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Figure 1. Comparisons of X-ray novel view synthesis. On the collected X3D dataset, our method surpasses state-of-the-art algorithms
including InTo (InTomo [56]), NeRF [35], NeAT [43], NAF [59], and TeRF (TensoRF [15]) by 10.91, 15.03, 5.13, and 13.76 dB in PSNR
on the scenes of medicine, biology, security, and industry. The average gains are over 12 dB. The visual comparisons of our method and
the second-best algorithms on four scenes (pelvis, bonsai, box, and engine) show that our method yields more perceptually pleasing results.

Abstract
X-ray, known for its ability to reveal internal structures

of objects, is expected to provide richer information for 3D
reconstruction than visible light. Yet, existing NeRF algo-
rithms overlook this nature of X-ray, leading to their limita-
tions in capturing structural contents of imaged objects. In
this paper, we propose a framework, Structure-Aware X-ray
Neural Radiodensity Fields (SAX-NeRF), for sparse-view
X-ray 3D reconstruction. Firstly, we design a Line Segment-
based Transformer (Lineformer) as the backbone of SAX-
NeRF. Linefomer captures internal structures of objects in
3D space by modeling the dependencies within each line
segment of an X-ray. Secondly, we present a Masked Local-
Global (MLG) ray sampling strategy to extract contextual
and geometric information in 2D projection. Plus, we col-
lect a larger-scale dataset X3D covering wider X-ray ap-
plications. Experiments on X3D show that SAX-NeRF sur-
passes previous NeRF-based methods by 12.56 and 2.49 dB
on novel view synthesis and CT reconstruction. https:
//github.com/caiyuanhao1998/SAX-NeRF

1. Introduction
Compared with natural light, X-ray has stronger penetrat-
ing power to reveal more internal structures of imaged ob-

† = advisor, ∗ = corresponding authors

jects. Hence, X-ray is widely used for prospective imag-
ing [20, 21, 26, 27] in medicine, biology, security, industry,
etc. However, X-ray is harmful to human body because of
its ionizing radiation. To reduce X-ray exposure, this paper
studies the low-dose X-ray 3D reconstruction problem by
decreasing X-ray imaging projections in the circular cone
beam X-ray scanning scenario [9, 10, 16, 24, 45]. We focus
on two tasks, i.e., novel view synthesis (NVS) and com-
puted tomography (CT) reconstruction. NVS aims to create
new projections of a scene from viewpoints not originally
captured. CT reconstruction retrieves the 3D CT volume
of the scanned object from multi-view X-ray projections.
These two tasks are complementary with an overall objec-
tive to reconstruct 3D representations from 2D projections.

A majority of existing deep learning-based methods em-
ploy a powerful model such as convolutional neural network
(CNN) to learn a brute-force mapping from 2D X-ray pro-
jections to 3D CT volumes. These methods require a large
number of projection-CT pairs for training. Yet, CT vol-
umes are not accessible in practice. Collecting even a small
projection-CT dataset is tedious, labor-intensive, and harm-
ful to health. Plus, these paired learning-based methods fail
in generalizing from one application to another due to the
large domain discrepancy between different CT datasets.

Recently, the emergence of NeRF [35] provides a more
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(a) Visible Light Imaging (b) X-ray Imaging

Figure 2. Visible light vs. X-ray. Visible light imaging relies on
reflection. X-ray imaging is based on penetration and attenuation.

reasonable solution to X-ray 3D reconstruction. Compared
with paired learning-based algorithms, NeRF-based meth-
ods do not require CT volumes for training. Instead, they
only need projections of just one scene. Although RGB
NeRF algorithms have been well developed, directly apply-
ing them for X-ray scenes may achieve suboptimal results
due to the fundamental differences between visible light and
X-ray imaging. As compared in Fig. 2, visible light imag-
ing relies on the reflection off the surface of an object. It
mainly captures external features. In contrast, X-rays pen-
etrate the object and attenuate, thereby forming an image.
X-ray imaging primarily reveals internal structures, which
provide key clues for X-ray 3D reconstruction.

Nonetheless, current NeRF-based methods overlook this
critical property of X-ray imaging. Firstly, they learn NeRF
by a simple multilayer perceptron (MLP). X-ray attenuates
differently when penetrating different structures. However,
MLP treats each point on an X-ray equally, showing lim-
itations in modeling 3D structures of objects. Secondly,
previous methods mainly adopt a naive pixel-level ray sam-
pling strategy in the training phase. They randomly sample
X-rays corresponding to scattered pixels on the whole im-
age coordinate system. As a result, the contextual informa-
tion and geometric structures in 2D projection are not well
extracted. Plus, X-ray projections are spatially sparse. Sam-
pling X-rays on uninformative regions may lead to low ef-
ficiency. Besides, existing methods mainly study X-ray 3D
reconstruction in limited medical scenes while their perfor-
mance on other applications is still under-explored.

To tackle these issues, we propose a novel framework,
Structure-Aware X-ray Neural Radiodensity Fields (SAX-
NeRF), with the key insight of capturing 2D and 3D struc-
tures in X-ray imaging. Firstly, we design a Line Segment-
based Transformer (Lineformer) as the backbone of SAX-
NeRF. It partitions an X-ray into different line segments
and then samples points on each one. By computing
self-attention within every piece of the X-ray, Lineformer
can model internal dependencies and learn complex 3D
structures of different parts penetrated by the X-ray. Un-
like vanilla Transformer [49] whose computational cost is
quadratic to the number of input points, Lineformer is more

efficient by enjoying linear computational complexity. Sec-
ondly, we present a Masked Local-Global (MLG) ray sam-
pling strategy. It uses a binary mask to segment informa-
tive foreground regions on the projection. We crop non-
overlapping patches from these informative regions and
then sample X-rays that land on the pixels inside these
patches to help Lineformer perceive local contextual infor-
mation and 2D structures. For the informative regions out-
side the patches, we randomly sample X-rays to help Line-
former perceive the scene’s 2D global shape and geometry.
Besides, we collect a larger-scale dataset, X3D, to evaluate
the performance of X-ray 3D reconstruction algorithms in
wider application scenarios. As shown in Fig. 1, our SAX-
NeRF surpasses state-of-the-art (SOTA) NeRF-based meth-
ods by large margins on the NVS task. The average im-
provements on all scenes of X3D are over 12 dB.

