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Abstract

Object detection in remote sensing images (RSIs) often
suffers from several increasing challenges, including the
large variation in object scales and the diverse-ranging
context. Prior methods tried to address these challenges
by expanding the spatial receptive field of the backbone, ei-
ther through large-kernel convolution or dilated convolu-
tion. However, the former typically introduces considerable
background noise, while the latter risks generating overly
sparse feature representations. In this paper, we introduce
the Poly Kernel Inception Network (PKINet) to handle the
above challenges. PKINet employs multi-scale convolution
kernels without dilation to extract object features of vary-
ing scales and capture local context. In addition, a Context
Anchor Attention (CAA) module is introduced in parallel to
capture long-range contextual information. These two com-
ponents work jointly to advance the performance of PKINet
on four challenging remote sensing detection benchmarks,
namely DOTA-v1.0, DOTA-v1.5, HRSC2016, and DIOR-R.

1. Introduction

Object detection in remote sensing images (RSIs) has
gained substantial attention in recent years [11, 56, 64].
This task is dedicated to discerning the presence of specific
objects within RSIs and subsequently ascertaining their cat-
egories and precise locations. In contrast to generic ob-
ject detection that typically produces horizontal bounding
boxes, remote sensing object detection aims to generate
bounding boxes that align accurately with the orientation
of the objects. Consequently, numerous prior efforts have
been dedicated to developing various oriented bounding box
(OBB) detectors [10, 20, 31, 65, 67, 71] and improving the
angle prediction accuracy for OBBs [68, 70, 72–74]. Never-
theless, the unique characteristics of RSIs remain relatively
under-explored when it comes to improving the feature ex-
traction for object detection.

RSIs, including aerial and satellite images, are typi-
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Figure 1. Top: Our approach yields solid performance gains over
various remote sensing detectors [10, 20, 59, 65, 71] with fewer
parameters on DOTA-v1.0 [64]. Bottom: Networks with small
kernels miss long-range context in large object detection, whereas
those with large kernels introduce noise for small objects. Our
multi-scale convolution, however, handles scale variations well.

cally acquired from a bird’s-eye perspective, offering high-
resolution views of the Earth’s surface. Consequently, ob-
jects depicted in RSIs exhibit a wide range of scales, span-
ning from expansive ones like soccer fields to relatively
diminutive entities such as vehicles. Furthermore, the accu-
rate recognition of these objects relies not solely on their ap-
pearances, but also on their contextual information, i.e., the
surrounding environment in which they are situated. To ad-
dress the large variation in the object scales, some methods
employ explicit data augmentation techniques [2, 54, 82] to
improve the robustness of the features against scale varia-
tions. Some resort to multi-scale feature integration [37, 81]
or pyramidal feature hierarchy [33, 61] to extract features
rich in scale information. Nevertheless, a limitation of these
methods is that the receptive fields for objects of varying
scales remain identical, thereby failing to provide sufficient
contextual information for larger objects.
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Recently, LSKNet [32] proposes to selectively enlarge
the spatial receptive field for larger objects to capture more
scene context information. This is achieved by incorporat-
ing large-kernel convolutions [12, 18, 38, 43] and dilated
convolutions into the backbone network. However, it is
noteworthy that the use of large-kernel convolutions may
introduce a significant amount of background noise, which
could be detrimental to the accurate detection of small ob-
jects. On the other hand, dilated convolutions, though ef-
fective at enlarging the receptive field, might inadvertently
overlook fine-grained details within that field, potentially
resulting in overly sparse feature representations.

To address the challenges posed by the large variation in
object scales and the diverse-ranging context within RSIs,
in this paper, we present a powerful and lightweight fea-
ture extraction backbone network named Poly Kernel In-
ception Network (PKINet) for remote sensing object detec-
tion. Unlike previous methods that rely on large-kernel or
dilated convolutions to expand the receptive field, PKINet
arranges multiple depth-wise convolution kernels of differ-
ent sizes without dilation in parallel, and extracts dense tex-
ture features across varying receptive fields. These texture
features are adaptively fused along the channel dimension,
enabling the collection of local contextual information. To
further encompass long-range contextual information, we
introduce a Context Anchor Attention (CAA) mechanism,
which leverages global average pooling and 1D strip con-
volutions to capture the relationships between distant pixels
and enhances the features within the central region. The two
components work jointly to facilitate the extraction of adap-
tive features with both local and global contextual informa-
tion, thereby improving the performance of remote sensing
object detection.

To the best of our knowledge, PKINet represents the pio-
neering effort in exploring the application of inception-style
convolutions and global context attention in remote sensing
object detection, aiming to effectively tackle the challenges
posed by the considerable variations in object scale and con-
textual diversity. Extensive experiments on widely used
remote sensing benchmarks DOTA-v1.0 [64], DOTA-v1.5
[64], HRSC2016 [41], and DIOR-R [3] demonstrate the ef-
fectiveness of our method. In addition to its exceptional fea-
ture extraction capabilities, our model is lightweight com-
pared with previous methods thanks to the strategic use of
depth-wise and 1D convolutions.

