decreases with larger cropping factors, as
shown in Figure 2(b), when the cropping factor does not
differ much from the baseline, the performance still signif-
icantly exceeds the baseline that uses predicted results in
the previous frame to crop search regions, which suggests
that providing the tracker with more accurate target location
information can significantly improve performance. There-
fore, for current trackers that follow Siamese paradigm, a
substantial performance boost can be attained by using ef-
fective historical target feature as prompts.

3.2. Overall Architecture

As shown in Figure 3, we present HIPTrack, which com-
prises three main components: a feature extraction network,
a historical prompt network, and a prediction head network.
The feature extraction network extracts the features of the
search region interacted with the template, while filtering
out background image patches of the search region. The his-

torical prompt network employs a historical prompt encoder
to encode the position information and the visual features of
the target from the current frame as historical target feature,
and appends it to the memory bank in historical prompt de-
coder. In subsequent tracking, the historical prompt decoder
generates historical prompt for each search region and con-
catenates historical prompt with compressed search region
feature along the channel dimension. We adopt the same
prediction head structure as OSTrack [48]. Due to the in-
crease in the number of channels after incorporating the his-
torical prompt, we introduce a residual convolutional layer
at the input of the prediction head to reduce the channels.

3.3. Feature Extraction Network

The feature extraction network utilizes a Vision Trans-
former (ViT) [10] as the visual backbone, initialized with
the weights of existing trackers and its parameters are en-
tirely frozen. The feature extraction process employs a one-
stream approach. Within ViT, similar to OSTrack [48], we
incorporate an early Candidate Elimination (CE) module
with the same elimination ratio. The CE module is embed-
ded within the attention layers of ViT and filters out search
region background tokens with the lowest attention scores
in relation to the template token. Our method utilizes the
image patches filtered by CE module to construct CE mask
as one input of the historical prompt encoder.

3.4. Historical Prompt Network

The historical prompt network is the core module of our
method, which consists of an encoder and a decoder, as
shown in Figure 4. Inspired by video object segmentation
methods [7, 33], we choose to use masks to describe the
target position information. The predicted bounding boxes
are utilized to generate masks, which are then refined by CE
masks to obtain more accurate historical foreground masks
of the target. The encoder encodes the refined foreground
masks and the target visual features together into the his-
torical target features that serves as historical prompt value
and appends it to the memory bank in the decoder, with the
compressed search region feature as the key. The decoder
utilizes the current search region feature a query and em-
ploys attention based on the Euclidean distance for adaptive
aggregation of the historical target features to generate his-
torical prompt for the current frame.

3.4.1 Historical Prompt Encoder

As shown in Figure 4, we use the eliminated patches from
the feature extraction network to construct a CE mask and
generate a bounding box mask using the predicted bound-
ing box. The two masks are combined using a bitwise AND
operation to obtain the final refined foreground mask. The
refined foreground mask, search region image, and search
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Figure 3. Overview of our proposed HIPTrack. The whole structure consists of a feature extraction network, a history prompt network,
and a head prediction network. The historical prompt network comprises a historical prompt encoder and a historical prompt decoder.

region feature are collectively utilized to encode the histor-
ical target feature, also referred to as prompt value.

Initially, the historical prompt encoder concatenates the
input search region image with foreground mask along the
channel dimension to create a new 4-channel image and
feeds the image into a lightweight encoder represented as
Φ, yielding a feature map K ∈ RH

16×
W
16×CK that contains

target position information. In our approach, Φ utilizes the
first three stages of ResNet-18 [17] to ensure that the down-
sampling factor aligns with that of the ViT backbone. Be-
sides, we modify the input channel of the first convolutional
layer of Φ to be 4 while keeping other channels unchanged.