Our contributions can be summarized as follows:
• We propose a novel method, SAX-NeRF, for sparse-view

X-ray 3D reconstruction without CT data for training.
• We present a new Transformer, Lineformer, to capture

complex internal structures of imaged objects in 3D
space. To our knowledge, it is the first attempt to explore
the potential of Transformer in X-ray neural rendering.

• We design an MLG sampling strategy to extract geomet-
ric and contextual information of objects in 2D projection.

• We establish a larger-scale benchmark, X3D, for X-ray
3D reconstruction. Experiments show that our method
outperforms SOTA methods on NVS and CT reconstruc-
tion tasks across different application scenarios of X-ray.

2. Related Work
2.1. Neural Rendering
NeRF [35] represents objects via an implicit function of
color and volume density, yielding high-quality results on
the NVS task. Follow-up works improve NeRF with more
fine-grained details [6, 7] and broader applications [17, 47,
50]. Meanwhile, to reduce the computational cost of NeRF,
learnable feature encodings [15, 18, 36] are designed to
embed input point positions. However, applying existing
RGB NeRF methods for X-ray rendering [22, 43, 59] may
achieve suboptimal results due to the differences between
visible light and X-ray imaging. For instance, NAF [59]
follows NeRF to employ an MLP model for medical X-ray
neural rendering, showing limitations in capturing complex
structures of imaged objects in 3D space and 2D projection.

2.2. Cone Beam CT Reconstruction

Traditional cone beam CT Reconstruction algorithms are
mainly divided into two categories: analytical methods [25,
54] and optimization-based methods [2, 34, 37, 44, 46, 57].
Analytical methods predict the CT volume by solving the
Radon transformation [40] and its inverse. These methods

11175



LSAB
x3

c LSAB
X-ray Volume

Rendering

2

2Skip Connection

X-ray Distance

𝜌 Radiodensity

𝐼#$%&(𝐫) 𝐼*+(𝐫)

fc

(a) SAX-NeRF

(c) Line Segment-based Multi-head Self-Attention

fc
Split

fc

fc

fc

transpose

×
×

fc

positional
embedding

𝐄-

+ Group

Leaky
ReLU

– Hash Encoding LSAB – Line Segment-based Attention Block fc – Fully Connected LayerPatch-level SamplingPixel-level Sampling(i) MLG Sampling Strategy

(ii) Lineformer

Matrix Multiplication

Concat

Add

N/M × C

𝐏

fc

𝐅 𝐃

𝐘𝐗-

𝐐-

𝐊-

𝐕-

𝐀-

𝐘-

𝐇-

𝐗

LS-MSA +

(b) Line Segment-based Attention Block

FFN
LN LN +

Skip Connection Skip Connection

LN – Layer Normalization

LS-MSA – Line Segment-based Multi-head Self-Attention

FFN – Feed-Forward Network

𝐫

Figure 3. Overview of our method. (a) SAX-NeRF uses (i) MLG strategy to sample an X-ray batch R. Then N point positions P on each
X-ray r ∈ R are sampled and input into (ii) Lineformer to produce the radiodensity D. (b) Line Segment-based Attention Block (LSAB)
is the basic unit of Lineformer. It captures inner structural dependencies by (c) Line Segment-based Multi-head Self-Attention (LS-MSA).

can achieve good results when given hundreds of projec-
tions but fail in handling sparse-view cases. Optimization-
based algorithms treat the reconstruction as a maximum a
posteriori (MAP) problem based on hand-crafted image pri-
ors and solve it by iteratively minimizing the energy func-
tion, which takes a long time. Recently, CNNs [3, 30, 33,
53, 56] and diffusion models [19] have been applied to CT
reconstruction and achieve good results. Yet, these methods
require a number of data pairs for training. To avoid the
above restrictions, we develop NeRF-based algorithms.

2.3. Vision Transformer

Transformer [49] is first proposed for machine translation.
In recent years, it has achieved great success in computer
vision including image classification [1, 5, 23], object de-
tection [48, 58, 63], semantic segmentation [52, 61, 62],
image restoration [12–14, 55] and generation [28, 29, 60],
etc. Nonetheless, directly applying vanilla Transformer for
X-ray neural rendering will suffer from expensive compu-
tational cost with respect to the number of input points. The
potential of Transformer for X-ray neural rendering still re-
mains under-explored. We aim to fill this research gap.

3. Method
3.1. Overall Framework

Fig. 3 illustrates the pipeline of our method. The left part of
Fig. 3 (a) depicts the scenario of circular cone beam X-ray
scanning where a scanner emits cone-shaped X-ray beams
and captures sparse-view projections at equal angular inter-

vals. We first use (i) Masked Local-Global (MLG) strategy
to sample a batch of X-rays R landing on the projections
for training. Then N point positions P = {p1, · · · ,pN} ∈
RN×3 are sampled on each X-ray r ∈ R and fed into (ii)
Lineformer. The basic unit of Lineformer is Line Segment-
based Attention Block (LSAB). As shown in Fig. 3 (b), an
LSAB consists of a fully connected (fc) layer, two layer
normalization (LN), a feed-forward network (FFN), and a
Line Segment-based Multi-head Self-Attention (LS-MSA).
The details of LS-MSA are depicted in Fig. 3 (c).

