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Abstract

Prompt learning has emerged as a potent and resource-
efficient technique in large Vision-Language Models
(VLMs). However, its application in adapting VLMs to spe-
cialized domains like remote sensing and medical imaging,
termed domain prompt learning, remains relatively unex-
plored. Although large-scale domain-specific foundation
models offer a potential solution, their focus on a singu-
lar vision level presents challenges in prompting both vi-
sion and language modalities. To address this limitation, we
propose leveraging domain-specific knowledge from these
foundation models to transfer the robust recognition abili-
ties of VLMs from generalized to specialized domains, em-
ploying quaternion networks. Our method entails utilizing
domain-specific vision features from domain-specific foun-
dation models to guide the transformation of generalized
contextual embeddings from the language branch into a
specialized space within quaternion networks. Further-
more, we introduce a hierarchical approach that derives
vision prompt features by analyzing intermodal relation-
ships between hierarchical language prompt features and
domain-specific vision features. Through this mechanism,
quaternion networks can effectively explore intermodal re-
lationships in specific domains, facilitating domain-specific
vision-language contrastive learning. Extensive experi-
ments conducted on domain-specific datasets demonstrate
that our proposed method achieves new state-of-the-art re-
sults in prompt learning. Codes are available at https:
//github.com/caoql98/DPLQ.

1. Introduction

Supervised learning using large-scale training samples has
shown remarkable success in various visual understanding
tasks [2, 12, 30, 36, 37, 44]. However, conventional super-
vised learning often requires a significant amount of data.
To address this issue, large-scale Vision-Language Models
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Figure 1. Performance comparison of the novel class generaliza-
tion. Our method achieves state-of-the-art performance on various
remote sensing image datasets in terms of harmonic mean.

(VLMs) [15, 28, 32] have recently emerged, making prompt
learning a more popular and efficient paradigm for various
vision tasks. Prompt learning [3, 22, 29, 38, 46, 48] focuses
on adapting VLMs effectively for downstream tasks with
limited training data.

Current VLMs have achieved remarkable progress
in contrastive learning with extensive image-text pairs.
Among these models, Contrastive Language-Image Pre-
training (CLIP) [28] is widely recognized for its exceptional
zero-shot generalization capabilities. However, the reliance
on fixed prompts challenges the adaptability of CLIP to
downstream tasks. CoOp [48] introduces context optimiza-
tion by using learnable context vectors as language prompts
to address this limitation, which enhances the adaptability
of CLIP for visual recognition tasks. However, challenges
related to class shifting remain. Thus, CoCoOp [47] fur-
ther introduces input-conditional prompts for the language
branch to refine the alignment of both vision and language
branches. MaPLe [17] goes further by introducing a multi-
modal prompt learning approach. MaPLe fine-tunes vision
and language branches concurrently, leading to more har-
monious alignment and improved performance.
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It is worth noting that these prompt learning techniques
primarily focus on natural images, and these models with-
out domain-specific knowledge tend to misinterpret specific
domain images in natural image patterns. Consequently, the
existing adaptation of VLMs to specific domains such as re-
mote sensing and medical imaging would be compromised
and further result in a significant performance gap. Large-
scale domain-specific foundation model [23, 33, 35] could
be leveraged to address this challenge. However, exist-
ing domain-specific foundation models are only pre-trained
at the vision level, lacking inherent support for prompting
vision-language pairs in a contrastive learning framework.

We draw inspiration from quaternion networks [26],
renowned for their effective modeling of orthogonal rela-
tions and adept exploration of inter- and intra-correlations
within the quaternion hidden space. Leveraging domain-
specific knowledge from foundation models, we transfer
the robust recognition abilities of VLMs from generalized
to specialized domains using quaternion networks. Our
approach involves propagating domain-specific vision fea-
tures from foundation models and generalized contextual
embeddings from the language branch into the quaternion
hidden space. Within this space, the quaternion network ex-
tracts domain-specific cross-modal knowledge for the lan-
guage branch and projects the generalized contextual em-
beddings into the specialized domain. To mitigate poten-
tial overfitting concerns [47] during prompt learning pro-
cess, we introduce random noise into the quaternion hidden
space, thereby enhancing the robustness of learning process.