2. Related Work
The challenges faced by remote sensing object detection
primarily stem from objects with arbitrary orientations and
substantial scale variations [3, 11, 40, 56, 64, 75]. The ma-
jority of previous methods have focused on oriented bound-
ing box (OBB) detection. Nonetheless, an emerging trend
is to design effective feature extraction backbones tailored

to the characteristics of remote sensing images (RSIs).
OBB for Remote Sensing Object Detection. To address
the challenge of arbitrary orientations of the objects in RSIs,
one research direction focuses on developing specialized
OBB detectors. This includes introducing feature refine-
ment techniques into the detector neck [69, 71], extract-
ing the rotated region of interest (RoI) [10, 65], designing
specific detection heads for the OBBs [21, 26, 48], .etc.
Though improving over general horizontal bounding box
(HBB) detectors, these methods often suffer from issues
like boundary discontinuity due to their relatively inflexi-
ble object representations obtained by augmenting horizon-
tal object representations with additional angle parameters.
To mitigate the aforementioned issues, another line of re-
search has been dedicated to developing new object repre-
sentations for detecting OBBs [15, 31, 62, 67, 70, 76]. For
example, Xu et al. [67] propose to describe a multi-oriented
object by adding four gliding offset variables to classical
HBB representation. Li et al. [31] characterize oriented ob-
jects using a set of points to achieve more accurate orienta-
tion estimation. Some others [4, 27, 72, 73] utilize Gaussian
distributions to model the OBBs for object detection and de-
sign new loss functions [51] to guide the learning process.

Although these methods are promising in addressing
challenges related to arbitrary orientations, they typically
rely on standard backbones for feature extraction, which of-
ten overlook the unique characteristics of RSIs that are es-
sential for object detection, e.g., the large object scale vari-
ations and the diverse contextual information. In contrast,
we propose a feature extraction backbone to deal with the
challenges posed by the large object scale variations.
Feature Extraction for Remote Sensing Object Detec-
tion. To better handle the unique challenges such as
large object scale variations in RSIs, certain methods em-
phasize the extraction of multi-scale features through ap-
proaches like data augmentation [2, 54, 82], multi-scale
feature integration [39, 61, 81, 83], feature pyramid net-
work (FPN) enhancement [16, 25, 35, 80], or multi-scale
anchor generation [19, 24, 52]. Recently, there has been
a noteworthy development in the design of feature extrac-
tion backbones specifically for remote sensing object detec-
tion. Some [21, 50] focus on extracting features suitable
for objects of varying orientations with equivalent recep-
tive fields. Some [32] enlarge the spatial receptive field for
larger objects using large kernels [12, 38, 43], which in-
evitably introduces background noise for smaller objects.
Some [8, 17, 79] adopt multi-scale convolution kernels in
order to address challenges across various fields, yet re-
search in remote sensing detection remains scarce.

Similar to [32], we propose a new feature extraction
backbone PKINet to address the challenges posed by the
large variation in object scales and diverse context in RSIs.
There are two key differences between the two methods.
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Figure 2. PKINet overview. (a) PKINet consists of four stages, where the spatial resolution of the l-th stage output is (Cl×Hl×Wl).
Each (b) Stage (§3.1) implies a cross-stage partial (CSP) structure, where the input is split in half along the channel dimension and fed to a
Feed-Forward Network (FFN) and a sequence of Nl PKI Blocks, respectively. Each (c) PKINet Block contains a (d) PKI Module (§3.2)
and a (e) CAA Module (§3.3). Here, n=0, . . . , Nl−1 means that the PKI/CAA Module is in the n-th PKI Block of the l-th stage.

Firstly, instead of relying on large-kernel or dilated con-
volutions to expand the receptive field, PKINet utilizes
inception-style depth-wise convolution without dilation to
extract multi-scale texture features across varying receptive
fields. Secondly, our method incorporates a Context An-
chor Attention (CAA) mechanism to capture the long-range
contextual information. The two components collaborate to
facilitate the extraction of adaptive features with both local
and global contextual information, thereby improving the
performance of remote sensing object detection.

3. Methodology
As shown in Fig. 2(a), our PKINet is a feature extraction
backbone similar to VGG [55] and ResNet [22], which con-
sists of four stages. Each stage (§3.1) implies a cross-stage
partial (CSP) structure [60], where the stage input is split
and fed into two paths. One path is a simple Feed-Forward
Network (FFN). The other path consists of a sequence of
PKI Blocks, and each PKI Block contains a PKI Mod-
ule (§3.2) and a CAA Module (§3.3). The outputs of the
two paths are concatenated to yield the output of the stage.
PKINet can be incorporated with various oriented object de-
tectors such as Oriented RCNN [65] to produce the final
object detection results for RSIs.

3.1. PKI Stage
There are four stages arranged sequentially in PKINet. The
input and output of stage l are Fl−1 ∈ RCl−1×Hl−1×Wl−1

and Fl ∈ RCl×Hl×Wl , respectively. The structure of stage
l is shown in Fig. 2(b), which implies a cross-stage partial
(CSP) structure [60]. Specifically, the stage input Fl−1 after
initial processing is split in half along the channel dimen-
sion and fed into two paths:

Xl−1 = Conv3×3(DS(Fl−1)) ∈RCl×Hl×Wl ,

X
(1)
l−1 = Xl−1[:

1

2
Cl, . . . ], X

(2)
l−1 = Xl−1[

1

2
Cl :, . . . ],

(1)

where DS denotes the downsampling operation. One path
is a simple Feed-Forward Network (FFN), which takes in
X

(1)
l−1 ∈ R 1

2Cl×Hl×Wl and then output X(1)
l ∈ R 1

2Cl×Hl×Wl .
The other path consists of a sequence of Nl PKI Blocks,
which processes X

(2)
l−1 ∈ R 1

2Cl×Hl×Wl and yields X
(2)
l ∈

R 1
2Cl×Hl×Wl . As shown in Fig. 2 (c), PKI Block contains

a PKI Module and a CAA Module, which will be detailed
in §3.2 and §3.3, respectively. The final output of stage l is:

Fl=Conv1×1(Concat(X
(1)
l ,X

(2)
l )) ∈RCl×Hl×Wl , (2)

where Concat refers to the concatenation operation.