After obtaining the feature K that contains the target po-
sition information, the historical prompt encoder fuses K
with the search region feature F ∈ RH

16×
W
16×CF . We con-

catenate K and F along the channel dimension and feed the
result into a convolutional block with residual connections,
yielding a fused feature map F ′

1 ∈ RH
16×

W
16×CP . We denote

the residual block as fRB1, which consists of two 3 × 3
convolutional layers with a padding of 1 and a stride of 1,
the first convolutional layer has an output channel count of
CP and the second convolutional layer maintains the same
input and output channels. Later, we adopt a Convolutional
Block Attention Module [41] for feature enhancement of
F ′
1, which can be formulated as follows:

WC = MLP(Poolhwmax(F
′
1)) +MLP(Poolhwavg(F

′
1))

WS = Conv([Poolcmax(F
′
1); Pool

c
avg(F

′
1)])

F ′
2 = (σ(WC)⊗ F ′

1)⊙ σ(WS)

(1)

where Poolhwmax and Poolhwavg represent max pooling and av-
erage pooling operations applied along the spatial pixel di-
mension, respectively. Poolcmax and Poolcavg represent max
pooling and average pooling operations along the channel
dimension. The MLP consists of two linear layers and does
not alter the dimensions, and WC ∈ RCP×1 is obtained
by separately passing two pooling results through the MLP
and then adding the two outputs up. Conv is a convolu-
tional layer with a kernel size of 7, padding of 3, and an
output channel count of 1. WS ∈ RH

16×
W
16×1 is the output

of Conv. σ represents Sigmoid function, ⊗, ⊙ represent
channel-wise multiplication and pixel-wise multiplication,
respectively. F ′

2 ∈ RH
16×

W
16×CP is the result of applying

the channel weight and spatial weight to F ′
1. We further add

F ′
1 with F ′

2 and feed the added result into another residual
block fRB2 to obtain the final output P ∈ RH

16×
W
16×CP as

the encoded prompt value. fRB2 maintains the same struc-
tural configuration as fRB1, with the distinction that fRB2

does not alter the number of channels.

3.4.2 Historical Prompt Decoder

As shown in Figure 4, the historical prompt decoder stores
the historical prompt values in the form of key-value pairs in
the memory bank, utilizes the current search region feature
to retrieve historical prompt values, and adaptively aggre-
gates the prompt values to generate customized historical
prompt relevant to the current search region.

Memory Bank. We use compressed search region fea-
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tures from the feature extraction network as the prompt key
to each prompt value. To reduce computational cost, a 1×1
convolutional layer Convkey is utilized to reduce the chan-
nel dimension of F from CF to CPk

, obtaining the prompt
key that is denoted as Pkey ∈ RH

16×
W
16×CPk . After obtain-

ing the prompt values and prompt keys for all the H
16 × W

16
positions in the search region of a specific frame, the his-
torical prompt decoder will flatten them along the spatial
dimension and incorporate them into the memory bank al-
together, which means that the memory bank will add HW

162

prompt key-value pairs. The memory bank retains at most
T tracked frames and is updated every τ frames, using a
first-in-first-out (FIFO) strategy.

Decoding. The decoding process is to adaptively aggre-
gate historical prompt values from the memory bank based
on the current search region feature and generate the histor-
ical prompt for target prediction. Given the current search
region feature F , to ensure that the query aligns precisely
with the prompt keys in the memory bank and to reduce
computational cost, we also utilize Convkey to reduce the
dimension of F to CPk

as the query of current frame, which
is denoted as Q ∈ RH

16×
W
16×CPk . If the prediction of cur-

rent frame needs to be encoded as historical target feature
and added to the memory bank as historical prompt value,
Q can be directly employed as the corresponding prompt
key without redundant calculations. Assuming there are a
total of N key-value pairs in the memory bank, the pro-
cess that the decoder generates historical prompt for current
search region can be formulated as follows:

Si,j = −||P ′
keyi

−Qj ||22

Ai,j =
eSi,j∑N

n=1(e
Sn,j )

O = AT · P ′

(2)

where P ′
key ∈ RN×CPk represents all prompt keys in

the memory bank and Si,j ∈ R1 represents the similar-
ity score between the ith prompt key and the jth query,
which is calculated using the negative of L2 distance. A ∈
RN×HW

162 represents the final normalized attention score ma-
trix, P ′ ∈ RN×CP represents all the prompt values in the
memory bank, and O ∈ R

HW
162

×Cp denotes the historical
prompt tailored to the current search region, obtained by
weighted aggregation based on matrix A. After reshap-
ing, O′ ∈ RH

16×
W
16×Cp is concatenated with the compressed

search region features and fed into the prediction head.

