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Abstract

We present DreamAvatar, a text-and-shape guided
framework for generating high-quality 3D human avatars
with controllable poses. While encouraging results have
been reported by recent methods on text-guided 3D common
object generation, generating high-quality human avatars
remains an open challenge due to the complexity of the
human body’s shape, pose, and appearance. We propose
DreamAvatar to tackle this challenge, which utilizes a train-
able NeRF for predicting density and color for 3D points
and pretrained text-to-image diffusion models for providing
2D self-supervision. Specifically, we leverage the SMPL
model to provide shape and pose guidance for the gener-
ation. We introduce a dual-observation-space design that
involves the joint optimization of a canonical space and
a posed space that are related by a learnable deforma-
tion field. This facilitates the generation of more com-
plete textures and geometry faithful to the target pose. We
also jointly optimize the losses computed from the full body
and from the zoomed-in 3D head to alleviate the common
multi-face “Janus” problem and improve facial details in
the generated avatars. Extensive evaluations demonstrate
that DreamAvatar significantly outperforms existing meth-
ods, establishing a new state-of-the-art for text-and-shape
guided 3D human avatar generation.

1. Introduction
The creation of 3D graphical human models has received
great attention in recent years due to its wide-ranging appli-
cations in fields such as film-making, video games, AR/VR,
and human-robotic interaction. Traditional methods for
building such complex 3D models require thousands of
man-hours of trained artists and engineers [10, 12], mak-
ing the process both time-consuming and highly expert-
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dependent. With the development of deep learning meth-
ods, we have witnessed the emergence of promising meth-
ods [5, 54, 61] which can reconstruct 3D human mod-
els from monocular images. These techniques, however,
still face challenges in fully recovering details from the in-
put images and rely heavily on the training dataset. To
tackle these challenges and simplify the modeling process,
adopting generative models for 3D human avatar modeling
has recently received increasing attention from the research
community. This approach has the potential to alleviate the
need for large 3D datasets and facilitate easier and more ac-
cessible 3D human avatar modeling.

To leverage the potential of 2D generative image models
for 3D content generation, recent methods [8, 29, 31, 35, 46]
have utilized pretrained text-guided image diffusion models
to optimize 3D implicit representations (e.g., NeRFs [37]
and DMTet [40, 56]). DreamFusion [46] introduces a
novel Score Distillation Sampling (SDS) strategy to self-
supervise the optimization process and achieves promising
results. However, human bodies, which are the primary fo-
cus of this paper, exhibit a complex articulated structure,
with head, arms, hands, trunk, legs, feet, etc., each capa-
ble of posing in various ways. As a result, while Dream-
Fusion [46] and subsequent methods (e.g., Magic3D [29],
ProlificDreamer [58], Fantasia3D [8]) produce impressive
results, they lack the proper constraints to enforce consis-
tent 3D human structure and often struggle to generate de-
tailed textures for 3D human avatars. Latent-NeRF [35] in-
troduces a sketch-shape loss based on the 3D shape guid-
ance, but it still faces challenges in generating reasonable
results for human bodies.

In this paper, we present DreamAvatar, a novel frame-
work for generating high-quality 3D human avatars from
text prompts and shape priors. Inspired by previous
works [29, 46], DreamAvatar employs a trainable NeRF
as the base representation for predicting density and color
values for each 3D point. Coupled with pretrained text-
to-image diffusion models [50, 68], DreamAvatar can be
trained to generate 3D avatars using 2D self-supervision.
The key innovation of DreamAvatar lies in three main as-
pects. Firstly, we leverage the SMPL model [32] to provide
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Figure 1. Results of DreamAvatar. DreamAvatar can generate high-quality geometry and texture for any type of human avatar.

a shape prior, which yields robust shape and pose guidance
for the generation process. Secondly, we introduce a dual-
observation-space (DOS) design consisting of a canonical
space and a posed space that are related by a learnable
deformation field and are jointly optimized. This facili-
tates the generation of more complete textures and geome-
try faithful to the target pose. Thirdly, we propose to jointly
optimize the losses computed from the full body and from
the zoomed-in 3D head to alleviate the multi-face “Janus”
problem and improve facial details in the generated avatars.