3.2. PKI Module

A PKINet Block consists of a PKI Module and a CAA Mod-
ule. In this section, we look into the details of PKI Module.
We will introduce CAA Module in §3.3.

As discussed in §1, different from general object detec-
tion, remote sensing object detection aims to locate and rec-
ognize objects of varying sizes within a single image. To
address the challenges related to large variations in object
scales, we introduce PKI Module to capture multi-scale tex-
ture features. As showcased in Fig. 2(d), PKI Module is
an inception-style module [57, 77] that comprises a small-
kernel convolution to grasp local information, followed by a
set of parallel depth-wise convolutions to capture contextual
information across multiple scales. Formally, PKI Module
within the n-th PKI Block of the l-th stage can be repre-
sented mathematically as follows:

Ll−1, n = Convks×ks(X
(2)
l−1, n), n=0, . . . , Nl−1,

Z
(m)
l−1, n = DWConvk(m)×k(m)(Ll−1, n), m=1, . . . , 4.

(3)

Here, Ll−1, n∈R 1
2Cl×Hl×Wl is the local feature extracted by

the ks×ks convolution, and Z
(m)
l−1, n ∈ R 1

2Cl×Hl×Wl is the
context feature extracted by the m-th k(m)×k(m) depth-
wise convolution (DWConv). In our experiment, we set
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ks = 3 and k(m) = (m+1)×2+1. For n = 0, we have
X

(2)
l−1, n = X

(2)
l−1. Note that our PKI Module does not

use dilated convolution, thereby preventing the extraction
of overly sparse feature representations.

Then, the local and contextual features are fused by a
convolution of size 1×1, characterizing the interrelations
among various channels:

Pl−1, n = Conv1×1
(
Ll−1, n +

∑4

m=1
Z

(m)
l−1, n

)
, (4)

where Pl−1, n ∈R 1
2Cl×Hl×Wl represents the output feature.

The 1×1 convolution serves as a channel fusion mechanism
to integrate features with varying receptive field sizes. In
this way, our PKI Module could capture a broad spectrum of
contextual information without compromising the integrity
of local texture features.

3.3. Context Anchor Attention (CAA)

As discussed above, the inception-style PKI Module in the
PKI Block focuses on extracting multi-scale local contex-
tual information. To capture long-range contextual infor-
mation, inspired by [32, 58], we further integrated a Context
Anchor Attention (CAA) module into the PKI Block. CAA
aims to grasp contextual interdependencies among distant
pixels while augmenting the central features concurrently.
An illustration of CAA is presented in Fig. 2(e). Take the
CAA Module in the n-th PKI Block of the l-th stage as an
example, we adopt average pooling followed by a 1×1 con-
volution to obtain the local region feature:

F
pool
l−1, n = Conv1×1(Pavg(X

(2)
l−1, n)), n=0, . . . , Nl−1, (5)

where Pavg represents average pooling operation. For n=

0, we have X
(2)
l−1, n = X

(2)
l−1. Then, we apply two depth-

wise strip convolutions as an approximation to a standard
large-kernel depth-wise convolution:

F w
l−1, n = DWConv1×kb(F

pool
l−1, n),

F h
l−1, n = DWConvkb×1(F

w
l−1, n).

(6)

We opt for depth-wise strip convolutions based on two pri-
mary considerations. First, strip convolution is lightweight.
Compared to a conventional kb×kb 2D depth-wise convo-
lution, we can achieve a similar effect with a couple of 1D
depth-wise kernels with a parameter reduction of kb/2. Sec-
ond, strip convolution can facilitate the identification and
extraction of features for objects with slender shapes, such
as bridges. To increase the receptive field of CAA Mod-
ule as the PKI Block it belongs to goes deeper, we set
kb = 11+2× l, i.e., we calculate the kernel size kb as the
function of the PKI Block depth n. Such a design enhances
the ability of PKINet to establish the relationship between
long-range pixels, and would not significantly increase the
computational cost thanks to the strip depth-wise design.

Finally, our CAA Module produces an attention weight

Hl

H ×Wl

W
Layer Specification

PKINet
T S

Stem 1
2 × 1

2 Down-samp. Kernel Size 3× 3, stride 2

Stage 1 1
4 × 1

4

Down-
sampling

Kernel Size 3× 3, stride 2
Embed. Dim 32 64

PKI
Block

Kernel Size 3× 3 to 11× 11

#Block (N1) 4

Stage 2 1
8 × 1

8

Down-
sampling

Kernel Size 3× 3, stride 2
Embed. Dim 64 128

PKI
Block

Kernel Size 3× 3 to 11× 11

#Block (N2) 14 12

Stage 3 1
16 × 1

16

Down-
sampling

Kernel Size 3× 3, stride 2
Embed. Dim 128 256

PKI
Block

Kernel Size 3× 3 to 11× 11

#Block (N3) 22 20

Stage 4 1
32 × 1

32

Down-
sampling

Kernel Size 3× 3, stride 2
Embed. Dim 256 512

PKI
Block

Kernel Size 3× 3 to 11× 11

#Block (N4) 4

Parameters (M) 4.13 13.69
FLOPs (G) 22.70 70.20

Table 1. Configurations of two variants of PKINet. Here, “T”
denotes “Tiny”, and “S” denotes “Small”. See §3.4 for details.