Pre-trained VLMs establish a strong and consistent
vision-language matching relationship. Thus, we can easily
forward the domain-specific information from the special-
ized language branch into the vision branch. We utilize the
learnable language prompt feature as input and the orthogo-
nal domain-specific vision features as guidance to mine the
intermodal relations in each vision-language layer, which
hierarchically provides vision prompt features. As shown
in Figure 1, both the vision and language branches become
domain-specific, and the domain-specific contrastive learn-
ing minimizes the domain gap, leading to uncompromised
domain-specific recognition performance.

In summary, we make the following contributions:
• To our knowledge, we first introduce the quaternion con-

cept into prompt learning for specific domains. It suc-
cessfully transfers the strong recognition ability of VLMs
from the generalized domain to specialized fields such as
remote sensing and medical images.

• We forward domain-specific info of pre-trained VLMs hi-
erarchically to the vision branch via quaternion hidden
space, enabling better recognition performance.

• We extensively validate our method on large-scale
domain-specific datasets, and our method achieves state-
of-the-art performance.

2. Related Work

Vision Language Models. Vision Language Models
(VLMs) aim to establish a stable connection between vi-
sual content and textual descriptions by creating a uni-
fied embedding space encompassing visual and linguis-
tic modalities. These models can generally be classified
into three main groups: models with contrastive objec-
tives [19, 24, 28], generative objectives [1, 18], and align-
ment objectives [9, 31]. Among these models, CLIP [28]
pioneered a symmetrical image-language contrastive loss,
enabling robust zero-shot prediction capabilities for various
downstream tasks. However, its effectiveness heavily relies
on the availability of large and expensive image-text paired
datasets. To mitigate this dependency, ALIGN [15] lever-
ages large-scale noisy image-text pairs, achieving compara-
ble performance through a noise-robust contrastive learning
approach. Subsequently, various researchers have explored
more efficient VL model pre-training with fewer image-
text pairs. For example, OTTER [39] uses optimal trans-
port distillation to establish a soft image-text correspon-
dence, enabling efficient zero-shot recognition with signif-
icantly reduced training data. DeCLIP [19] harnesses self-
supervision, multi-view supervision, and nearest-neighbor
supervision to extract valuable information from limited
data. ZeroVL [6] successfully employs debiased data sam-
pling and coin flipping mixup for efficient contrastive learn-
ing. In contrast to models primarily designed for recog-
nition tasks, there is a separate category of VL mod-
els [4, 14, 45] oriented toward captioning tasks. For in-
stance, COCA [45] employs an encoder-decoder architec-
ture to align embeddings between images and their corre-
sponding captions, yielding impressive results. Through
utilizing these advanced VL models, many traditional vi-
sion tasks like object detection [10], semantic segmenta-
tion [41], and caption [34], have achieved great progress.
Yet, these works are still limited to natural images. In this
paper, we creatively transfer the VLMs into the specialized
domains with quaternion networks.

Prompt Learning. VLMs offer adaptability to downstream
tasks through full fine-tuning or linear probing methods.
However, full fine-tuning can be computationally inten-
sive and put the established cross-modal representations
at risk. On the other hand, linear probing has limita-
tions, particularly concerning models with zero-shot ca-
pabilities like CLIP. In the field of natural language pro-
cessing [20], prompt learning techniques [17, 47, 48] have
been proposed, which are efficient for VL models. For in-
stance, CoOp [48] proposes an effective prompt-learning
approach where language prompts are modeled with learn-
able embeddings while preserving the pre-trained param-
eters. However, the learned context in CoOp might lack
generalizability to unseen classes within the same dataset.
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To overcome this challenge, CoCoOp [47] introduces input-
conditional tokens for each image, which act as dynamic
prompts to mitigate class shift issues and enhance general-
ization performance. To prevent prompt tuning from caus-
ing a loss of general knowledge, ProGrad [50] selectively
updates prompts based on their gradients aligning with the
pre-defined prompt predictions. Despite the promise, exist-
ing prompt learning methods mostly focus on the language
branch, with limited consideration for the image branch
and its depth. To fill this gap, MaPLe [17] proposes an
effective prompting approach where both vision and lan-
guage branches are aligned simultaneously. However, these
prompt learning methods still focus on natural images and
few consider the domain-specific adpation problem. To
address this issue, we proposed to leverage the domain-
specific knowledge from the domain-specific foundation
model to achieve domain prompt learning with quaternion
networks.