We extensively evaluate DreamAvatar on generating
movie/anime/video game characters, as well as general peo-
ple, and compare it with previous methods. Experimen-
tal results show that our method significantly outperforms
existing methods and can generate high-quality 3D hu-
man avatars with text-consistent geometry and geometry-

consistent texture. We will make our code publicly avail-
able after publication.

2. Related Work
Text-guided 2D image generation. Recently, the CLIP
model [47] (Contrastive Language-Image Pre-training) was
proposed with the aim of classifying images and text by
mapping them to a shared feature space. However, this
model is not consistent with the way human perceives lan-
guage, and it may not fully capture the intended meanings.
With the improvements in neural networks and text-image
datasets, the diffusion model has been introduced to handle
more complex semantic concepts [2, 35, 48, 53]. Follow-up
methods are designed to improve computational efficiency,
for instance, through utilizing a cascade of super-resolution
models [2, 53] or sampling from a low-resolution latent
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Figure 2. Avatar generation with different poses. Our method can handle and control the 3D generation with any pose.

space and decoding the latent features into high-resolution
images [35]. DreamBooth [51] fine-tunes the diffusion
model for certain subjects, while ControlNet [67] and T2I-
Adapter [39] propose controlling the pretrained diffusion
models with additional information. However, text-to-3D
generation remains a challenge due to the lack of text-3D
paired datasets and the associated high training cost .
Text-guided 3D content generation. Text-guided 3D
content generation methods have emerged based on the suc-
cess of text-guided 2D image generation. Earlier works,
such as CLIP-forge [55], generate objects by learning a nor-
malizing flow model from textual descriptions, but these
methods are computationally expensive. DreamField [24],
CLIP-mesh [27], AvatarCLIP [20], Text2Mesh [36], and
Dream3D [62] rely on a pretrained image-text model [47]
to optimize the underlying 3D representation (e.g., NeRF
or mesh).

Recently, DreamFusion [46] proposes score distillation
sampling based on the pretrained diffusion model [53] to
enable text-guided 3D generation. Magic3D [29] improves
it by introducing a coarse-to-fine pipeline to generate fine-
grained 3D textured meshes. Point-E [41] and Shap-E [26]
optimize the point cloud based on the diffusion model.
Latent-NeRF [35] improves training efficiency by directly
optimizing the latent features. TEXTure [49] applies a
depth-diffusion model [50] to generate texture maps for
a given 3D mesh. Fantasia3D [8] proposes a disentan-
gled training strategy for geometry and texture generation.
Guide3D [6] proposes to transfer multi-view generated im-
ages to 3D avatars. ProlificDreamer [58] introduces Varia-
tional Score Distillation (VSD) for better diversity and qual-
ity. Despite their promising performance, these methods
still struggle to generate text-guided 3D human avatars due
to the inherent challenges of this task.
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3D human generative models. 3D generative methods
based on 3D voxel grids [14, 19, 33, 60], point clouds [1,
34, 38, 63, 64, 70], and meshes [69] often require expen-
sive and limited 3D datasets. In recent years, various meth-
ods [9, 30, 42, 45, 59] have been proposed to utilize NeRF
and train on 2D human videos for novel view synthesis. Fol-
lowing these works, EG3D [7] and GNARF [3] propose a
tri-plane representation and use GANs for 3D generation
from latent codes. ENARF-GAN [43] extends NARF [42]
to human representation. Meanwhile, EVA3D [21] and Hu-
manGen [25] propose to generate human radiance fields
directly from the 2D StyleGAN-Human [13] dataset. Al-
though these methods have produced convincing results,
they do not have the ability to “dream” or generate new sub-
jects that have not been seen during training.