Firstly, we review RGB NeRF. An MLP with weights Θ
is usually employed to learn the mapping function FΘ from
the point position (x, y, z) ∈ R3 at the view direction (θ, ϕ)
to the color (R,G,B) ∈ R3 and volume density σ ∈ R as

FΘ : (x, y, z, θ, ϕ) → (R,G,B, σ). (1)

As shown in Fig. 2, visible light of specific wavelengths re-
flects off the surface of the object, thus revealing its color.
In contrast, X-rays penetrate the object, thereby not reflect-
ing the color information. Instead, it records the radioden-
sity property that denotes the degree to which a substance
blocks or attenuates the passage of X-rays or other ionizing
radiation. Since the radiodensity only depends on the point
position, we aim to model the neural radiodensity fields as

FΘL : (x, y, z) → ρ, (2)

where FΘL
represents the mapping function of our Line-

former with weights ΘL and ρ ∈ R denotes the radioden-
sity. According to the Beer-Lambert law, the intensity of
an X-ray is reduced by the exponential integration of the
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traversed object’s radiodensity. Hence, the ground-truth in-
tensity Igt(r) ∈ R of the X-ray r(t) = o + td ∈ R3 with
the near and far bounds tn and tf ∈ R can be formulated as

Igt(r) = I0 · exp
(
−
∫ tf

tn

ρ(r(t))dt
)
, (3)

where I0 is the initial intensity. By discretizing Eq. (3), we
derive the predicted projection intensity Ipred(r) ∈ R as

Ipred(r) = I0 · exp
(
−

N∑
i=1

ρiδi
)
, (4)

where ρi denotes the predicted radiodensity of the i-th sam-
pled point and δi = ||pi+1 − pi|| is the distance between
adjacent points. Eventually, the training objective is to min-
imize the total squared error L between the predicted and
ground-truth intensities in the training X-ray batch R as

L =
∑
r∈R

∣∣∣∣∣∣ Ipred(r)− Igt(r)
∣∣∣∣∣∣2

2
, (5)

where Igt(r) is obtained from the pixel value on projection.
L is depicted by the red pixels in the right part of Fig. 3 (a).

3.2. Line Segment-based Transfomer

As aforementioned, X-ray imaging reveals internal struc-
tures of imaged objects, which provide key clues for 3D re-
construction. Yet, previous methods overlook this important
imaging property. Specifically, similar to RGB NeRF algo-
rithms, existing X-ray NeRF methods [56, 59] mainly adopt
a simple MLP model to learn the implicit neural represen-
tations. X-ray attenuates differently when penetrating dif-
ferent structural contents. Yet, the MLP model treats each
sampled point on an X-ray equally, showing limitations in
modeling the 3D structures penetrated by the X-ray.

Towards this issue, we propose a Line Segment-based
Transformer (Lineformer), as shown in Fig. 3 (a) (ii). The
point position P is firstly fed into a hash encoding [36] mod-
ule H to produce point feature F ∈ RN×C as F = H(P).
Then F undergoes four LSABs with a skip connection and
two fc layers to derive the point radiodensity D ∈ RN .

LSAB is the basic unit of Lineformer. Its most important
component is the LS-MSA mechanism, which captures in-
ternal structural dependencies by computing self-attention
within each line segment of an X-ray. As illustrated in Fig. 3
(c), the input point feature X ∈ RN×C is firstly partitioned
into M segments along the point dimension as

X = [X1, X2, · · · , XM ]T, (6)

where Xi ∈ R N
M ×C and i = 1, 2, · · · ,M . Then each Xi

is linearly projected into query Qi ∈ R N
M ×C , key Ki ∈

R N
M ×C , and value Vi ∈ R N

M ×C by three fc layers as

Qi = XiW
Qi , Ki = XiW

Ki , Vi = XiW
Vi , (7)

where WQi , WKi , and WVi ∈ RC×C are learnable pa-
rameters of the fc layers; biases are omitted for simplifica-
tion. Subsequently, WQi , WKi , and WVi are uniformly
split into k heads along the channel dimension as

Qi = [Q1
i , Q

2
i , · · · , Qk

i ],

Ki = [K1
i , K

2
i , · · · , Kk

i ],

Vi = [V1
i , V

2
i , · · · , Vk

i ].

(8)

The dimension for each head is dh = C/k. Fig. 3 (b) il-
lustrates the situation with k = 1 for simplicity. Then the
self-attention within each head Hj

i is computed as

Hj
i = Attn(Qj

i ,K
j
i ,V

j
i ) = Vj

i softmax(
Kj

i

T
Qj

i

αj
i

), (9)

where αj
i ∈ R is a learnable parameter that adaptively

scales the inner product before the softmax function. Suc-
cessively, k heads are concatenated in channel dimension to
pass through an fc layer and then plus a positional embed-
ding Ei ∈ R N

M ×C to derive the i-th output Yi ∈ R N
M ×C as

Yi = [H1
i , H

2
i , · · · , Hk

i ]Wi +Ei, (10)

where Wi ∈ RC×C are learnable parameters of the fc
layer. Finally, we group the outputs of M segments in point
dimension to obtain the output feature Y ∈ RN×C as

Y = [Y1, Y2, · · · , YM ]T. (11)

By capturing the interactions of points within each line seg-
ment, the proposed Lineformer is more capable of perceiv-
ing the complex internal 3D structures of different parts
penetrated by the X-ray and therefore modeling the implicit
neural radiodensity fields in Eq. (2) more accurately.

Complexity Analysis. We analyze the computational com-
plexity of our LS-MSA and compare it with the global
multi-head self-attention (G-MSA) mechanism of vanilla
Transformer. The computational cost of LS-MSA primarily
comes from the two matrix multiplication, i.e., Rdh× N

M ×
R N

M ×dh and R N
M ×dh×Rdh×dh , in Eq. (9) performed k×M

times. Thus, the complexity of LS-MSA is formulated as

O(LS-MSA) = kM · [dh · (dh · N
M

) +
N

M
· (dh · dh)],

= 2kMd2h
N

M
= 2Nk(

C

k
)2 =

2NC2

k
.