3. Preliminaries
Quaternion Networks. In four-dimensional space, a
quaternion Q extends a complex number and can be ex-
pressed as follows:

Q = r1 + xi + yj + zk, (1)

where r, x, y, and z are real numbers, and 1, i, j, and k are
the quaternion unit basis. The real part of Q is denoted
by r, while xi + yj + zk is the imaginary or vector part.
Quaternions are useful for describing spatial rotations and
other applications because they contain embedded informa-
tion that can be represented by a matrix of real numbers:

Q =


r −x −y −z
x r −z y
y z r −x
z −y x r

 . (2)

A quaternion neural network can be defined as:

Qout = α(W ⊗Q), (3)

where W represents the learnable parameters of the quater-
nion neural networks, ⊗ denotes the Hadamard product, and
α is the activation function defined as:

α(Q) = f(r)1 + f(x)i + f(y)j + f(z)k, (4)

where f is any standard activation function. We sug-
gest using quaternion networks to discover orthogonal in-
termodal relationships between domain-specific vision fea-
tures from the domain-specific foundation models and con-
textual embeddings from the language branch. This ap-
proach is inspired by the unique feature processing pattern
of the quaternion networks.

Prompt Learning. The CLIP model consists of a visual
encoder and a text encoder that generate image embeddings
and corresponding text embeddings, respectively. The CLIP
model is based on the vision transformer and follows the
same setting as previous methods [17, 47]. During training,
the CLIP model maximizes the cosine similarity between
the image and its matched text and minimizes the cosine
similarity between the image and its unmatched text. This
allows the CLIP model to perform zero-shot classification.
To perform zero-shot classification, the text embedding ωi

is generated from a hand-crafted prompt, such as “a photo of
category”, where category is the i-th class name. If there
are C categories and the visual embedding of the image is
x, the probability of the image belonging to the i-th class
name is given by:

p(yi|x) =
exp(sim(x, ωi)/τ)∑C
i=1 exp(sim(x, ωi)/τ)

, (5)

where sim() is the cosine similarity function and τ is the
temperature hyperparameter.

4. Proposed Method
4.1. Overview

Aims to prompt VLMs efficiently from a generalized do-
main to specific domains like remote sensing and medi-
cal images, domain prompt learning with quaternion net-
works is proposed to facilitate the integration of domain-
specific knowledge from large-scale foundation models into
VLMs. Illustrated in Figure 2, the quaternion network
enables the identification of cross-modal relationships be-
tween domain-specific vision features from the foundation
model and generalized contextual embeddings from the
language branch. Subsequently, this information is uti-
lized to map the generalized contextual embeddings into
the specialized domain. Furthermore, well-aligned vision-
language relationships in pre-trained VLMs are leveraged
to propagate domain-specific information from the special-
ized language branch into the vision branch. Consequently,
the proposed domain-specific prompt learning significantly
enhances recognition performance.

4.2. Domain-Specific Foundation Model

The emergence of large-scale domain-specific foundation
models [23, 33, 35] has notably enhanced representation
quality for downstream vision tasks, particularly in remote
sensing and medical imaging domains. Building upon
this progress, we integrate the large-scale remote sensing
foundation model [35] and MedSAM [23] to offer crucial
domain-specific knowledge for remote sensing and medical
images, respectively. The remote sensing foundation model
primarily employs architectures such as ViT [8] and Vi-
TAE [42], training these networks with millions of remote
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Figure 2. Overview of our proposed Domain Prompt Learning. We use the large-scale domain-specific foundation model as guidance,
and exploit quaternion networks to mine the intermodal relationships between domain-specific vision features from the domain-specific
foundation model and contextual embeddings from the language branch. Based on the stable vision-language matching relationships in
pre-trained VLMs, the domain-specific information is hierarchically forwarded from the language branch to the vision branch.

sensing images via a masked autoencoder approach [13].
This framework reconstructs masked images, prioritizing
the retrieval of visible portions within an encoder-decoder
architecture. Network optimization involves minimizing the
loss between the reconstructed regions and corresponding
ground-truth masked regions. In the medical image process-
ing domain, MedSAM [23] utilizes a meticulously curated
dataset of over one million medical images for pre-training.
To effectively guide the visual and language branches into
the specific domain, we introduce domain-specific founda-
tion models to furnish domain-specific knowledge.