3. Methodology
Here, we introduce our text-and-shape guided generative
network, DreamAvatar, which utilizes a trainable NeRF and
pretrained diffusion models [50, 68] to generate 3D human
avatars under controllable poses. DreamAvatar incorporates
two observation spaces, namely a canonical space and a
posed space, which are related by a learnable deformation
field and are jointly optimized through a shared trainable
NeRF (see Fig. 3). We jointly optimize the losses computed
from the full-body and from the zoom-in 3D head to allevi-
ate the multi-face “Janus” problem and improve the facial
details in the generated avatars. In the following subsec-
tions, we first provide the preliminaries that underpin our
method in Sec. 3.1. Next, we delve into the details of our
method and discuss: (1) the density field derived from the
SMPL model for evolving the geometry, (2) the dual obser-
vation spaces related by a learnable deformation field, and
(3) the joint optimization of the losses computed from the
full body and from the zoom-in 3D head in Sec. 3.2.

3.1. Preliminaries

Text-guided 3D generation methods Recent text-guided
3D generation models [46, 58] showcase promising results
by incorporating three fundamental components:

(1) NeRF that represents a 3D scene via an implicit func-
tion, formulated as

Fθ(γ(x)) 7→ (σ, c), (1)

where x is a 3D point that is processed by the grid frequency
encoder γ(·) [37], and σ and c denote its density value and
color respectively. Typically, the implicit function Fθ(·) is
implemented as an MLP with trainable parameters θ.

(2) Volume Rendering technique that effectively renders
a 3D scene onto a 2D image. For each image pixel, the
rendering is done by casting a ray r from the pixel location
into the 3D scene and sampling 3D points µi along r. The

density and color of the sampled points are predicted by Fθ.
The RGB color C of each image pixel is then given by

C(r) =
∑
i

Wici, Wi = αi

∏
j<i

(1− αj) (2)

where αi = 1− e(−σi||µi−µi+1||).
(3) Variational Score Distillation (VSD) derived on text-

guided diffusion models ϕ [50, 53]. We employ a pretrained
diffusion model [50, 68] with a learned denoising function
ϵpre(xt; y, t). Here xt denotes the noisy image at timestep
t, and y is the text embedding. Given an image g(θ, c) ren-
dered from the NeRF with camera parameters c, we add ran-
dom noise ϵ to obtain a noisy image xt = αtg(θ, c) + σtϵ
(αt and σt are hyperparameters). We then parameterize ϵ
using LoRA (Low-Rank Adaptation [22, 52]) of the pre-
trained model ϵpre(xt; y, t) to obtain ϵϕ, and add camera pa-
rameters c to the condition embeddings in the network. The
gradient for updating the NeRF is then given by

∇θLVSD(θ) ≜ Et,ϵ,c
[
ω(t)

(
ϵpre(xt, t, y)−ϵϕ(xt, t, c, y)

)
∂g(θ,c)

∂θ

]
,

(3)
where w(t) is a weighting function that depends on the
timestep t.

SMPL [4, 44] 3D parametric human model It builds a
3D human shape using 6,890 body vertices. Formally, by
assembling pose parameters ξ and shape parameters β, we
can obtain the 3D SMPL human model by:

TP (β, ξ) = T̄ +BS(β;S) +BP (ξ;P), (4)
M(β, ξ) = LBS(TP (β, ξ), J(β), ξ,W), (5)

where TP (·) represents the non-rigid deformation from the
canonical model T̄ using the shape blend shape function BS

and pose blend shape function BP . S and P are the princi-
pal components of vertex displacements. LBS(·) denotes the
linear blend skinning function, corresponding to articulated
deformation. It poses TP (·) based on the pose parameters ξ
and joint locations J(β), using the blend weights W , indi-
vidually for each body vertex:

vp = G · vc, G =

K∑
k=1

wkGk(ξ, jk), (6)

where vc is an SMPL vertex under the canonical pose, vp

denotes the corresponding vertex under the given pose, wk

is the skinning weight, Gk(ξ, jk) is the affine deformation
that transforms the k-th joint jk from the canonical space to
posed space, and K is the number of neighboring joints.