(12)

While the complexity of G-MSA is formulated as

O(G-MSA) = 2N2C. (13)

Compare Eq. (12) with Eq. (13). O(G-MSA) is quadratic to
the number of input points (N ). This heavy computational
burden impedes the application of Transformer for X-ray
3D reconstruction. In contrast, O(LS-MSA) is linear to N .
This significantly reduced cost allows for the integration of
LS-MSA into each basic unit LSAB of Lineformer, thereby
further exploring the tremendous potential of Transformer.
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3.3. Masked Local-Global Ray Sampling

As shown in Fig. 4 (a), existing NeRF algorithms mainly
adopt a naive pixel-level ray sampling strategy. They ran-
domly sample X-rays corresponding to scattered pixels on
the whole image coordinate system for training. This naive
strategy has two drawbacks. Firstly, it shows limitations
in extracting local contextual and geometric representations
in 2D projection because the semantic information from
neighbor pixels is not captured. Secondly, X-ray images are
spatially sparse. Some randomly sampled X-rays may land
on the background dark regions of the projection, such as
the pixel pbg in Fig. 4 (a). These X-rays do not penetrate the
object and thus are not imaged on the projection. In other
words, these X-rays are uninformative because they do not
characterize the radiodensity property of the object. Learn-
ing with these X-rays will degrade the model efficiency.

To address these problems, we propose a Masked Local-
Global (MLG) ray sampling strategy, as shown in Fig. 4 (b).
MLG first uses a mask M ∈ RH×W to segment the imaged
foreground regions. M is derived by binarizing the projec-
tion I ∈ RH×W with a threshold T ∈ R as M = 1I>T .
Subsequently, to avoid redundant sampling, we partition M

into a set W ∈ R
HW
S2 ×S×S of HW

S2 non-overlapping win-
dows with size S × S. Let Wf denote the set of windows
that are entirely contained in the foreground regions as

Wf = {w ∈ W | w = 1S×S}. (14)

To capture local semantic information of the object, we per-
form patch-level sampling. Specifically, we randomly select
Nl windows Wl = {w1, · · · ,wNl

} from Wf , as shown in
the red patches of Fig. 4 (b). Then the X-ray set Rl corre-
sponding to the pixels within Wl can be formulated as

Rl =

Nl⋃
i=1

⋃
p∈wi

Ray(p), (15)

where Ray(p) is a function that maps from a pixel p to its
corresponding X-ray. Furthermore, to assist the model in
better capturing global contextual representations and per-
ceiving the overall geometric shape of the imaged object,
we perform pixel-level sampling. Particularly, we randomly
select Ng pixels P from the foreground regions excluding
the area of Wl to avoid repeated ray sampling, as depicted
in the blue pixels of Fig. 4 (b). P can be formulated as

P = {p ∈ (M−Wl) | p = 1}. (16)

Then the X-ray set Rg corresponding to P is obtained by
Rg =

⋃
p∈P

Ray(p). (17)

Finally, the training X-ray batch is the union of Rl and Rg:

R = Rl

⋃
Rg. (18)

Using MLG ray sampling strategy, the model can more ef-
fectively capture the contextual information and model the
geometric structures of the imaged object on 2D projection.

(a) Naive Sampling (b) Our MLG Sampling

Pixel-level Sampling Patch-level Sampling

Maskp
bg

Figure 4. Comparison of ray sampling. (a) The naive strategy sam-
ples X-rays that land on scattered pixels. (b) Our MLG strategy
performs pixel- and patch-level sampling on foreground regions.

4. Experiment
4.1. Experimental Settings

X3D Dataset. Previous methods mainly conduct X-ray
3D reconstruction research on limited medical applications.
For example, NAF [59] is evaluated on five medical scenes.
The performance of NeRF-based methods on other X-ray
applications is under-explored. To fill this research gap, we
collect a larger-scale dataset, X3D, containing 15 scenes
and covering 4 applications, i.e., medicine, biology, secu-
rity, and industry. We collect the CT volumes of X3D from
public datasets. Specifically, the chest, backpack, carp,
and pancreas datasets are collected from LIDC-IDRI [4],
MIDA [11], D2VR [41], and DeepOrgan [42], respectively.
The teapot, aneurism, bonsai, and foot datasets are obtained
from VOLVIS [39] and the rest are from the open scientific
visualization dataset [32]. Then we use the tomographic
method TIGRE [8] to generate projections by scanning CT
volumes with 3% noise in the range of 0◦ ∼ 180◦.

Implementation Details. We implement our SAX-NeRF
by PyTorch [38]. The model is trained with the Adam [31]
optimizer (β1 = 0.9 and β2 = 0.999) for 3000 iterations. The
learning rate is initially set to 1×10−4 and is halved every
1500 iterations during the training procedure. The batch
size of X-rays is set to 2048, 1024 of which is from patch-
level sampling and the other 1024 is from pixel-level sam-
pling. We uniformly sample 320 points along each X-ray.
For each scene, we use its 50 projections to train, another
50 projections to test the performance of NVS, and its CT
volume to evaluate the results of CT reconstruction. All ex-
periments are conducted on an RTX 8000 GPU. We adopt
the peak signal-to-noise ratio (PSNR) and structural simi-
larity index measure (SSIM) [51] as the evaluation metrics.