4.3. Prompting Language Branch

To obtain domain-specific vision features Fd, we propa-
gate the image patch embeddings into the domain-specific
foundation model. To prepare the domain-specific infor-
mation in the quaternion hidden space, we apply a domain-
projection layer Ld consisting of two linear layers on Fd, re-
sulting in the projected domain-specific vision features F̂d:

F̂d = Ld(Fd), (6)

To mine the critical orthogonal intermodal relationship,
we model the domain-specific vision features F̂d and the
learnable context embeddings Tc in two orthogonal axes in
the quaternion hidden space:

Ql = Tc + F̂di + 0j + 0k, (7)

To support the quaternion projection, we construct a zero
tensor Z0 with the same size of Tc. However, as mentioned

in CoCoOp [47], prompt learning is prone to the problem of
overfitting due to the limited amount of data involved. To
address this issue, we add some random Gaussian noise NG

into the quaternion hidden space to implicitly enhance the
robustness of the learning process. The noise is scaled by
the mean of the domain-specific vision features F̂d:

NG = Mean(F̂d)Nθ, (8)

where Nθ denotes the standard Gaussian noise. Given
quaternion layer Qt, the generation of domain-specific con-
text embedding Td is computed as follows:

Td = Qt([F̂d + Tc +NG, Z0]), (9)

In this way, the orthogonal intermodal relationship be-
tween domain-specific vision features and contextual em-
beddings is well-mined in the quaternion hidden space, and
the generalized contextual embeddings are projected into
the specialized space. To prompt the language encoder
with the domain-specific information, we leverage domain-
specific context embedding Td and add a set of learnable
language prompt features

[
P 1
l , P

2
l , ..., P

m
l

]
with the setting

depth of k into encoder layers
[
L1
l , L

2
l , ..., L

m
l

]
of the lan-

guage branch, where m denotes the total layer numbers.
Given the fixed text embedding Ct for categories, we first
concatenate Td with Ct to acquire the complete domain-
specific text embeddings, i.e., W1 = [Td, Ct]. The domain-
specific information propagation could then be computed as
follows:

[Wi, ] = Li
l([Wi−1, P

i−1
l ]) i = 1, ..., k, (10)
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[
Wj , P

j
l

]
= Lj

l ([Wj−1, P
j−1
l ]) j = k + 1, ...,m, (11)

4.4. Prompting Vision Branch

The pre-trained VLMs establish a solid vision-language
matching relationship, which allows us to easily transfer
domain-specific information from the language branch to
the vision branch. To achieve this, we set a group of learn-
able vision prompt features, denoted by

[
P 1
v , P

2
v , ..., P

m
v

]
,

with a depth of k, which correspond to the encoder layers[
L1
v, L

2
v, ..., L

m
v

]
of the vision branch. Next, we introduce a

group of quaternion layers
[
Q1

v, Q
2
v, ..., Q

m
v

]
with a depth of

k, which are responsible for providing cross-modal domain-
specific information. In a similar way to how the quaternion
computation is performed in the language branch, domain-
specific vision features F̂d and language prompt features P i

l

are modeled in two orthogonal axes in the quaternion hid-
den space for the vision branch. We use the following equa-
tion to perform this computation:

Qi
v = P i

l + F̂di + 0j + 0k, (12)

As the vision-language relationship is well-matched,
random noise is no longer required. Therefore, we can com-
pute the vision prompt features as follows:

P i
v = Qi

v([F̂d + P i
l , Z0]) i = 1, 2, ..., k, (13)

By leveraging the well-matched vision-language rela-
tions, we propagate the domain-specific knowledge into the
vision prompt features within the quaternion hidden space.
To propagate domain-specific information for the vision
branch, we start with the original image embeddings E1 and
class token c1, and compute the propagation as follows:

[Ei, ci, ] = Li
v([Ei−1, ci−1, P

i−1
v ]) i = 1, ..., k, (14)

We then compute the following equation to propagate the
domain-specific information further:[

Ej , ci, P
j
v

]
= Lj

v([Ej−1, cj−1, P
j−1
v ])

j = k + 1, ...,m,
(15)

Finally, given vision embeddings Em of last vision layer
and language embeddings

[
W 1

m,W 2
m, ...,WC

m ,
]

for C cate-
gories of the last language layer, we compute the probability
of an image belonging to a specific category as follows:

p(yi|x) =
exp(sim(Em,W i

m)/τ)∑C
j=1 exp(sim(Em,W j

m)/τ)
, (16)

where p(yi|x) is the probability of the image belonging to
the i-th category, sim denotes the similarity function, and τ
is a temperature parameter.