Unlike the original SMPL which defines “T-pose” as the
canonical model, here, we adopt “A-pose” as the canoni-
cal model which is a more natural human rest pose for the
diffusion models to understand (see Fig. 3).
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Figure 3. Overview of DreamAvatar. Our network takes as input a text prompt and SMPL parameters to optimize a trainable NeRF via
a pretrained denoising stable diffusion model. At the core of our network are two observation spaces, namely the canonical space and the
posed space, that are related by an SMPL-based learnable deformation field. This dual-observation-space design facilities the generation
of more complete textures and geometry faithful to the target pose.

3.2. DreamAvatar

As illustrated in Fig. 3, our proposed framework takes as
input a text prompt and SMPL parameters, defining the tar-
get shape and pose in the posed space. DreamAvatar con-
ducts Variational Score Distillation (VSD)-based optimiza-
tion [58] in both the canonical space and posed space si-
multaneously and learns a deformation field relating the two
spaces. To represent the canonical space and posed space,
we utilize an extended neural radiance field where the den-
sity, RGB color value, and normal direction of each sample
point can be queried and optimized. We utilize the input
SMPL parameters to handle different body parts separately
and derive good initial density values in each space. To alle-
viate the multi-face “Janus” problem and improve facial de-
tails in the generated avatars, we optimize, in addition to the
loss computed from the full body, the loss computed from
the zoomed-in 3D head using a landmark-based Control-
Net [67] and a learned special <back-view> token [15].

SMPL-derived density fields We propose to make our
NeRF evolve from the density field derived from the in-
put SMPL model. Specifically, given a 3D point xc in the
canonical space, we first calculate its signed distance dc to
the SMPL surface in the canonical pose and convert it to a
density value σ̄c using

σ̄c = max(0, softplus−1(
1

a
sigmoid(−dc/a))),

where sigmoid(x) = 1/(1 + e−x), softplus−1(x) =
log(ex − 1), and a is a predefined hyperparameter [62]
which is set to 0.001 in our experiments. Similarly, given a
point xp in the posed space (the upper branch in Fig. 3), we

compute its density value σ̄p from its signed distance dp to
the SMPL surface in the target pose.

Deformation field Inspired by HumanNeRF [59], we em-
ploy a deformation field to map points xp from the posed
space to their corresponding points x̂c in the canonical
space. The deformation field is composed of two parts,
namely (1) articulated deformation that applies the in-
verse transformation of SMPL linear blend skinning LBS(·)
(Sec. 3.1), and (2) non-rigid motion modelled by an MLP
to learn the corrective offset:

x̂c = G−1 · xp + MLPθNR(γ(G
−1 · xp)), (7)

where G is obtained from posed SMPL vertex closest to xp.

Dual observation spaces (DOS) Given a 3D point xc in
the canonical space and xp in the posed space, we compute
their density values σc, σp and color values cc, cp by

F (xc, σ̄c) = Fθ(γ(xc)) + (σ̄c,0) 7→ (σc, cc), (8)

F (xp, σ̄p) = Fθ(γ(x̂c)) + (σ̄p,0) 7→ (σp, cp), (9)

where x̂c denotes the corresponding point of xp in the
canonical space, and σ̄c and σ̄p are the SMPL-derived den-
sity values in the canonical space and posed space respec-
tively. Our DOS design serves two main purposes. Firstly,
the avatar in rest pose in the canonical space exhibits min-
imum self-occlusion. Observations in the canonical space
therefore facilitate the generation of more complete tex-
tures. Observations in the posed space, on the other hand,
facilitate the generation of geometry faithful to the target
pose. They also provide extra supervision in optimizing the
NeRF. Our DOS design also differentiates itself from MPS-
NeRF [16] and TADA! [28] by prioritizing joint optimiza-
tion and mutual distillation between the canonical space and
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Figure 4. Comparison with existing text-to-3D baselines. While baselines struggle to ensure structurally and topologically correct
geometry, our method can produce high-quality geometry and texture.