4.2. Main Results

Novel View Synthesis. Tab. 1 lists the quantitative results
of PSNR and SSIM on the NVS task. We compare our
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Method InTomo [56] NeRF [35] NeAT [43] TensoRF [15] NAF [59] SAX-NeRF
Scene PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Jaw 26.91 0.9937 34.84 0.9981 32.68 0.9911 34.06 0.9964 39.89 0.9988 42.75 0.9992
Leg 42.53 0.9976 45.92 0.9989 47.71 0.9981 41.40 0.9969 50.87 0.9988 56.86 0.9996
Box 34.65 0.9963 35.67 0.9985 36.14 0.9957 35.43 0.9977 35.98 0.9955 39.67 0.9992
Carp 24.04 0.9648 20.62 0.9467 31.26 0.9620 37.35 0.9973 29.60 0.9593 59.88 0.9999
Foot 39.48 0.9979 41.05 0.9989 38.24 0.9963 37.73 0.9929 38.35 0.9913 46.64 0.9994
Head 34.83 0.9977 29.76 0.9991 27.74 0.9295 34.43 0.9878 30.17 0.9531 53.06 0.9995
Pelvis 38.72 0.9961 40.79 0.9972 37.70 0.9866 41.57 0.9948 43.76 0.9975 53.27 0.9995
Chest 28.95 0.9915 36.16 0.9988 40.77 0.9990 23.61 0.9402 42.37 0.9993 47.42 0.9994
Bonsai 39.26 0.9953 37.67 0.9983 47.02 0.9985 47.80 0.9989 49.03 0.9989 55.33 0.9995
Teapot 41.51 0.9978 34.66 0.9993 29.29 0.9669 44.18 0.9993 34.92 0.9985 52.62 0.9996
Engine 23.99 0.9517 21.07 0.9334 30.36 0.8854 39.72 0.9918 31.68 0.9195 58.80 0.9998
Pancreas 20.03 0.8537 19.85 0.8560 37.53 0.9017 29.24 0.8031 36.23 0.8844 49.88 0.9978
Abdomen 27.64 0.9646 24.62 0.9559 26.74 0.8563 27.38 0.8730 37.59 0.9855 54.22 0.9996
Aneurism 20.81 0.9621 24.97 0.9792 35.41 0.9936 47.99 0.9997 39.62 0.9990 52.91 0.9998
Backpack 36.09 0.9918 39.75 0.9962 41.60 0.9969 43.16 0.9977 42.02 0.9982 47.17 0.9989

Average 31.96 0.9768 32.49 0.9770 36.01 0.9638 37.67 0.9712 38.81 0.9785 51.37 0.9994

Table 1. Quantitative comparisons on the novel view synthesis task. The best results are in bold and the second-best results are underlined.

InTomo NeRF NeAT NAF TensoRF Ours Ground TruthBackpack

Carp InTomoNeRF NeATNAF TensoRF Ours Ground Truth

Figure 5. Qualitative results of novel view synthesis on the scenes of backpack (top) and carp (bottom). Please zoom in for a better view.

SAX-NeRF with five SOTA NeRF-based algorithms includ-
ing InTomo [56], NeRF [35], NeAT [43], TensoRF [15],
and NAF [59]. The input and output of all methods are
set the same as Eq. (2) for fair comparison. It can be ob-
served that our SAX-NeRF significantly outperforms SOTA
methods on all scenes. Specifically, when compared with
the recent best general RGB NeRF algorithm TensoRF, our
SAX-NeRF is 13.70 dB (51.37 - 37.67) and 0.0282 (0.9994
- 0.9712) higher in PSNR and SSIM. When compared with
the recent best medical NeRF method NAF, SAX-NeRF
surpasses it by 12.56 dB in PSNR and 0.0209 in SSIM.
The average improvements of our method on the scenes of
medicine, biology, security, and industry are 10.91, 15.03,
5.13, and 13.76 dB, as shown in the bar charts of Fig. 1.

The qualitative results are depicted in Fig. 5. As can
be observed from the zoomed-in patches, previous methods
are less effective in synthesizing novel projections. They
either produce blurry images or fail to reconstruct struc-
tural contents. In contrast, our SAX-NeRF yields more vi-

sually pleasing results with clearer textures and more fine-
grained details while preserving more complete geometric
structures. More visual comparisons are shown in Fig. 1.

CT Reconstruction. Tab. 2 reports the quantitative results
on the CT reconstruction task. For fairness, we do not com-
pare projection-CT paired learning-based algorithms, but
instead focus on comparing methods that only require X-ray
projections of single scenes for training or direct process-
ing. In addition to the five SOTA NeRF-based algorithms.
We also compare SAX-NeRF with an analytical method
(FDK [25]) and two optimization-based algorithms (ASD-
POCS [46] and SART [2]). Our method yields the best re-
sults on all scenes. In particular, SAX-NeRF dramatically
outperforms previous NeRF-based, optimization-based, and
analytical algorithms by over 2.49, 4.92, and 12.13 dB.