4. Experiments
4.1. Implemention Details

Model settings. We employ the base version of Vision
Transformer (ViT-B) [10] in feature extraction network and
initialize it using the weights from DropTrack [42]. No-
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Figure 4. The structure of the historical prompt network that con-
sists of historical prompt encoder and historical prompt decoder.

tably, when evaluating on GOT-10k [19], our initialization
weights are trained only on GOT-10k. Throughout the train-
ing process, the feature extraction network remains frozen.
HIPTrack utilizes a template size of 192× 192 and a search
region size of 384× 384. The cropping factors for the tem-
plate and search region are 2 and 5, respectively. The fea-
ture extraction network outputs features with a dimension of
CF that is set to 768. In historical prompt network, we set
the values of CK , CP and CPk

to 256, 384 and 64, respec-
tively. As shown in Table 1, our method requires training
only a small number of parameters, while also demonstrat-
ing significantly reduced computational complexity during
the inference process even when the memory bank is fully
utilized. Moreover, our method achieves a speed of 45.3
FPS on one single NVIDIA Tesla V100 GPU, exhibiting
a more significant advantage over MACs. This is because
during actual tracking, the memory bank is not always full
and the encoder is occasionally called at update intervals.

Table 1. Comparison of our method with other excellent trackers
in terms of total parameters, trainable parameters, computational
complexity and speed. The speed of all methods is tested on V100.

Method Trainable Params(M) MACs(G) Speed
Params(M) (FPS)

HIPTrack 34.1 120.4 66.9 45.3
SeqTrack-B384[6] 88.1 88.1 147.9 16.8
ARTrack384[40] 181.0 181.0 172.1 13.5
TATrack-L[18] 112.8 112.8 162.4 6.6

Datasets. Following previous works [6, 8, 40, 48], when
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evaluating the trackers on GOT-10k [19], we only use the
train splits of GOT-10k for training. Otherwise, we utilize
the train splits of COCO [27], LaSOT [11], GOT-10k [19],
and TrackingNet [32]. In each training step, we select six
frames from a video. The temporal intervals between adja-
cent frames are randomly chosen between 1 and 70. Once
selected, the six frames are randomly arranged in either
chronological or reverse order, with the first frame serving
as the template and the remaining five frames serving as the
search frames. For non-video datasets like COCO, we du-
plicate the same image six times.

Loss Function. In our implementation, we utilize focal
loss [28] for foreground-background classification and then
employ GIoU loss [36] and L1 loss for bounding box re-
gression. The weighting coefficients for focal loss , GIoU
loss, and L1 loss are set as 1.0, 5.0, and 2.0, respectively.

Training and Optimization. Our tracker is imple-
mented using PyTorch 1.10.1. The entire training process is
conducted on 4 NVIDIA Tesla V100 GPUs. During train-
ing, we set the batch size to 32 and train the model for 100
epochs. In each epoch, we sample 60,000 videos from all
the datasets. We use AdamW optimizer with a weight decay
of 10−4 and an initial learning rate of 10−4. The learning
rate is scheduled to decrease to 10−5 after 80 epochs.

Inference. For the first 10 frames, the historical prompt
network utilizes the historical information from the first
frame template as memory bank to generate prompts and
the historical information of a tracked frame is added to the
memory bank every 5 frames. After the initial 10 frames,
the historical prompt network utilizes the historical infor-
mation stored in the memory bank to generate prompts. The
the update interval of the memory bank τ is set to 20 and the
memory bank size T is set to 150.