5. Experiments
In order to assess the effectiveness of our proposed quater-
nion learning approach, we conducted extensive experi-
ments on remote sensing and medical images. Our exper-
iments covered three distinct problem settings: 1) general-
ization from known to unknown classes within a dataset, 2)
transfer between datasets, and 3) generalization across do-
mains. This section provides a detailed description of the
datasets, evaluation metrics, and experimental implementa-
tions. We also present a thorough performance analysis, as
well as ablation experiments to clarify the effectiveness of
our proposed designs.

5.1. Datasets and Evaluation Metrics

We evaluate the proposed method on 8 remote sens-
ing datasets, namely MLRSNet [27], PatternNet [49],
RSSCN7 [51], AID [40], RSICD [21], UCM [43],
WHURS19 [7], and NWPU [5]. Additionally, we evalu-
ated the proposed method on 3 medical datasets, includ-
ing BTMRI [25], CCBTM [11], and CHMNIST [16]. As
with previous methods [17], we use accuracy and Harmonic
Mean (HM) as evaluation metrics:

HM =
2×Accbase ×Accnovel
Accbase +Accnovel

, (17)

where Accbase denotes the accuracy of base categories, and
Accnovel denotes the accuracy of novel categories. We
report the experimental results as an average of three in-
dependent runs for better statistical reliability. For the
base-to-novel generalization scenario, we conduct experi-
ments on all eight remote sensing datasets and three med-
ical datasets. In addition, we evaluat the proposed method
on cross-dataset generalization and domain generalization,
where MLRSNet is used as the source dataset, and other
remote sensing datasets are used as target datasets.

5.2. Implementation Details

For a fair comparison, we use similar training settings in
MaPLe. All experiments are conducted using a few-shot
training strategy with 16 shots, randomly sampled for each
class. We use the pre-trained ViT-B/16 CLIP model for
prompt tuning. The network is trained with a batch size of
4 and a learning rate of 0.0035 using the SGD optimizer on
a single NVIDIA A100 GPU. We use the template “a photo
of category” for the word embeddings. To ensure fair and
reliable comparisons, we maintain consistent hyperparame-
ters across all datasets, except for the domain-project layer,
designed quaternion layer, and learnable contexts, which
had their corresponding dimensions specified for each layer.
The domain-project layer follows a Linear-ReLU-Linear ar-
chitecture, while the designed quaternion layer adheres to
the standard quaternion layer structure outlined in [26].
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Table 1. Comparison with SOTA methods in base-to-novel generalization on 8 remote sensing recognition datasets. Our method consis-
tently performs well over the SOTA approaches. We use red and blue to highlight the first and second best scores.

(a) Average over 8 datasets

Base Novel HM

CLIP [28] 71.19 71.33 70.63
CoOp [48] 87.61 70.84 78.03
CoCoOp [47] 91.82 68.98 78.43
MaPLe [17] 93.12 71.71 80.42

Ours (ViTAE) 94.28 73.43 82.05
Ours (ViT) 94.08 75.06 83.50

(b) MLRSNet

Base Novel HM

CLIP [28] 64.50 60.30 62.33
CoOp [48] 79.37 58.90 67.62
CoCoOp [47] 83.30 59.50 69.42
MaPLe [17] 85.23 59.60 70.15

Ours (ViTAE) 88.96 57.10 69.56
Ours (ViT) 87.07 59.00 70.34

(c) PatternNet

Base Novel HM

CLIP [28] 70.60 62.60 66.36
CoOp [48] 87.30 64.20 73.99
CoCoOp [47] 93.70 59.90 73.08
MaPLe [17] 95.30 57.90 72.03