Fig. 6 displays the visual comparisons in four application
scenarios including medicine (head), biology (carp), secu-
rity (box), and industry (teapot). Other methods either pro-
duce over-smooth images blurring the structural contents or
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Method FDK [25] ASD-POCS [46] SART [2] InTomo [56] NeRF [35] NeAT [43] TensoRF [15] NAF [59] SAX-NeRF
Scene PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Jaw 28.58 0.7816 33.25 0.9325 33.13 0.9301 31.95 0.9162 32.17 0.9114 32.53 0.9139 31.90 0.8971 34.14 0.9358 35.47 0.9525
Leg 28.48 0.6690 35.39 0.9826 35.30 0.9809 36.41 0.9882 39.27 0.9938 40.29 0.9902 40.70 0.9923 41.28 0.9940 43.47 0.9973
Box 24.14 0.5616 31.27 0.9226 31.20 0.9200 30.59 0.9140 33.58 0.9494 31.58 0.9298 32.17 0.9314 31.78 0.9309 35.33 0.9602
Carp 32.32 0.8177 37.63 0.9777 36.89 0.9682 32.47 0.9493 32.99 0.9529 36.85 0.9576 37.52 0.9687 37.93 0.9711 42.72 0.9902
Foot 24.53 0.6000 29.98 0.9208 30.29 0.9296 31.43 0.9127 30.03 0.9072 30.86 0.9221 30.46 0.9153 31.63 0.9363 32.25 0.9403
Head 26.17 0.7155 35.27 0.9707 34.88 0.9597 31.07 0.9303 34.15 0.9672 35.56 0.9679 35.53 0.9672 36.46 0.9743 39.70 0.9888
Pelvis 26.91 0.6367 34.26 0.9493 34.38 0.9481 30.38 0.9042 31.72 0.9170 33.73 0.9370 35.13 0.9528 36.01 0.9654 40.40 0.9870
Chest 22.89 0.7861 31.13 0.9422 32.17 0.9594 22.04 0.7460 28.40 0.8925 31.20 0.9497 30.13 0.9308 33.05 0.9581 34.38 0.9718
Bonsai 24.53 0.7276 32.70 0.9529 33.02 0.9600 28.90 0.8811 31.77 0.9382 33.20 0.9476 33.47 0.9521 33.85 0.9585 36.51 0.9761
Teapot 31.07 0.8059 37.35 0.9800 37.38 0.9787 36.15 0.9786 41.67 0.9945 40.85 0.9872 42.71 0.9942 42.56 0.9926 44.32 0.9970
Engine 23.02 0.5405 30.81 0.9580 30.44 0.9442 27.49 0.9264 36.85 0.9858 36.63 0.9804 35.21 0.9728 37.84 0.9859 38.77 0.9917
Pancreas 9.641 0.1232 18.30 0.7701 18.36 0.7008 16.01 0.7865 17.73 0.8614 19.06 0.8541 19.75 0.7737 19.41 0.8126 22.98 0.9531
Abdomen 22.63 0.6030 31.46 0.9231 31.40 0.9170 28.05 0.8754 29.71 0.9049 31.14 0.9060 31.51 0.9073 34.45 0.9501 35.01 0.9598
Aneurism 28.07 0.7295 34.73 0.9864 34.76 0.9864 30.32 0.9652 31.97 0.9353 35.80 0.9819 37.36 0.9889 37.73 0.9871 41.46 0.9956
Backpack 23.84 0.5351 31.34 0.9309 31.32 0.9294 28.77 0.8753 30.28 0.9192 31.90 0.9345 33.16 0.9362 33.26 0.9501 35.97 0.9688

Average 25.12 0.6422 32.32 0.9400 32.33 0.9342 30.29 0.9189 32.15 0.9354 33.41 0.9447 33.78 0.9387 34.76 0.9535 37.25 0.9753

Table 2. Quantitative comparisons on the CT reconstruction task. The best results are in bold and the second-best results are underlined.

FDK ASD-POCS SART InTomo NeRF NeAT TensoRF NAF Ours Ground Truth

Head

Carp

Box

Teapot

Figure 6. Visual results of CT reconstruction on the scenes of head, carp, box, and teapot (top to bottom). Please zoom in for a better view.

introduce distracting artifacts. In contrast, our SAX-NeRF
is more favorable to reconstruct vivid high-frequency de-
tails such as sharp edges while maintaining spatial smooth-
ness of homogeneous regions within complex structures.

These results convincingly demonstrate the advantages
of the proposed SAX-NeRF in X-ray 3D reconstruction.

4.3. Ablation Study

To reliably evaluate the effectiveness of our approaches, we
conduct ablation study on all scenes of X3D and report the
average PSNR / SSIM results in the following part.

Break-down Ablation. We adopt a baseline model that
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Baseline LS-MSA MLG NVS CT

✓ 37.97 / 0.9748 34.21 / 0.9513
✓ ✓ 47.95 / 0.9945 36.86 / 0.9717
✓ ✓ 43.51 / 0.9861 35.30 / 0.9601
✓ ✓ ✓ 51.37 / 0.9994 37.25 / 0.9753

(a) Break-down ablation to higher performance.

Num 20 40 80 160 320

NVS 45.776 47.832 50.148 51.365 50.620
0.9892 0.9939 0.9991 0.9994 0.9992

CT 35.845 36.787 37.088 37.249 37.186
0.9670 0.9711 0.9745 0.9753 0.9749

(b) Analysis of the line segment quantity.

Size 2×2 4×4 8×8 16×16 32×32

NVS 48.515 51.365 50.297 50.408 49.629
0.9976 0.9994 0.9992 0.9992 0.9989

CT 36.982 37.249 37.118 37.163 37.014
0.9733 0.9753 0.9748 0.9749 0.9741

(c) Analysis of the sampling patch size.

Table 3. We conduct ablation study on all scenes of X3D. Average PSNR and SSIM are reported on the NVS and CT reconstruction tasks.

Baseline + LS-MSA + MLG Ground Truth

CT
Sl
ic
e

Pr
oj
ec
tio

n

Figure 7. Visual analysis. Using LS-MSA and MLG captures more structures.

Number of training projections

NVS CT

PSN
R
(dB)

Figure 8. Analysis of the number of training projections.

is derived by directly removing the LS-MSA module and
MLG sampling strategy from our SAX-NeRF to conduct
the break-down ablation study. The results are listed in
Tab. 3a. The baseline model yields 37.97 and 34.21 dB
on NVS and CT reconstruction. When using LS-MSA, the
baseline model gains by 9.98 and 2.65 dB. When we ap-
ply MLG sampling, the model achieves 5.54 and 1.09 dB
improvements. When jointly exploiting the two techniques,
the model is improved by 13.40 and 3.04 dB on the NVS
and CT reconstruction tasks. This evidence clearly exhibits
the efficacy of Lineformer and MLG sampling strategy.

Visual Analysis. To intuitively show the effectiveness of
the two proposed approaches, we further conduct visual
analysis on the scene of bonsai. As depicted in Fig. 7, the
baseline model fails to preserve the geometry like the tree
branches in the projection and blurs high-frequency details
such as the edges of the basin in the CT slice. When succes-
sively using LS-MSA and MLG sampling, the model recon-
structs more structural contents and fine-grained textures.