Al−1, n∈R 1
2Cl×Hl×Wl , which is further used to enhance the

output of PKI Module (cf. Eq. (4)):

Al−1, n = Sigmoid(Conv1×1(F
h
l−1, n)),

F attn
l−1, n = (Al−1, n ⊙ Pl−1, n)⊕ Pl−1, n.

(7)

Here, Sigmoid function ensures that the attention map
Al−1, n is in range (0, 1), ⊙ denotes the element-wise mul-
tiplication, ⊕ denotes the element-wise summation, and
F attn
l−1, n∈ R 1

2Cl×Hl×Wl is the enhanced feature. The output
of the n-th PKI Block in the l-th stage is obtained by:

X
(2)
l, n = Conv1×1(F

attn
l−1, n). (8)

For n=Nl−1, we have X
(2)
l =X

(2)
l, n, i.e., we denote the

output of the last PKI Block as X(2)
l .

3.4. Implementation Details

In this paper, we present two variants of the proposed back-
bone, namely PKINet-T and PKINet-S, where “T” stands
for “Tiny”, and “S” stands for “Small”. The Stem struc-
ture consists of three 3×3 convolution layers with strides
(2, 1, 1), respectively. For both PKINet-T and PKINet-S,
Hl =H/2(l+1),Wl =W/2(l+1) for l = 0, . . . , 4, and H,W
are the height and width of the input, respectively. For
PKINet-T, C0=32, Cl=2l−1×C0 for l=1, . . . , 4, and the
number of PKI Blocks of the four stages are (4, 14, 22, 4),
respectively. For PKINet-S, C0 = 64, Cl = 2l−1×C0 for
l = 1, . . . , 4, and the number of PKI Blocks of the four
stages are (4, 12, 20, 4), respectively. Please note that al-
though PKINet-T comprises more PKI Blocks compared to
PKINet-S, it contains significantly fewer parameters owing
to the halved channel number in the intermediate features.
The detailed configurations of the two variants of PKINet
are listed in Table 1.
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Method Backbone #P ↓ PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP ↑

DETR-based
AO2-DETR [7] ResNet-50 [22] 40.8M 87.99 79.46 45.74 66.64 78.90 73.90 73.30 90.40 80.55 85.89 55.19 63.62 51.83 70.15 60.04 70.91
O2-DETR [47] ResNet-50 [22] - 86.01 75.92 46.02 66.65 79.70 79.93 89.17 90.44 81.19 76.00 56.91 62.45 64.22 65.80 58.96 72.15

ARS-DETR [78] ResNet-50 [22] 41.6M 86.61 77.26 48.84 66.76 78.38 78.96 87.40 90.61 82.76 82.19 54.02 62.61 72.64 72.80 64.96 73.79

One-stage
SASM [26] ResNet-50 [22] 36.6M 86.42 78.97 52.47 69.84 77.30 75.99 86.72 90.89 82.63 85.66 60.13 68.25 73.98 72.22 62.37 74.92

R3Det-GWD [72] ResNet-50 [22] 41.9M 88.82 82.94 55.63 72.75 78.52 83.10 87.46 90.21 86.36 85.44 64.70 61.41 73.46 76.94 57.38 76.34
R3Det-KLD [73] ResNet-50 [22] 41.9M 88.90 84.17 55.80 69.35 78.72 84.08 87.00 89.75 84.32 85.73 64.74 61.80 76.62 78.49 70.89 77.36
O-RepPoints [31] ResNet-50 [22] 36.6M 87.02 83.17 54.13 71.16 80.18 78.40 87.28 90.90 85.97 86.25 59.90 70.49 73.53 72.27 58.97 75.97

Rotated ResNet-50 [22] 31.9M 88.52 77.54 47.06 63.78 80.42 80.50 87.34 90.39 77.83 84.13 55.45 65.84 66.02 72.77 49.17 72.45
FCOS [59] PKINet-S 21.7M 88.56 82.89 47.96 58.20 81.09 83.09 88.23 90.88 84.57 85.81 57.98 66.26 75.12 80.93 51.39 74.86

R3Det [71]
ResNet-50 [22] 41.9M 89.00 75.60 46.64 67.09 76.18 73.40 79.02 90.88 78.62 84.88 59.00 61.16 63.65 62.39 37.94 69.70
ARC-R50 [50] 65.2M 89.49 78.04 46.36 68.89 77.45 72.87 82.76 90.90 83.07 84.89 58.72 68.61 64.75 68.39 49.67 72.32

PKINet-S 28.1M 89.63 82.40 49.77 71.72 79.95 81.39 87.79 90.90 84.20 86.09 61.08 66.55 73.06 73.85 59.95 75.89

S2ANet [20]
ResNet-50 [22] 38.5M 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
ARC-R50 [50] 71.8M 89.28 78.77 53.00 72.44 79.81 77.84 86.81 90.88 84.27 86.20 60.74 68.97 66.35 71.25 65.77 75.49