4.2. Comparisions with the State-of-the-Art

LaSOT [11] is a large-scale long-term dataset. Its test split
consists of 280 sequences, each exceeding 2,500 frames.
We evaluate our method on the test split of LaSOT, and the
results presented in Table 2 show that our approach outper-
forms current state-of-the-art methods. In Figure 5, we eval-
uate the performance of our approach across various chal-
lenging tracking scenarios. This observation underscores
the adaptability and robustness of our approach.

LaSOText [12] comprises 1,500 video sequences and 15
distinct target categories that have no overlaps with those
in the LaSOT [11] dataset. Table 3 demonstrates a sig-
nificant superiority of our approach over SeqTrack-B384,
ARTrack384 and OSTrack384 on LaSOText.

GOT-10k [19] contains 9,335 sequences for training and
180 sequences for testing. GOT-10k only allows trackers
to be trained using the train split. We follow this protocol
to train our method on the train split and test it on the test
split. Table 2 indicates that our method surpasses all current
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Figure 5. The performance of our method compared with other
state-of-the-art trackers in terms of AUC across various scenarios
in the LaSOT test split.

state-of-the-art methods as well, showcasing the robust ca-
pability of our approach in extracting historical information
and generating prompts even for unknown categories.

TrackingNet [32] is a large-scale dataset whose test split
includes 511 sequences covering various object classes and
tracking scenes. We report the performance of our method
on the test split of TrackingNet. Table 2 demonstrates
that our method outperforms all current non-autoregressive
methods as well as the autoregressive method SeqTrack [6].

UAV123 [31] is a low altitude aerial dataset taken by
drones, including 123 sequences, with an average of 915
frames per sequence. The results in Table 4 indicate that
our approach rivals to the current state-of-the-art methods
on UAV123. The reason for not achieving more significant
advancements could be attributed to the relatively smaller
target scales in UAV123, which may lead to a decrease in
accuracy when using masks to describe the target position.

NfS [22] comprises 100 video sequences, totaling
380,000 video frames. We experiment on the 30FPS ver-
sion of NfS. The results in Table 4 demonstrate that our ap-
proach outperforms all current state-of-the-art approaches.

OTB2015 [43] is a classical testing dataset in visual
tracking. It contains 100 short-term tracking sequences cov-
ering 11 common challenges, such as target deformation,
occlusion and scale variation. The results in Table 4 demon-
strate that our approach surpasses current state-of-the-art
methods on OTB2015 as well.

4.3. Ablation Studies

Generalization ability of Historical Prompt Network. To
test the general applicability of the historical prompt net-
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Table 2. State-of-the-art comparison on LaSOT, GOT-10k and TrackingNet. ‘*’ denotes for trackers trained only with GOT-10k train split.
The best two results are highlighted in red and blue, respectively.

Method Source LaSOT GOT-10k* TrackingNet

AUC(%) PNorm(%) P (%) AO(%) SR0.5(%) SR0.75(%) AUC(%) PNorm(%) P (%)
HIPTrack Ours 72.7 82.9 79.5 77.4 88.0 74.5 84.5 89.1 83.8

ROMTrack-384 [3] ICCV23 71.4 81.4 78.2 74.2 84.3 72.4 84.1 89.0 83.7
DropTrack [42] CVPR23 71.8 81.8 78.1 75.9 86.8 72.0 84.1 88.9 -

ARTrack384 [40] CVPR23 72.6 81.7 79.1 75.5 84.3 74.3 85.1 89.1 84.8
SeqTrack-B384 [6] CVPR23 71.5 81.1 77.8 74.5 84.3 71.4 83.9 88.8 83.6

GRM [16] CVPR23 69.9 79.3 75.8 73.4 82.9 70.4 84.0 88.7 83.3
TATrack-B [18] AAAI23 69.4 78.2 74.1 73.0 83.3 68.5 83.5 88.3 81.8
CTTrack [37] AAAI23 67.8 77.8 74.0 71.3 80.7 70.3 82.5 87.1 80.3