Parameter Analysis. We conduct parameter analysis re-
garding the number of line segments M in Eq. (6) and the
patch size S in Eq. (14). Please note that we keep the total
number of sampled points and X-rays unchanged for fair
comparison. When analyzing one parameter, we fix the
other at its optimal value. The results are reported in Tab. 3b
and 3c. It is clear that, when using different M and S, our
SAX-NeRF stably outperforms the baseline model by over
7.81 and 1.64 dB on NVS and CT reconstruction. This ev-
idence suggests the reliability of our method. The model’s
performance yields its maximum when M = 160 and S = 4.

Robustness Analysis. We conduct robustness analysis re-
garding the number of training projections to compare the
performance of different methods when given fewer X-ray
projection views. The results are plotted as two line charts
in Fig. 8, where the vertical axis is PSNR (in dB per-

formance) and the horizontal axis is the number of train-
ing projections. Our SAX-NeRF reliably surpasses SOTA
methods by large margins when given different numbers of
training projections on both NVS (left) and CT reconstruc-
tion (right) tasks. Surprisingly, when using even only 60%
of training projections, SAX-NeRF still outperforms other
algorithms on the NVS task. These results clearly exhibit
the superiority and robustness of our proposed method.

Lineformer vs. vanilla Transformer. We replace LS-MSA
with G-MSA to conduct comparative experiments. The ex-
perimental results show that our Lineformer significantly
outperforms vanilla Transformer by 5.30 and 1.28 dB on
the NVS and CT reconstruction tasks while only requiring
3.41% of vanilla Transformer’s computational complexity.

5. Conclusion
In this paper, we focus on studying a core problem in
sparse-view X-ray 3D reconstruction, i.e., how to effec-
tively capture the various and complex structures penetrated
by X-rays. To this end, we propose a novel framework
SAX-NeRF. To model 3D structural dependencies in space,
we design a Transformer, Lineformer, as the backbone of
SAX-NeRF. Lineformer partitions an X-ray into different
line segments and then computes self-attention within each
piece of the X-ray. In addition, to extract 2D geometry
and contextual representations in projection, we present an
MLG ray sampling strategy that contains pixel- and patch-
level sampling on the informative foreground regions. Be-
sides, we also collect a larger-scale dataset, X3D, covering
wider X-ray application scenarios. Comprehensive experi-
ments on X3D show that SAX-NeRF significantly surpasses
SOTA algorithms on the NVS and CT reconstruction tasks.
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alization using maximum intensity difference accumulation.
In Computer Graphics Forum, 2009. 5

[12] Yuanhao Cai, Jing Lin, Xiaowan Hu, Haoqian Wang, Xin
Yuan, Yulun Zhang, Radu Timofte, and Luc Van Gool.
Mask-guided spectral-wise transformer for efficient hyper-
spectral image reconstruction. In CVPR, 2022. 3

[13] Yuanhao Cai, Jing Lin, Haoqian Wang, Xin Yuan, Henghui
Ding, Yulun Zhang, Radu Timofte, and Luc Van Gool.
Degradation-aware unfolding half-shuffle transformer for
spectral compressive imaging. In NeurIPS, 2022.

[14] Yuanhao Cai, Hao Bian, Jing Lin, Haoqian Wang, Radu Tim-
ofte, and Yulun Zhang. Retinexformer: One-stage retinex-
based transformer for low-light image enhancement. In
ICCV, 2023. 3

[15] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and

Hao Su. Tensorf: Tensorial radiance fields. In ECCV, 2022.
1, 2, 6, 7

[16] Biao Chen and Ruola Ning. Cone-beam volume ct breast
imaging: Feasibility study. Medical physics, 2002. 1

[17] Xingyu Chen, Qi Zhang, Xiaoyu Li, Yue Chen, Ying Feng,
Xuan Wang, and Jue Wang. Hallucinated neural radiance
fields in the wild. In CVPR, 2022. 2

[18] Zhang Chen, Zhong Li, Liangchen Song, Lele Chen, Jingyi
Yu, Junsong Yuan, and Yi Xu. Neurbf: A neural fields rep-
resentation with adaptive radial basis functions. In ICCV,
2023. 2

[19] Hyungjin Chung, Dohoon Ryu, Michael T McCann, Marc L
Klasky, and Jong Chul Ye. Solving 3d inverse problems us-
ing pre-trained 2d diffusion models. In CVPR, 2023. 3

[20] Allan Macleod Cormack. Representation of a function by its
line integrals, with some radiological applications. Journal
of applied physics, 1963. 1

[21] Allan Macleod Cormack. Representation of a function by its
line integrals, with some radiological applications. ii. Jour-
nal of Applied Physics, 1964. 1

[22] Abril Corona-Figueroa, Jonathan Frawley, Sam Bond-
Taylor, Sarath Bethapudi, Hubert PH Shum, and Chris G
Willcocks. Mednerf: Medical neural radiance fields for
reconstructing 3d-aware ct-projections from a single x-ray.
In International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), 2022. 2

[23] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 3

[24] Idris A Elbakri and Jeffrey A Fessler. Segmentation-free
statistical image reconstruction for polyenergetic x-ray com-
puted tomography with experimental validation. Physics in
Medicine & Biology, 2003. 1

[25] Lee A Feldkamp, Lloyd C Davis, and James W Kress. Prac-
tical cone-beam algorithm. Josa a, 1984. 2, 6, 7

[26] Godfrey N Hounsfield. Computerized transverse axial scan-
ning (tomography): Part 1. description of system. The British
journal of radiology, 1973. 1

[27] Godfrey N Hounsfield. Computed medical imaging. Science,
1980. 1

[28] Drew A Hudson and Larry Zitnick. Generative adversarial
transformers. In ICML, 2021. 3

[29] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan:
Two pure transformers can make one strong gan, and that can
scale up. In NeurIPS, 2021. 3

[30] Yoni Kasten, Daniel Doktofsky, and Ilya Kovler. End-to-
end convolutional neural network for 3d reconstruction of
knee bones from bi-planar x-ray images. In MICCAIW 2020,
2020. 3

[31] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method
for stochastic optimization. In ICLR, 2015. 5

[32] Pavol Klacansky. Scientific visualization datasets, 2022. 5
[33] Yiqun Lin, Zhongjin Luo, Wei Zhao, and Xiaomeng Li.