PKINet-S 24.8M 89.67 84.16 51.94 71.89 80.81 83.47 88.29 90.80 87.01 86.94 65.02 69.53 75.83 80.20 61.85 77.83

Two-stage
SCRDet [69] ResNet-50 [22] 41.9M 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

G.V. [67] ResNet-50 [22] 41.1M 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
CenterMap [44] ResNet-50 [22] 41.1M 89.02 80.56 49.41 61.98 77.99 74.19 83.74 89.44 78.01 83.52 47.64 65.93 63.68 67.07 61.59 71.59

ReDet [21] ResNet-50 [22] 31.6M 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25

Roi Trans [10]
ResNet-50 [22] 55.1M 89.01 77.48 51.64 72.07 74.43 77.55 87.76 90.81 79.71 85.27 58.36 64.11 76.50 71.99 54.06 74.05

PKINet-S 44.8M 89.33 85.59 55.75 74.69 74.69 79.13 88.05 90.90 87.43 86.90 61.67 64.25 77.77 75.38 66.08 77.17

Rotated Faster
R-CNN [53]

ResNet-50 [22] 41.1M 89.40 81.81 47.28 67.44 73.96 73.12 85.03 90.90 85.15 84.90 56.60 64.77 64.70 70.28 62.22 73.17
ARC-R50 [50] 74.4M 89.49 82.11 51.02 70.38 79.07 75.06 86.18 90.91 84.23 86.41 56.10 69.42 65.87 71.90 63.47 74.77

PKINet-S 30.8M 89.33 85.27 52.34 73.03 73.72 75.60 86.97 90.88 86.52 87.30 64.23 64.20 75.63 80.31 61.47 76.45

O-RCNN [65]

ResNet-50 [22] 41.1M 89.46 82.12 54.78 70.86 78.93 83.00 88.20 90.90 87.50 84.68 63.97 67.69 74.94 68.84 52.28 75.87
ARC-R50 [50] 74.4M 89.40 82.48 55.33 73.88 79.37 84.05 88.06 90.90 86.44 84.83 63.63 70.32 74.29 71.91 65.43 77.35
LSKNet-S [32] 31.0M 89.66 85.52 57.72 75.70 74.95 78.69 88.24 90.88 86.79 86.38 66.92 63.77 77.77 74.47 64.82 77.49

PKINet-S 30.8M 89.72 84.20 55.81 77.63 80.25 84.45 88.12 90.88 87.57 86.07 66.86 70.23 77.47 73.62 62.94 78.39

Table 2. Experimental results on DOTA-v1.0 dataset [64] under single-scale training and testing setting. PKINet-S is pretrained on
ImageNet-1K [9] for 300 epochs similar to the compared methods [10, 65, 71]. See §4.2 for details.

4. Experiment

4.1. Experimental Setup

Datasets. We conduct extensive experiments on four popu-
lar remote sensing object detection datasets:

• DOTA-v1.0 [64] is a large-scale dataset for remote sensing
detection which contains 2806 images, 188,282 instances,
and 15 categories with a large variety of orientations and
scales. The dataset is comprised of 1,411, 458, and 937
images for train, val, and test, respectively.

• DOTA-v1.5 [64] is a more challenging dataset based on
DOTA-v1.0 which is released for DOAI Challenge 2019.
This iteration includes the addition of a novel category
named Container Crane (CC) and a substantial in-
crease in the number of minuscule instances that are less
than 10 pixels, containing 403,318 instances in total.

• HRSC2016 [41] is a remote sensing dataset for ship de-
tection that contains 1061 aerial images whose size ranges
from 300 × 300 and 1500 × 900. The images splits into
436/181/444 for train/val/test.

• DIOR-R [3] provides OBB annotations based on remote
sensing dataset DIOR [30] dataset. It contains 23,463 im-

Backbone #Params ↓ #FLOPs ↓ mAP ↑

ResNet-18 [22] 11.2M 38.1G 74.20
PKINet-T (ours) 4.1M 22.7G 77.87
ResNet-50 [22] 23.3M 86.1G 75.87

PKINet-S (ours) 13.7M 70.2G 78.39

Table 3. Comparison with ResNet [22] backbone on DOTA-
v1.0 dataset [64]. Params and FLOPs are computed for backbones
only. All the backbones are pretrained on ImageNet-1K [9] for 300
epochs and built within Oriented RCNN [65]. See §4.2 for details.

ages with the size of 800× 800 and 192,518 annotations.

Training. Our training process contains ImageNet [9] pre-
train and remote sensing object detector training. For Ima-
geNet pretrain, our PKINet is trained on the ImageNet-1K
under the MMPretrain [6] toolbox. In the main experiment,
we train it for 300 epochs for higher performance like pre-
vious works [32, 50, 65, 71]. In the process of pretrain,
we adapt the AdamW [29] optimizer with a momentum of
0.9 and a weight decay of 0.05. Cosine schedule [45] and
warm-up strategy are employed to adjust the learning rate.
We use 8 GPUs with a batch size of 1024 for pertaining.
For remote sensing object detector training, experiments are
conducted on MMRotate [84] framework. To compare with
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Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mAP ↑
RetinaNet-O [36] 71.43 77.64 42.12 64.65 44.53 56.79 73.31 90.84 76.02 59.96 46.95 69.24 59.65 64.52 48.06 0.83 59.16