OSTrack384 [48] ECCV22 71.1 81.1 77.6 73.7 83.2 70.8 83.9 88.5 83.2
SimTrack [4] ECCV22 70.5 79.7 - 69.8 78.8 66.0 83.4 87.4 -

MixFormer-22K [8] CVPR22 69.2 78.7 74.7 70.7 80.0 67.8 83.1 88.1 81.6
SBT [44] CVPR22 66.7 - 71.7 70.4 80.8 64.7 - - -

AiATrack [15] ECCV22 69.0 79.4 73.8 69.6 80.0 63.2 82.7 87.8 80.4
SwinTrack [26] NIPS22 71.3 - 76.5 72.4 - 67.8 84.0 - 82.8
SparseTT [14] IJCAI22 66.0 74.8 70.1 69.3 79.1 63.8 81.7 86.6 79.5
STARK [47] ICCV21 67.1 77.0 - 68.8 78.1 64.1 82.0 86.9 -

Table 3. The performance of our method and other state-of-the-art
trackers on LaSOText. The best two results are highlighted in red
and blue.

Method AUC(%) PNorm(%) P (%)
HIPTrack 53.0 64.3 60.6

ARTrack384 [40] 51.9 62.0 58.5
SeqTrack-B384 [6] 50.5 61.6 57.5
OSTrack384 [48] 50.5 61.3 57.6
AiATrack [15] 47.7 55.6 55.4
SwinTrack [26] 49.1 - 55.6

ToMP [30] 45.9 - -
KeepTrack [29] 48.2 - -

LTMU [9] 41.4 49.9 47.3
DiMP [2] 39.2 47.6 45.1

Table 4. The performance of our method and other state-of-the-art
trackers on UAV123, NfS and OTB2015 in terms of AUC metrics.
The best two results are highlighted in red and blue.

Method UAV123 NfS OTB2015
HIPTrack 70.5 68.1 71.0

ARTrack384 [40] 70.5 66.8 -
AiATrack [15] 70.6 67.9 69.6

CTTrack-B [37] 68.8 - -
SeqTrack-B384 [6] 68.6 66.7 -

DropTrack [42] - - 69.6
MixFormer-L [8] 69.5 - -
KeepTrack [29] 69.7 66.4 70.9

STARK [47] 69.1 - 68.5

work, we integrate it into Transformer-based one-stream
trackers DropTrack [42] and OSTrack [45], as well as

SiamFC++ [46] that employs an explicit Siamese struc-
ture. Due to the limitations of convolutional network-based
SiamFC++ in performing candidate elimination, the histori-
cal prompt network in SiamFC++ is exclusively constructed
using historical predicted bounding boxes to form masks
without CE masks. The experimental results, as depicted in
Table 5, demonstrate that our proposed historical prompt
network significantly improves the performance of exist-
ing methods that follow Siamese paradigm. The historical
prompt network can still have a great impact on SiamFC++
without introducing precise position information, possibly
due to the limited ability of convolutional network-based
trackers to comprehensively represent targets. Through the
use of richer historical information, the historical prompt
network can help refine the representation of the target.

Table 5. A performance comparison of existing trackers and their
integration with our proposed historical prompt network on the
GOT-10k test set.

Method AO(%) SR0.5(%) SR0.75(%)

DropTrack 75.9 86.8 72.0
DropTrack w/ HIP 77.4 88.0 74.5

OSTrack 73.7 83.2 70.8
OSTrack w/ HIP 75.4 85.0 73.7

SiamFC++ 59.5 69.5 47.9
SiamFC++ w/ HIP 61.0 71.5 49.6

The Number of sampled search frames. Training HIP-
Track involves sampling multiple frames as search frames
from a video. However, due to resource limitations, it is not
feasible to sample an excessive number of search frames at
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once. Hence, we conducted an analysis on the impact of the
number of sampled search frames on the final tracking per-
formance. As depicted in Table 6, the tracker achieves op-
timal performance with a sample size of 5 frames. A larger
number of sampled frames may require a larger model size
and training epochs to match, and the scaling capability of
the historical prompt network remains to be tested.