Ours (ViTAE) 97.07 62.37 75.94
Ours (ViT) 95.80 66.20 78.30

(d) RSSCN7

Base Novel HM

CLIP [28] 66.70 95.30 78.48
CoOp [48] 84.80 89.13 86.91
CoCoOp [47] 90.97 90.00 90.48
MaPLe [17] 91.67 93.70 92.67

Ours (ViTAE) 91.53 94.53 93.01
Ours (ViT) 91.20 95.57 93.33

(e) AID

Base Novel HM

CLIP [28] 73.50 70.40 71.92
CoOp [48] 87.63 70.37 78.06
CoCoOp [47] 92.63 65.73 76.89
MaPLe [17] 92.73 74.57 82.66

Ours (ViTAE) 94.03 74.97 83.43
Ours (ViT) 94.50 75.77 84.10

(f) RSICD

Base Novel HM

CLIP [28] 71.50 60.20 65.37
CoOp [48] 88.43 60.20 71.63
CoCoOp [47] 92.37 58.80 71.86
MaPLe [17] 93.93 56.27 70.38

Ours (ViTAE) 94.57 65.20 77.19
Ours (ViT) 95.67 64.83 77.29

(g) UCM

Base Novel HM

CLIP [28] 80.60 68.00 73.77
CoOp [48] 93.60 74.53 82.98
CoCoOp [47] 95.23 71.57 81.72
MaPLe [17] 97.70 70.90 82.17

Ours (ViTAE) 97.10 72.10 82.75
Ours (ViT) 97.90 73.30 83.83

(h) WHURS19

Base Novel HM

CLIP [28] 73.10 90.80 80.99
CoOp [48] 95.20 82.40 88.34
CoCoOp [47] 97.10 77.00 85.89
MaPLe [17] 97.70 88.03 92.61

Ours (ViTAE) 99.40 89.90 94.41
Ours (ViT) 98.80 90.80 94.63

(i) NWPU

Base Novel HM

CLIP [28] 69.00 63.00 65.87
CoOp [48] 84.53 66.97 74.73
CoCoOp [47] 89.27 69.37 78.07
MaPLe [17] 90.70 72.70 80.71

Ours (ViTAE) 91.60 71.23 80.14
Ours (ViT) 91.70 75.03 82.53

5.3. Generalization from Base-to-Novel Classes

Prompt learning targets effective transfer of pre-trained
VLMs to downstream tasks, facing the challenge of ro-
bust generalization across base and novel classes. To rigor-
ously assess our method’s generalization from base to novel
classes, we experiment on remote sensing and medical im-
ages. Utilizing the large-scale remote sensing foundation
model [35], which provides ViTAE and ViT backbones,
we conduct comprehensive experiments and compare re-
sults with advanced methods. Detailed experimental com-
parisons are presented in Table 1. With the ViT backbone,
our method achieves state-of-the-art (SOTA) performance,
with a 3.08% average HM improvement. Specifically, it en-
hances base accuracy from 93.12% to 94.08% and novel
accuracy by 3.35%. On the RSICD dataset, our approach
significantly boosts base accuracy from 93.93% to 95.67%
and novel accuracy from 60.20% to 64.83%, yielding an
HM improvement of nearly 6%. These findings highlight
the advantage of domain-specific information for RSICD.
However, on the challenging MLRSNet dataset, our method
achieves only a modest 0.19% HM improvement, primar-
ily due to limited knowledge of the domain-specific foun-
dation model. Additionally, while deeper ViTAE performs
better under some settings, it does not outperform ViT over-
all. These results suggest that deeper architectures may

not be optimal for extracting domain-specific information,
as redundant parameters could hinder performance. Fur-
thermore, we experiment with medical images using a spe-
cialized medical domain model [23] to further evaluate our
prompt learning method’s effectiveness. Results and com-
parisons with advanced techniques are detailed in Table 2.
Overall, our method achieves the highest accuracy across
datasets. On average, it achieves a base category accu-
racy of 74.36% and enhances novel category accuracy from
44.40% to 44.74%. Regarding HM, our approach brings
about nearly a 4% improvement. Interestingly, although our
method excels in base category accuracy and HM across
datasets, it does not rank highest for novel categories. This
observation suggests that existing domain-specific medical
image models, while significantly improving base category
accuracy through domain-specific knowledge, may not fully
exploit their potential to enhance generalization capabili-
ties. This limitation could be a subject for future research.