FR-O [53] 71.89 74.47 44.45 59.87 51.28 68.98 79.37 90.78 77.38 67.50 47.75 69.72 61.22 65.28 60.47 1.54 62.00
Mask R-CNN [23] 76.84 73.51 49.90 57.80 51.31 71.34 79.75 90.46 74.21 66.07 46.21 70.61 63.07 64.46 57.81 9.42 62.67

HTC [1] 77.80 73.67 51.40 63.99 51.54 73.31 80.31 90.48 75.12 67.34 48.51 70.63 64.84 64.48 55.87 5.15 63.40
ReDet [21] 79.20 82.81 51.92 71.41 52.38 75.73 80.92 90.83 75.81 68.64 49.29 72.03 73.36 70.55 63.33 11.53 66.86
DCFL [66] - - - - 56.72 - 80.87 - - 75.65 - - - - - - 67.37

LSKNet-S [32] 72.05 84.94 55.41 74.93 52.42 77.45 81.17 90.85 79.44 69.00 62.10 73.72 77.49 75.29 55.81 42.19 70.26

PKINet-S (ours) 80.31 85.00 55.61 74.38 52.41 76.85 88.38 90.87 79.04 68.78 67.47 72.45 76.24 74.53 64.07 37.13 71.47

Table 4. Experimental results on DOTA-v1.5 dataset [64] compared with state-of-the-art methods with single-scale training and testing.
PKINet-S backbone is pretrained on ImageNet-1K [9] for 300 epochs, as the compared methods [21, 66]. PKINet-S is built within the
framework of Oriented RCNN [65]. See §4.2 for details.

other methods, we use trainval sets of these bench-
marks and their test sets for testing. Following the set-
tings of previous methods [21, 65, 71, 78], we crop original
images into 1024 × 1024 patches with overlaps of 200 for
DOTA-v1.0 and DOTA-v1.5 datasets. For HRSC2016 and
DIOR-R datasets, the input size is set as 800 × 800. Mod-
els are trained with 30 epochs, 30 epochs, 60 epochs, and
36 epochs for DOTA-v1.0, DOTA-v1.5, HRSC2016, and
DIOR-R. We employ AdamW [29] optimizer with a weight
decay of 0.05. The initial learning rate is set to 0.0002. All
flops reported are calculated when the input image size is
1024 × 1024. To prevent over-fitting, images undergo ran-
dom resizing and flipping during training following previ-
ous methods [21, 65, 71, 78]. Five-run average mAP of our
method are reported for HRSC2016 and DIOR-R.
Testing. The image resolution at the testing stage remains
consistent with the training stage. For the sake of fairness,
we do not apply any test-time data augmentation.
Evaluation Metric. The mean average precision (mAP) and
the Average Precision at 0.5 threshold (AP50) are reported.
Reproducibility. Our algorithm is implemented in PyTorch.
We use eight NVIDIA RTX 4090 GPUs for ImageNet pre-
training and four NVIDIA Tesla V100 GPUs for down-
stream training and testing.

4.2. Quantitative Results

Performance on DOTA-v1.0 [64]. To begin with, we make
a comparison with ResNet [22] built within the framework
of Oriented RCNN [65] on DOTA-v1.0 in Table 3. PKINet-
T outperforms by 3.67% using only 36.7% of the param-
eters and 59.6% of the compute needed by ResNet-18.
PKINet-S also excels, improving by 2.52% with just 58.8%
of the parameters and 81.53% of the compute of ResNet-50.

Our PKINet backbone, when paired with multiple de-
tection architectures shown in Table 2, consistently outper-
forms ResNet-50 and more networks designed for the re-
mote sensing detection task (i.e., ARC [50] and LSKNet
[32]). For one-stage architectures, our backbone is able to
bring 2.41%/6.19%/3.71% mAP improvement compared
with ResNet-50 for Rotated FCOS [59], R3Det [71], and
S2ANet [20] respectively. Even when integrated with the
classical S2ANet [20], our method surpasses the previous

Method #Params ↓ mAP (07) ↑ mAP (12) ↑
DRN [49] - - 92.70

GWD [72] 47.4M 89.85 97.37
Rol Trans. [10] 55.1M 86.20 -

Gliding Vertex [67] 41.1M 88.20 -
CenterMap [44] 41.1M - 92.80

AOPG [3] - 90.34 96.22
R3Det [71] 41.9M 89.26 96.01

S2ANet [20] 38.6M 90.17 95.01
ReDet [21] 31.6M 90.46 97.63

O-RCNN [65] 41.1M 90.50 97.60
O-RepPoints [31] 36.6M 90.38 97.26

LSKNet [32] 31.0M 90.65 98.46

PKINet-S (ours) 30.8M 90.70 98.54

Table 5. Experimental results on HRSC2016 dataset [41].
PKINet-S is pretrained on ImageNet-1K [9] for 300 epochs which
is consistent with previous methods [21, 32, 46] and built within
the framework of Oriented RCNN [65]. mAP (07/12): VOC 2007
[13]/2012 [14] metrics. See §4.2 for details.