Table 6. The performance of our method on the test split of LaSOT
when setting different number of sampled search frames.

Number 2 3 4 5 6
AUC(%) 72.1 72.5 72.4 72.7 72.4

PNorm(%) 82.3 82.7 82.5 82.9 82.6
P(%) 78.9 79.2 79.1 79.5 79.2

Ablation Studies on Historical Prompt Network. His-
torical Prompt Network simultaneously integrates historical
positional information and historical visual feature of the
target. In order to assess the individual impacts of these two
categories of information on HIPTrack, we conducted sep-
arate ablation experiments by removing historical refined
foreground masks and historical search region features as
inputs to the historical prompt network. The results in the
first, second, and sixth rows of Table 7 suggest that incor-
porating both refined foreground masks and search region
features are beneficial for tracking.

We also examine the importance of CE mask that de-
scribes more precise historical positional information. The
results in the third and sixth rows of Table 7 reveal that
using candidate elimination to filter background patches to
create a refined mask for introducing accurate positional in-
formation is essential. Moreover, we explore the necessity
of including background search region image patches in the
memory bank. The fourth and sixth rows of Table 7 indicate
that including all feature maps yields better results, likely
because the constructed mask may not completely cover the
target region. In fifth row, we replace the L2 distance of
attention calculation with dot product, and the comparison
with sixth row shows that L2 distance is better to calculate
attention score because our query and key reside in exactly
the same feature space.

4.4. Qualitative Study

In Figure 6, we visualize the comparative tracking results
of different methods after prolonged tracking, considering
changes in the target due to occlusion, deformation and
scale variation. We also visualize the attention maps in
memory bank. The first column represents the template of
the first frame in video, the second column shows the com-
parison of tracking results from different methods, and the
third column presents the visualization of attention maps.
Figure 6 demonstrates that our method can effectively query
and aggregate historical feature of the target during the

Template Search Frame Attention Map in Memory Bank

(1)

(2)

(3)

#1087

#2099

(4)

#1074

#1609

Ground TruthHIPTrackSeqTrack GRM

#760 #1580#800 #820

#820 #960 #980 #1000

#1080#1040 #1060#780

#2040 #2080#1820#1400

Figure 6. Visualization results of memory bank attention maps
after prolonged tracking. Zoom in for a clearer view.

Table 7. Ablation studies on refined foreground masks, search re-
gion features, candidate elimination, incorporating background re-
gion features into the memory bank and L2 attention.

# Mask Feature CE Background L2 LaSOT AUC(%)
1 ✔ ✘ ✔ ✔ ✔ 71.2
2 ✘ ✔ ✘ ✔ ✔ 71.5
3 ✔ ✔ ✘ ✔ ✔ 72.1
4 ✔ ✔ ✔ ✘ ✔ 72.3
5 ✔ ✔ ✔ ✔ ✘ 72.3
6 ✔ ✔ ✔ ✔ ✔ 72.7

tracking process. Compared with other methods like GRM
[16] that relies solely on the first frame template, and the
autoregressive method SeqTrack [6] that does not fully uti-
lize historical visual features of the target, our approach
achieves more accurate tracking results.

5. Conclusion
In this work, we identify that trackers that follow Siamese
paradigm exhibit significant performance improvements
when provided with precise and updated historical informa-
tion. Based on this observation, we propose the historical
prompt network that effectively leverages the visual features
and positional information of tracked frames to encode the
historical target feature, while adaptively generates histori-
cal prompts for subsequent frames to enhance tracking ac-
curacy. Our proposed HIPTrack, which features the histor-
ical prompt network as its core module, achieves state-of-
the-art performance with a small number of parameters that
need to be trained. The historical prompt network can also
serve as a plug-and-play component to improve the perfor-
mance of current trackers.
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