5.4. Cross-Dataset Evaluation

To evaluate the dataset-generalization capabilities of our
proposed method, we implement our approach on the
MLRSNet and test the trained model directly on the re-
maining datasets. The experiments and comparison results
with other advanced prompt learning methods are presented
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Table 2. Comparison between our method and SOTA methods for base-to-novel generalization on medical image classification datasets.
Our method performs well over the compared methods. We use red and blue to indicate the first and second best scores.

(a) Average over datasets

Base Novel HM

CLIP [28] 49.83 41.83 45.18
CoOp [48] 51.59 43.77 46.81
CoCoOp [47] 64.45 43.16 49.45
MaPLe [17] 62.39 44.40 49.01

Ours 74.36 44.74 53.36

(b) All datasets (c) BTMRI

Base Novel HM

CLIP [28] 50.60 51.20 50.89
CoOp [48] 48.93 53.30 51.02
CoCoOp [47] 52.37 52.80 52.58
MaPLe [17] 53.67 61.60 57.36

Ours 60.97 56.30 58.54

(d) BTMRI dataset

(e) CHMNIST

Base Novel HM

CLIP [28] 31.60 27.40 29.35
CoOp [48] 41.70 25.67 31.78
CoCoOp [47] 74.30 25.30 37.74
MaPLe [17] 74.03 25.10 37.49

Ours 87.80 26.60 40.83

(f) CHMNIST dataset (g) CCBTM

Base Novel HM

CLIP [28] 67.30 46.90 55.28
CoOp [48] 64.13 52.33 57.63
CoCoOp [47] 66.67 51.37 58.03
MaPLe [17] 59.47 46.50 52.19

Ours 74.30 51.33 60.72

(h) CCBTM dataset

Table 3. Comparisons with SOTA methods for cross-dataset generalization with the MLRSNet dataset as the source domain and remaining
remote sensing datasets as the target domains. Our method achieves better performance than the compared methods. We use red and blue
to highlight the first and second best scores.

Source Target

MLRSNet PatternNet RSSCN7 AID RSICD UCM WHURS19 NWPU Average

CoOp [48] 72.53 66.97 69.03 67.30 63.50 77.57 85.47 70.43 71.60
CoCoOp [47] 71.70 65.67 68.80 66.63 62.57 76.40 85.33 70.30 70.92
MaPLe [17] 76.83 68.53 71.43 65.13 59.53 79.90 85.23 72.80 72.42

Ours 78.73 68.17 70.60 66.70 62.27 79.93 91.07 73.13 73.83

Table 4. Comparisons with SOTA methods for single-source multi-target domain generalization with the MLRSNet dataset as the source
domain and remaining datasets as the target domains. Our method achieves better performance than the compared methods. We use red
and blue to highlight the first and second best scores.

Source Target

MLRSNet PatternNetv2 RSSCN7v2 AIDv2 RSICDv2 UCMv2 WHURS19v2 NWPUv2 Average

CoOp [48] 72.53 66.97 69.07 67.13 64.27 77.40 85.20 71.17 71.72
CoCoOp [47] 71.70 65.57 69.37 67.13 62.73 75.70 84.83 70.97 71.00
MaPLe [17] 76.83 68.03 72.50 64.90 59.73 78.93 83.07 73.17 72.15

Ours 78.73 67.63 71.33 66.87 62.33 78.33 89.90 73.67 73.60

in Table 3. Our proposed method achieves superior per-
formance on the MLRSNet with a 1.90% performance im-
provement over the state-of-the-art. Notably, our method
achieves the highest performance, reaching a 91.07% ac-
curacy, on the WHURS19 dataset, suggesting a significant
overlap in domain-specific information between MLRSNet
and WHURS19. While our method does not attain top
performance in every dataset, it ranks first in terms of av-
erage performance with a 1.41% accuracy improvement.
These results affirm the enhanced cross-dataset generaliza-
tion ability of our method.