Method RetinaNet-O [36] FR-OBB [53] RT [10] LSKNet-S [32]

mAP ↑ 57.55 59.54 63.87 65.90

Method GGHL [28] Oriented Rep [65] DCFL [66] PKINet-S (ours)

mAP ↑ 66.48 66.71 66.80 67.03

Table 6. Experimental results on DIOR-R dataset [30]. Fol-
lowing previous methods [28, 65, 66], PKINet-S is pretrained on
ImageNet-1K [9] for 300 epochs and built within the framework
of Oriented RCNN [65]. See §4.2 for details.

approaches, achieving a performance of 77.83%. For two-
stage architectures, PKINet also achieves remarkable gain
(3.12%/3.28%/2.23%). When equipped with the advanced
detector Oriented RCNN [65], the performance reaches the
superior 78.39% with a remarkable performance improve-
ment for small categories compared with the previous best
method LSKNet [32] (5.3%/5.76% for SV/LV). For the RA
category that needs more contextual information, PKINet
also achieves 6.46% enhancement compared with LSKNet.
Performance on DOTA-v1.5 [64]. As shown in Table
4, our approach achieves outstanding performance on the
more challenging dataset DOTA-v1.5 with minuscule in-
stances, evidencing its efficacy and generalization ability to
small objects. Our PKINet outperforms the former state-of-
the-art methods, achieving an improvement of 1.21%.
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Figure 3. Visual results on DOTA-v1.0 dataset [64]. Top: LSKNet [32]; Bottom: our PKINet. See §4.3 for details.

Method ResNet-18 [22] PVT-T [63] ConvNeXt-N [43] PKINet-S (ours)

#Params ↓ 11.2 12.9 15.6 13.7
mAP ↑ 34.0 36.7 41.3 43.4

Table 7. Experimental results on COCO 2017 dataset [34]. All
models are pretrained on ImageNet-1K [9] for 300 epochs and are
based on Mask R-CNN [23]. See §4.2 for details.

Performance on HRSC2016 [41]. Our PKINet-S sur-
passes 12 leading methods on the HRSC2016 dataset with
fewer parameters, as illustrated in Table 5. The slight edge
over LSKNet [32] mainly stems from HRSC2016 merging
31 subclasses into a single ‘ship’ category for training and
testing. This protocol doesn’t fully showcase our method’s
strengths in managing inter-class object size variation.
Performance on DIOR-R [3]. We present comparison re-
sults on DIOR-R, as shown in Table 6. We achieve the best
performance with 67.03%.
Performance on COCO 2017 [34]. To assess the versa-
tility of PKINet as a general framework adaptable to vari-
ous forms of bounding boxes, we evaluate our method on
the widely-used general detection benchmark COCO. As
can be seen in Table 7, PKINet outperforms several famous
backbones with similar parameters, thereby further affirm-
ing the efficacy of our method as a general-purpose back-
bone that is not confined to RSIs.

4.3. Qualitative Results

Fig. 3 depicts representative visual results on DOTA [64].
As seen, compared to the previous best-performing method
LSKNet [32] which merely relies on large kernels, our
PKINet demonstrates a strong ability to adjust to signifi-
cant size variations of target objects in a scene, ensuring
detection of larger items (e.g., PL, TC, ST, and BD) while
retaining focus on smaller ones (e.g., SV and LV).

4.4. Diagnostic Experiments

To gain more insights into PKINet, a set of ablative studies
on DOTA-v1.0 is conducted with Oriented RCNN [65] as

the detector. All the backbones mentioned in this section are
trained on ImageNet-1K [9] for 100 epochs for efficiency.
Multi-scale Kernel Design. First, the critical multi-scale
kernel design in PKINet (cf. §3.2) is investigated in Ta-
ble 8a. It demonstrates that using only small 3 × 3 kernels
yields poor performance due to limited texture information
extraction. Then a multi-scale kernel structure is adopted
whose kernel size ranges from 3×3 to 11×11 with a stride
of 2. Under this setting, the model shows the best perfor-
mance. Next, a stride of 4 when the kernel size increases
is tested and its performance is sub-optimal. Further tri-
als with only large kernels led to increased computation but
decreased performance, dropping by 0.49% and 0.84%, in-
dicating that large kernels may introduce background noise
and bring a performance drop (cf. §1).

Then, we investigate the kernel number in multi-scale
kernel design, detailed in §3.2. As Table 8b shows, with
only two kernels (only 3×3 and 5×5 kernels are reserved),
the network can’t capture long-range pixel relationships. As
the number of kernels rises, network performance improves,
achieving optimal outcomes with five kernels.
Kernel Dilations. Then, we examine the effect of dilations
in our PKI module (cf. §3.2). As displayed in Table 8d,
there is a performance degradation (-1.09%) despite the in-
crease in the receptive field compared to no kernel dilations.
As we further increase the degree of dilation, a further drop
in performance occurs. This proves that merely applying
dilation to expand the receptive field does not work.
Context Anchor Attention. Next, the effectiveness of
CAA module (cf. §3.3) is proved. To start with, CAA is
applied with different kernel sizes to check the impact in
Table 8f. The three kernel sizes in the first column repre-
sent the size in average pooling and two strip convolutions.
As can be seen, smaller kernels fail to capture long-range
dependencies, reducing performance, while larger kernels
improve this by including more context. Our expansive ker-
nel size strategy that increases the kernel size of strip convo-
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Kernel Design #Params ↓ #FLOPs ↓ mAP ↑
(3, 3, 3, 3, 3) 12.62M 62.40G 76.94

