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Abstract

Vision-Language Transformers (VLTs) have shown great
success recently, but are meanwhile accompanied by heavy
computation costs, where a major reason can be attributed
to the large number of visual and language tokens. Exist-
ing token pruning research for compressing VLTs mainly
follows a single-modality-based scheme yet ignores the
critical role of aligning different modalities for guiding
the token pruning process, causing the important tokens
for one modality to be falsely pruned in another modal-
ity branch. Meanwhile, existing VLT pruning works also
lack the flexibility to dynamically compress each layer
based on different input samples. To this end, we propose
a novel framework named Multimodal Alignment-Guided
Dynamic Token Pruning (MADTP) for accelerating vari-
ous VLTs. Specifically, we first introduce a well-designed
Multi-modality Alignment Guidance (MAG) module that
can align features of the same semantic concept from dif-
ferent modalities, to ensure the pruned tokens are less im-
portant for all modalities. We further design a novel Dy-
namic Token Pruning (DTP) module, which can adaptively
adjust the token compression ratio in each layer based on
different input instances. Extensive experiments on vari-
ous benchmarks demonstrate that MADTP significantly re-
duces the computational complexity of kinds of multimodal
models while preserving competitive performance. Notably,
when applied to the BLIP model in the NLVR2 dataset,
MADTP can reduce the GFLOPs by 80% with less than
4% performance degradation. The code is available at
https://github.com/double125/MADTP.

1. Introduction
Vision-Language Transformers (VLTs) have taken multi-

modal learning domain by storm due to their superior per-
†Corresponding authors. Email: eetchen@fudan.edu.cn

Figure 1. Comparison between our MADTP and other compres-
sion methods for the BLIP model tested on the NLVR2 dataset.
STP represents the Static Token Pruning method, and MAG de-
notes our Multi-modality Alignment Guidance module.

formance on various multimodal tasks, including Visual
Reasoning [23], Image Captioning [28], Image-Text Re-
trieval [22], and Visual Question Answering (VQA) [1].
However, these models [6, 24–26, 33], such as CLIP [33]
and BLIP [25], inevitably suffer from expensive computa-
tional costs due to their complex architecture, large param-
eters, and numerous tokens, which restrict their real-world
applications and deployments.

To release this limitation, a few works have attempted to
accelerate the VLT models. As a pioneer, Upop [35] sug-
gests a unified parameter pruning strategy for compressing
VLTs, allowing for simultaneous pruning of submodules
across diverse modalities. Recently, considering the token
number plays a dominant role in the total computation cost,
several studies have put more effort into accelerating VLTs
via pruning tokens. ELIP [17] introduces a vision token
pruning method to remove less influential tokens based on
the supervision of language outputs. CrossGET [36] imple-
ments token pruning by selectively eliminating redundant
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Methods
Layer-wise
Dynamic

Instance-wise
Dynamic

Modality
Guidance

Modality
Alignment

Upop [35] ✓ ✗ ✗ ✗

ELIP [17] ✗ ✗ ✓ ✗

CrossGET [36] ✗ ✗ ✓ ✗

MADTP ✓ ✓ ✓ ✓

Table 1. Characteristics of existing compression methods for
VLTs. The proposed MADTP first conducts visual-language
modality alignment and then utilizes the aligned features to guide
layer-wise and instance-wise dynamic token pruning.

tokens at each layer of the VLTs. Despite some progress
achieved by these works, there still exist two unresolved
issues. As depicted in Table 1, all these methods face chal-
lenges in exploring multi-modality alignment and different
inputs to dynamically compress VLT, details are as follows.

Firstly, existing popular VLT models [24, 25, 33] usually
consist of multiple modality-specific sub-modules for better
capturing the representative knowledge for each modality,
which often leads to imbalanced distributions of parame-
ters and features between different modalities. Such imbal-
ances have been extensively analyzed in studies [11, 32].
In other words, different modality branches in VLT gener-
ally produce tokens with different representation capabili-
ties for the same semantic concept. As a result, directly
applying existing unimodal pruning methods [14, 40, 48]
to prune the VLT without considering each token’s cross-
modality semantic relevance, may falsely remove tokens
that are less important in one modality but may be crucial
in another. This will further worsen the representation capa-
bility imbalance between different modality branches in the
compressed VLT. Thus, introducing cross-modality align-
ment can explicitly align the joint representation of different
modalities for the same semantic concept, and increase the
chances of eliminating less important tokens for all modal-
ities, resulting in more effective compression of VLTs.