Learning deep intensity field for extremely sparse-view cbct
reconstruction. In MICCAI, 2023. 3

11182



[34] Stephen H Manglos, George M Gagne, Andrzej Krol,
F Deaver Thomas, and Rammohan Narayanaswamy. Trans-
mission maximum-likelihood reconstruction with ordered
subsets for cone beam ct. Physics in Medicine & Biology,
1995. 2

[35] B Mildenhall, PP Srinivasan, M Tancik, JT Barron, R Ra-
mamoorthi, and R Ng. Nerf: Representing scenes as neural
radiance fields for view synthesis. In ECCV, 2020. 1, 2, 6, 7

[36] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM ToG, 2022. 2, 4

[37] Jinxiao Pan, Tie Zhou, Yan Han, Ming Jiang, et al. Variable
weighted ordered subset image reconstruction algorithm. In-
ternational Journal of Biomedical Imaging, 2006. 2

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, 2019. 5

[39] Philips. Philips research, hamburg, germany. https://
teem.sourceforge.net/nrrd/volvis/index.
html, 2022. 5

[40] Johann Radon. 1.1 über die bestimmung von funktionen
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ner, and Meister Eduard Gröller. D2vr: High-quality volume
rendering of projection-based volumetric data. In Proceed-
ings of the Eighth Joint Eurographics/IEEE VGTC confer-
ence on Visualization, 2006. 5

[42] Holger R Roth, Le Lu, Amal Farag, Hoo-Chang Shin, Jiamin
Liu, Evrim B Turkbey, and Ronald M Summers. Deeporgan:
Multi-level deep convolutional networks for automated pan-
creas segmentation. In MICCAI, 2015. 5

[43] Darius Rückert, Yuanhao Wang, Rui Li, Ramzi Idoughi,
and Wolfgang Heidrich. Neat: Neural adaptive tomography.
TOG, 2022. 1, 2, 6, 7

[44] Ken Sauer and Charles Bouman. A local update strategy for
iterative reconstruction from projections. TIP, 1993. 2

[45] William C Scarfe, Allan G Farman, Predag Sukovic, et al.
Clinical applications of cone-beam computed tomography in
dental practice. Journal-Canadian Dental Association, 2006.
1

[46] Emil Y Sidky and Xiaochuan Pan. Image reconstruction in
circular cone-beam computed tomography by constrained,
total-variation minimization. Physics in Medicine & Biol-
ogy, 2008. 2, 6, 7

[47] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and
Ameesh Makadia. Light field neural rendering. In CVPR,
2022. 2

[48] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Herve Jegou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, 2021. 3

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 2,
3

[50] Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jianmin
Bao, Tadas Baltrusaitis, Jingjing Shen, Dong Chen, Fang
Wen, Qifeng Chen, and Baining Guo. Rodin: A genera-
tive model for sculpting 3d digital avatars using diffusion. In
CVPR, 2023. 2

[51] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncell. Image quality assessment: from error visibility
to structural similarity. TIP, 2004. 5

[52] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and ef-
ficient design for semantic segmentation with transformers.
In NeurIPS, 2021. 3

[53] Xingde Ying, Heng Guo, Kai Ma, Jian Wu, Zhengxin Weng,
and Yefeng Zheng. X2ct-gan: reconstructing ct from bipla-
nar x-rays with generative adversarial networks. In CVPR,
2019. 3

[54] Lifeng Yu, Yu Zou, Emil Y Sidky, Charles A Pelizzari, Peter
Munro, and Xiaochuan Pan. Region of interest reconstruc-
tion from truncated data in circular cone-beam ct. TMI, 2006.
2

[55] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In CVPR, 2022. 3

[56] Guangming Zang, Ramzi Idoughi, Rui Li, Peter Wonka, and
Wolfgang Heidrich. Intratomo: self-supervised learning-
based tomography via sinogram synthesis and prediction. In
CVPR, 2021. 1, 3, 4, 6, 7

[57] Wojciech Zbijewski, Michel Defrise, Max A Viergever, and
Freek J Beekman. Statistical reconstruction for x-ray ct sys-
tems with non-continuous detectors. Physics in Medicine &
Biology, 2006. 2

[58] Nicolas ZCarion, Francisco Massa, Gabriel Synnaeve, Nico-
las Usunier, Alexander Kirillov, and Sergey Zagoruyko.
End-to-end object detection with transformers. In ECCV,
2020. 3

[59] Ruyi Zha, Yanhao Zhang, and Hongdong Li. Naf: neural at-
tenuation fields for sparse-view cbct reconstruction. In MIC-
CAI, 2022. 1, 2, 4, 5, 6, 7

[60] Bowen Zhang, Shuyang Gu, Bo Zhang, Jianmin Bao, Dong
Chen, Fang Wen, Yong Wang, and Baining Guo. Styleswin:
Transformer-based gan for high-resolution image genera-
tion. In CVPR, 2022. 3

[61] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao
Xiang, Philip H.S. Torr, and Li Zhang. Rethinking semantic
segmentation from a sequence-to-sequence perspective with
transformers. In CVPR, 2021. 3

[62] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao
Xiang, Philip H.S. Torr, and Li Zhang. Rethinking semantic
segmentation from a sequence-to-sequence perspective with
transformers. In CVPR, 2021. 3

[63] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. In ICLR, 2021. 3

11183