(3, 5, 7, 9, 11) 13.69M 70.20G 78.16
(3, 5, 9, 13, 17) 14.99M 79.57G 78.07

(11, 11, 11, 11, 11) 15.13M 80.61G 77.67
(15, 15, 15, 15, 15) 17.44M 92.45G 77.32

(a) multi-scale kernel design

Kernel Number #Params ↓ #FLOPs ↓ mAP ↑
2 12.56M 61.95G 75.76
3 12.78M 63.57G 76.07
4 13.13M 66.24G 77.53
5 13.69M 70.20G 78.16
6 14.35M 75.26G 78.10

(b) kernel number

Stage Apply #Params ↓ #FLOPs ↓ mAP ↑
None 12.03M 61.72G 77.13

1 12.19M 64.04G 77.35
2 12.31M 65.45G 77.48
3 12.97M 66.59G 77.72

ALL 13.69M 70.20G 78.16
(c) location for implementing CAA

Kernel Dilations Max RF mAP ↑
(1, 1, 1, 1, 1) 13 78.16
(2, 2, 2, 2, 2) 24 77.07
(3, 3, 3, 3, 3) 36 76.95

(d) kernel dilations

CSP Blocks #Params ↓ #FLOPs ↓ mAP ↑
√

(4, 12, 20, 4) 13.69M 70.20G 78.16
× (4, 12, 20, 4) 42.59M 182.07G -
× (2, 2, 4, 2) 17.30M 58.60G 77.83

(e) cross-stage partial structure

Kernel Design #Params ↓ #FLOPs ↓ mAP ↑
(3, 3, 3) 13.50M 68.95G 77.52
(5, 5, 5) 13.52M 69.08G 77.71
(5, 7, 7) 13.54M 69.21G 77.76

(7, 11, 11) 13.58M 69.47G 77.89
Expansive 13.69M 70.20G 78.16

(f) kernel size in CAA

Table 8. A set of ablative studies on DOTA-v1.0 [64]. The adopted network designs are marked in red. All the networks are pretrained
on ImageNet-1K [9] for 100 epochs and built with the framework of Oriented RCNN [65]. See §4.4 for details.

lutions as the blocks deepen achieves the best performance.
After that, since there are four stages in our PKINet, how

the implementing location affects the final performance is
investigated. As revealed in Table 8c, CAA module (cf.
§3.3) can bring performance improvement when imple-
mented at any stage. Consequently, when deploying CAA
module at all stages, the performance gain reaches 1.03%.
Cross-Stage Partial Structure. Table 8e further explores
the impact of the Cross-Stage Partial (CSP) structure. Elim-
inating CSP leads to exponential increases in both parame-
ters and computational costs (by 211% and 159%, respec-
tively). Reducing stage blocks from (4, 12, 20, 4) to (2,
2, 4, 2) allows models without CSP structure to achieve a
similar parameter count as the former one, but results in
sub-optimal performance due to fewer blocks.

4.5. Analysis

To measure the model’s detection sensitivity concerning the
sizes of different categories, we utilize Pearson Correlation
Coefficient (PCC) [5] to quantify the linear correlation be-
tween the average bounding box area per category and the
average detection score per category of DOTA-v1.0 [64].

First, we calculate the average area of all the annotations
for the k-th category, donated as Sk. The average area for
all categories S̄ is calculated as S̄ = 1

K

∑K
k=1 Sk, where K

is the number of categories. The mean scores for each cate-
gory Qk and for all categories Q̄ are computed in a similar
manner. Second, we calculate the covariance between the
category-wise average areas {Sk}Kk=1 and the category-wise
average scores {Qk}Kk=1 as D= 1

(K−1)
∑K

k=1(Sk−S̄)×(Qk−
Q̄). Finally, PCC is computed as:

r = D/σSσQ. (9)

Here, σS and σQ are the standard deviations of the category-
wise average areas {Sk}Kk=1 and the category-wise average
scores {Qk}Kk=1, respectively. A PCC absolute value |r|
close to 0 suggests a minimal linear correlation, indicat-
ing that the model’s detection performance is rarely influ-

Methods mAP ↑ |r| ↓

S2ANet [20] 74.13 0.23
O-RCNN [65] 75.87 0.22

ARC [26] 77.35 0.29
LSKNet [32] 77.49 0.24

PKINet-S (ours) 78.39 0.19

Table 9. Comparison of mAP and PCC (r) on DOTA-v1.0
dataset [64]. See §4.5 for details.

enced by the size of the object. As illustrated in Table 9,
our PKINet achieves both the highest mAP and the lowest
PCC absolute value |r|, indicating that PKINet is the least
sensitive to size variations across different categories.

5. Discussion and Conclusion
In this paper, we propose Poly Kernel Inception Network
(PKINet) for remote sensing object detection, which aims
at tackling the challenges posed by considerable variations
in object scale and contextual diversity in remote sensing
images. PKINet employs parallel depth-wise convolution
kernels of various sizes to capture dense texture features
effectively across different scales. A Context Anchor At-
tention mechanism is also introduced to capture long-range
contextual information further. We experimentally show
that PKINet achieves state-of-the-art performance on four
famous remote sensing benchmark datasets.
Limitations and Future Work. While both PKINet-T
and PKINet-S have demonstrated superior detection perfor-
mance over previous methods, limitations in our computa-
tional resources have restricted PKINet from scaling up the
model capacity to achieve its maximal potential. Similar
studies on model scalability have received substantial inter-
est in general object detection, as highlighted in Swin Trans-
former [42] and ConvNeXt [43]. We leave further investi-
gation into the scalability of PKINet for future research.
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