Secondly, different input samples often require different
levels of computation complexity [19, 41] for inference.
Hence, some research on unimodal dynamic token prun-
ing [7, 29, 31, 44] have emerged recently. These works of-
fer flexibility in removing redundant tokens across different
layers of the network by considering the complexity of input
instances. However, one disadvantage is that these dynamic
pruning works focus on single-modality compression, lack-
ing the consideration of how to dynamically determine one
token’s importance across multi-modalities for different in-
puts. Another challenge is that, although promising, the ex-
ploration of dynamic token pruning for multimodal mod-
els is rarely studied. Thus, based on the aligned multi-
modalities representations mentioned above, we further in-
troduce dynamic token pruning modules at different layers
of the Vision-Language Transformers, to achieve both input
instance- and layer-wise VLT compression.

In this work, we introduce a novel framework called
Multimodal Alignment-Guided Dynamic Token Pruning
(MADTP) to accelerate VLTs. The MADTP framework
accepts image and text inputs, which are fed into a vision
branch and a language branch to extract visual and language
tokens, respectively. Then, the Multi-modality Alignment
Guidance (MAG) module is designed to learn the semantic
relevance between tokens from two modalities. Specifically,
MAG utilizes learnable tokens to facilitate cross-modal fea-
ture alignment and guide the multimodal token pruning.
Furthermore, the Dynamic Token Pruning (DTP) module is
presented within the Transformer blocks, enabling dynamic
adjustment of the compression ratio for each layer based on
the complexity of different input instances and the learned
alignment guidance. Fig. 1 illustrates the substantial perfor-
mance improvement achieved by our MADTP framework.
Our main contributions can be summarized as follows:

• We reveal the vital role of aligning multi-modalities for
guiding VLT compression, and further propose a novel
multimodal alignment-guided dynamic token pruning
framework called MADTP, to effectively accelerate
various Vision-Language Transformers.

• To relieve the unaligned modalities issue, we propose
the Multi-modality Alignment Guidance (MAG) mod-
ule, explicitly aligning the joint representations from
different modalities and providing guidance during the
multimodal token pruning process.

• To achieve adaptive VLT acceleration based on dif-
ferent inputs, we present the Dynamic Token Pruning
(DTP) module, which dynamically adjusts the com-
pression ratio for each layer of VLT models based on
the complexity of input instance.

• Extensive experiments across diverse datasets and
models consistently verify that MADTP can achieve
new state-of-the-art performance. Notably, MADTP
achieves outstanding compression on the BLIP model
in the NLVR2 dataset, reducing GFLOPs by 80% while
experiencing a performance decrease of less than 4%.

2. Related Work
2.1. Vision-Language Transformer

Vision-Language Transformer(VLT) models aim to make
full use of information from different modalities and have
been proven to be effective in various fields. CLIP [33] and
BLIP [25] are two representative VLT models. CLIP per-
forms well on many downstream tasks by pretraining with
images and texts matching. Further, BLIP uses a cross-
attention layer to interact visual information with text in-
formation during the matching process of images and texts.
Although VLT models show the powerful ability, they gen-
erally suffer high computation costs due to the need to pro-
cess different modalities of information. Thus, it is neces-
sary and of practical value to compress VLT models.
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2.2. Multimodal Compression
The dominant techniques for model compression [8,

18, 37] encompass pruning [2, 4, 40, 42, 46], quantiza-
tion [13], knowledge distillation [15] and low-rank decom-
position [47], among others [20, 21]. However, these meth-
ods mainly focus on single-modality model compression,
such as ViTs, while multimodal compression such as VLTs
remain challenges. To this end, a few works have attempted
to compress the VLT models recently. As the pioneering
work, DistillVLM [12] leverages knowledge distillation to
transfer the knowledge from larger VLTs to smaller VLTs.
Upop [35] adopts a layer-wise dynamic parameter pruning
approach, which uniformly searches subnets and adaptively
adjusts the pruning ratio of each layer. ELIP [17] presents
a vision token pruning technique that eliminates less im-
portant tokens by leveraging language outputs as supervi-
sion. CrossGET [36] introduces the cross tokens to facil-
itate multimodal token pruning. However, all these meth-
ods overlook the significance of multi-modality alignment
guidance for VLT compression, leading to a decrease in the
performance of the compressed models. Although some
works [17, 36] attempt to utilize modality guidance to as-
sist token pruning, this problem still exists. Our proposed
MAG module explicitly aligns the feature representations of
the two modalities using learnable tokens. It provides com-
prehensive guidance for subsequent dynamic token pruning
process, enabling effective resolution of this challenge.