Figure 5. Comparison with existing avatar-specified baselines. Our method can generate 3D human avatars with geometry and texture
with much higher resolution.

posed space. In contrast, existing methods only utilize ob-
servations in the posed space without fully exploiting infor-
mation in the canonical space.

Zoomed-in head Inspired by our previous work [5]
which enhances human reconstruction by learning to re-
cover details in the zoomed-in face, we propose to optimize,
in addition to the loss computed from the full body, the loss
computed from the zoomed-in 3D head to improve the fa-
cial details in the generated 3D avatars. Specifically, we ren-
der a zoomed-in head image at each iteration for computing
the VSD loss on head. To alleviate the common multi-face
“Janus” problem, we follow our previous work [18] to em-
ploy a landmark-based ControlNet C [67] and a learned spe-

cial <back-view> token [15] to compute the head VSD
loss. The gradient for updating the NeRF now becomes

∇θLhead
VSD(θ) ≜ Et,ϵ,c

[
ω(t) (ϵpre(·)− ϵϕ(·))

∂g(θ, c)

∂θ

]
, (10)

ϵpre(·) = ϵpre(xt, t, y, C(Pπ)),ϵϕ(·) = ϵϕ(xt, t, c, y, C(Pπ)),

where Pπ denotes the facial landmark map obtained from
the projection of the SMPL head model.

4. Experiments
We now validate the effectiveness and capability of our pro-
posed framework on a variety of text prompts and provide
comparisons with existing text-guided 3D generation meth-
ods using the same text prompts.
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Figure 6. Text manipulation over the avatar generations. † indicates “Joker”

Figure 7. Shape modification via SMPL shape parameters. Our method can generate 3D avatars with different shapes based on the
input SMPL shape parameters, e.g., “short”, “fat”, “thin”, “tall” as above from left to right.

Implementation details We follow threestudio [17] to
implement the NeRF [37] and Variational Score Distillation
in our method. We utilize Ver-2.1 of Stable Diffusion [57]
and Ver-1.1 of ControlNet [11, 68] in our implementation.
Typically, for each text prompt, we train our network for
10, 000 iterations on one single NVIDIA A40 GPU.
Baseline methods We compare our method with
DreamFusion [46], Latent-NeRF [35], Fantasia3D [8],
Magic3D [29], ProlificDreamer [58], DreamWaltz [23],
AvatarCLIP [20], and TADA! [28]. We are not able to
compare with AvatarBooth [65] and AvatarVerse [66] as
their codes are not publicly available.

4.1. Qualitative Evaluations

Avatar generation with different styles In Fig. 1, we
provide a diverse set of 3D human avatars, e.g., real-world
human beings, movie, anime, and video game characters,
generated by our DreamAvatar. We can consistently ob-
serve high-quality geometry and texture from all these ex-
amples.
Avatar generation under different poses In Fig. 2, we
validate the effectiveness of our method for generating 3D
human avatars in various poses, which is not achievable
by other existing methods due to the absence of the shape
prior. Thanks to our DOS design, DreamAvatar can main-
tain high-quality texture and geometry for extreme poses,
e.g., complex poses with severe self-occlusion.
Comparison with SOTA methods We provide qualita-
tive comparisons with existing SOTA methods in Fig. 4
and Fig. 5. We can observe that our method consistently
achieves topologically and structurally correct geometry
and texture compared to baseline methods, and outperforms

the avatar-specified generative methods with much better
and higher-resolution texture and geometry. See supple-
mentary for more comparisons.