5.5. Domain Generalization

To further validate the generalization capabilities, we con-
duct evaluations under the domain generalization setting
like the previous methods. The experiments and compar-
ison results with advanced algorithms are shown in Ta-
ble 4. While the proposed method does not achieve top
performance on each dataset, it excels with an average
accuracy of 73.60%, corresponding to a 1.35% improve-
ment over MaPLe. Notably, the best performance is at-
tained on the WHURS19V2 dataset, where our method ex-
hibits a remarkable 4.70% performance boost. These re-
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Table 5. The utilization of quaternion network (QN). Our method
performs well over the compared methods due to successful cross-
modal mining with QN.

Methods Base Novel HM
Baseline 93.93 56.27 70.38

Ours w/o QN 94.17 63.53 75.87
Ours 95.67 64.83 77.29

Table 6. The prompting of vision and language branches. PL:
prompting language branch; PV: prompting vision branch. Our
method performs better due to simultaneous PL and PV.

Methods Base Novel HM
Baseline 93.93 56.27 70.38

PL 95.23 63.73 76.36
PV 95.60 64.23 76.84

Ours (PL+PV) 95.67 64.83 77.29

sults demonstrate that our proposed domain prompt learn-
ing effectively enhances the generalization and robustness
of vision-language models, offering promising capabilities
for domain generalization across datasets.

5.6. Ablation Studies

Quaternion Network. In order to examine the impact of
different components of the proposed domain prompt learn-
ing, we carry out a series of ablation experiments. Initially,
we study the effect of the quaternion neural network and
its impact. Table 5 shows that even without the quater-
nion network, our method still significantly improves the
performance. This suggests that incorporating the domain-
specific knowledge to transfer the VLMs from generalized
to specialized is an efficient approach, and the quaternion
network efficiently models the orthogonal cross-modal re-
lationships, leading to further improved performance.

Prompting Vision and Language Branches. Table 6
presents the experimental results of studying the impact
of prompting vision and language branches. The results
show that prompting either the language or vision branch
alone leads to better performance due to improved domain-
specific vision-language contrastive learning. By prompting
both the vision and language branches complementarily, our
proposed method successfully propagates domain-specific
information into contrastive learning and significantly en-
hances recognition performance.

Prompting Depth. In domain prompt learning, the depth of
prompting plays a crucial role, and we conduct experiments
to study its impact. The results in Table 7 show that perfor-
mance improves as the depth increases until it reaches its
highest point at a depth of 9. However, beyond that point, a
further increase in depth leads to a decline in performance
due to redundancy. Therefore, a depth of 9 is the appropri-
ate choice for optimal performance.

Adding Noise. In order to mitigate potential overfitting

Table 7. Ablation studies of prompting depth. Our method per-
forms better due to appropriate prompting depth.

Depth Base Novel HM
3 94.73 60.7 73.99
6 95.63 61.83 75.10
9 95.67 64.83 77.29

12 95.57 64.67 77.14

Table 8. Ablation studies on the addition of noise. VB denotes
the vision branch. LB denotes the language branch. Our method
performs better due to correctly adding noise.

Depth Base Novel HM
Baseline 93.93 56.27 70.38

w/o Noise 95.43 63.03 75.92
VB + Noise 95.38 62.95 75.84

Ours (LB+ Noise) 95.67 64.83 77.29

problems, we devise an approach that introduces noise into
the language branch. We assess the impact of this tech-
nique, and the results are presented in Table 8. Interest-
ingly, our method still shows some performance improve-
ments even in the absence of added noise. However, we
have observed a decrease in accuracy when we add noise in
the vision branch. We attribute this decline to the possibility
of noise disrupting well-matched vision-language relation-
ships. Our approach achieves the best performance, indicat-
ing that adding noise in the language branch is a beneficial
strategy for addressing overfitting.

6. Conclusion
Most advanced prompt learning algorithms, tailored for nat-
ural images, often face difficulties in adapting to specific
domains. To tackle these, we leverage domain-specific in-
sights from foundation models and employ quaternion net-
works to extend the robust recognition abilities of VLMs
into specialized domains. By examining cross-modal con-
nections between domain-specific vision features and con-
textual embeddings, the quaternion network smoothly in-
corporates generalized contextual embeddings into special-
ized realms. Furthermore, our method integrates domain-
specific knowledge into the vision branch, facilitating effec-
tive vision-language contrastive learning. Extensive experi-
ments on domain-specific datasets showcase the superiority
of our approach with compelling results.
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