2.3. Token Merging and Pruning
Token merging and pruning [3, 5] are proven effective

for model compression. ToMe [5] designed a token merg-
ing strategy for ViTs, merging similar parts in each block.
Further, [3] merges non-critical tokens into crucial tokens,
which not only reduces the number of tokens but also re-
tains more information. Most of these methods reduce a
fixed number of tokens at each step. However, according
to [34, 39, 43], the number of tokens retained by the cur-
rent block should be related to its importance to the final
task. DynamicViT [34] uses a prediction module to mea-
sure the importance of each patch embedding in the current
input to decide whether to discard the patch. AdaViT [43]
adaptively stop some tokens from participating in subse-
quent calculations. MuE [39] design an early exiting strat-
egy based on input similarity for ViT models. Unlike these
works processing unimodal ViT models, we focus on reduc-
ing the computation cost of various VLT models, by design-
ing a multimodal dynamic token pruning strategy based on
the complexity of the input image and text pairs.

3. Methodology
The MADTP architecture overview is depicted in Fig. 2.

In this following, we first give a brief introduction of the
Vision-Language Transformers in Sec. 3.1. We then present

our Multi-modality Alignment Guidance module and Dy-
namic Token Pruning module in Sec. 3.2 and Sec. 3.3, re-
spectively. Finally, we elaborate on the optimization func-
tion of the framework in Sec. 3.4.

3.1. Preliminaries

Vision-Language Transformers have emerged as the
prominent architectures [25, 26, 33] in multimodal learn-
ing, comprising two branches: the vision branch and the
language branch. The vision branch usually employs the
ViT [10] as the visual encoder, while the language branch
utilizes BERT [9] as the language encoder, extracting vi-
sual and language tokens from their respective modalities.
In detail, given an image and a text as inputs, the visual en-
coder performs patch embedding on the image to generate
the visual tokens V = {V1, V2, ...VN}, where N is the patch
number, and the language encoder processes the words in
the text using token embedding, converting them into lan-
guage tokens L = {L1, L2, ..., LM}, where M is the num-
ber of words. Furthermore, two learnable tokens, Vcls and
Leos, are added to the visual tokens and language tokens,
respectively. These token embeddings provide comprehen-
sive representations for the image and text inputs, which are
then passed through transformer blocks for feature encod-
ing. In VLTs, both the vision and language branches consist
of L layers of transformer blocks. Each block comprises a
Multi-Head Self Attention (MHSA) layer and a Feed For-
ward Network (FFN) layer, enabling the model to capture
contextual relationships within each modality. In addition,
some VLT models like BLIP [25], incorporate several Cross
Attention layers to capture inter-modal interactions and en-
hance information fusion between two modalities.

3.2. Multi-modality Alignment Guidance

As discussed in Sec. 1, the unaligned modalities issue
highlights the challenge of directly applying unimodal to-
ken pruning methods to VLTs. To alleviate this problem,
the Multi-modality Alignment Guidance (MAG) module is
designed to explicitly align the feature representations be-
tween two modalities, and provide sufficient guidance for
the multimodal token pruning process. As shown in Fig. 2,
we insert the MAG module between the transformer blocks
of two modal branches in the VLT architecture.

Specifically, we first apply two linear layers to map the
visual tokens V and language tokens L from each layer of
VLTs into the same feature dimension. The linear layers
and mapping process can be represented as follows:

V ′ = WvV +Bv,

L′ = WtL+Bt,
(1)

where V ′ and L′ are the mapped visual and language to-
kens, respectively. The Wv , Wt, Bv , and Bt are layer-
specific trainable weight matrices and biases.

15712



Pa
tc

h 
Em

be
dd

in
g

A cute baby 
elephant looking 
at a white bird.