Text manipulation on avatar generation We explore the
capabilities of DreamAvatar by editing the text prompt for
controlled generation (see Fig. 6). Our method can gen-
erate faithful avatars that accurately embody the provided
text, incorporating additional descriptive information and
capturing the unique characteristics of the main subject.

Shape modification via SMPL shape parameters We
further demonstrate the possibility of our method to gen-
erate different sizes of 3D human avatars, e.g., thin, short,
tall, fat, by editing the SMPL shape parameters in Fig. 7.

Attributes integration: Zoomed-in head and full body
Benefiting from the joint modeling of the zoomed-in 3D
head and full body, our method seamlessly integrates the
unique attributes derived from both head and body charac-
ters. See visualizations in Fig. 8. In contrast to the con-
ventional approach of separately modeling head and body
parts, DreamAvatar harmoniously combines these elements,
resulting in a cohesive model that faithfully captures the
essence of both subjects.

4.2. User Studies

We conduct user studies to compare with SOTA methods [8,
20, 23, 29, 35, 46, 58]. 25 volunteers are presented with 20
examples to rate these methods in terms of (1) geometry
quality, (2) texture quality, and (3) consistency with the text
from 1 (worst) to 8 (best). The final rates in Fig. 9 clearly
show that our method achieves the best rankings in all three
aspects.
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Figure 8. Attributes integration between head and body parts.

Figure 9. User study on rotating 3D human avatars.

4.3. Further Analysis

Effectiveness of SMPL-derived density We optimize
the NeRF without using the SMPL-derived densities σ̄c, σ̄p

as the basis for density prediction. We find that without us-
ing σ̄c and σ̄p, (1) the generated avatars exhibit low-quality
geometry and texture with strong outliers, and (2) the gener-
ated shapes are not constrained to reasonable human bodies
and are not view-consistent (see “w/o SMPL-density field”
in Fig. 10).
Effectiveness of incorporating head VSD loss In order
to assess its impact, we conduct ablation studies by dis-
abling the head VSD loss. The results are presented in
Fig. 11. Notably, we observe a significant drop in the qual-
ity of the generated head region. Moreover, the multi-face
”Janus” problem becomes more pronounced in the gener-
ated content.
Effectiveness of DOS design To validate our design, we
experiment with two degenerated versions of our frame-
work: (1) only the canonical space, and (2) only the posed
space without deformation field. Results in Fig. 10 clearly
demonstrate that neither of these degenerated designs can
match the performance achieved by our DOS design.

5. Conclusions
In this paper, we have introduced DreamAvatar, an effec-
tive framework for text-and-shape guided 3D human avatar
generation. In DreamAvatar, we propose to leverage the
parametric SMPL model to provide shape prior, guiding the
generation with a rough shape and pose. We also propose

Figure 10. Analysis of the setup for SMPL-derived density
σ̄c, σ̄p, and dual-space design.

Figure 11. Analysis of joint modeling of head region.

a dual-observation-space design, facilitating the generation
of more complete textures and geometry faithful to the tar-
get pose. Additionally, we propose to jointly optimize the
loss computed from the full body and from the zoomed-in
3D head, effectively alleviating the multi-face “Janus” prob-
lem and improving facial details in the generated avatars.
Extensive experiments show that our method has achieved
state-of-the-art 3D human avatar generation.
Limitations Despite establishing a new state-of-the-art,
DreamAvatar encounters limitations: (1) Animation was
not considered in our current implementation of DreamA-
vatar; (2) The model inherits biases from the pretrained dif-
fusion model due to the text-image data distribution, such
that performance on more frequently appeared subjects in
the pretraining data may be better than the others.
Societal impact Advancements in 3D avatar generation
can streamline metaverse development. However, dangers
exist regarding the nefarious use of this technology to gen-
erate plausible renderings of individuals. Open and trans-
parent research and usage are encouraged.
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