To
ke

n 
Em

be
dd

in
g

Se
lf 

A
tte

nt
io

n

Fe
ed

 F
or

w
ar

d 
N

et
w

or
k

Dynamic 
Token Pruning

Se
lf 

A
tte

nt
io

n

Fe
ed

 F
or

w
ar

d 
N

et
w

or
k

Multi-modality 
Alignment Guidance

Multimodal Alignment-Guided Dynamic Token Pruning

Linear Layer ⨂

⨂

Si
m

ila
rL

os
s

MAG module DTP module
sparsemax

Se
lf 

A
tte

nt
io

n

Fe
ed

 F
or

w
ar

d 
N

et
w

or
k

Se
lf 

A
tte

nt
io

n

Fe
ed

 F
or

w
ar

d 
N

et
w

or
k

Multi-modality 
Alignment GuidanceShare Weights

Transformer Block 1 Transformer Block 𝐿

Learnable Tokens

Visual Tokens

Language Tokens
Linear Layer

⨂ 𝑚𝑖𝑛
𝜃

⊛

TIS

TIS

> 𝜃

Learnable 
Threshold

1 0 1 0 1 0

Input Tokens

Prune Mask

Output 
Tokens

Token Prune

TIS : Token Importance Score

⨂ : Matrix Multiplication
⊛ : Hadamard Product
T : Temperature for Prune

Dynamic 
Token Pruning

Dynamic 
Token Pruning

Dynamic 
Token Pruning

𝐴#$%&'(

𝐴#$%&')

&𝐴#$%&'

𝑇

Figure 2. Overview of the proposed MADTP framework. It comprises two main components: the Multi-modality Alignment Guidance
(MAG) module and the Dynamic Token Pruning (DTP) module. The MAG module is placed between the vision and language branches
in VLTs, facilitating explicit alignment of representations across modalities and offering guidance for token pruning. Meanwhile, the DTP
module is incorporated within each transformer block, allowing for dynamic token pruning based on the complexity of input instances.

Next, we utilize learnable tokens E = {E1, E2, ...EK}
as common feature space to establish associations between
the visual and language modalities, where K is the num-
ber of learnable tokens. In detail, we employ a scaled dot-
product attention layer to calculate the correlation between
the learnable tokens E and the mapped visual tokens V ′, re-
sulting in token attention maps Av

token ∈ RK×N and visual
features Ev . This process can be expressed as:

Av
token = softmax(

EV ′T
√
dk

), (2)

Ev = Av
token ∗ V ′, (3)

where dk is a scaling factor. Similarly, we can also ob-
tain the token attention maps Al

token ∈ RK×M between the
mapped language tokens and learnable tokens, and extract
the language features El.

Further, we calculate the similarity between these two
features and incorporate it into the final loss constraint to
assist the model during training. We believe that the vi-
sual and language features learned by the same learnable to-
kens should exhibit strong semantic relevance. Through the

above operations, we explicitly align the representations be-
tween two modalities and obtain token attention maps rep-
resenting the modality alignment achieved by the learnable
tokens. Afterward, these maps are fed into the Dynamic To-
ken Pruning module to guide the token pruning process of
the VLTs, ensuring that the pruned tokens are redundant
in both modalities and enhancing the compression effec-
tiveness of the multimodal model, which is exemplified in
Fig. 3. Note that the MAG modules share weights in the
MADTP framework.

3.3. Dynamic Token Pruning

Dynamic token pruning in single-modality compression
has been proven to be more efficient than static token prun-
ing, as it enables adaptive adjustment of the model’s com-
pression rate based on the complexity of the input instance.
Motivated by this, we have also designed a Dynamic Token
Pruning (DTP) module in the MADTP framework. As il-
lustrated in Fig. 2, we insert the DTP module between the
Self Attention layer and the Feed Forward Network in each
Transformer block, allowing it to dynamically reduce the
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number of input tokens at each layer of VLTs. Following a
similar procedure as in the single-modality token pruning,
we first calculate the importance score for each token. Then,
a learnable threshold is employed to dynamically prune to-
kens at both the input instance-wise and layer-wise levels.
Token Importance Score. Apart from considering token
importance based on the class attention map [29, 44], as
commonly done in traditional token pruning for ViTs, our
approach extends to incorporate the importance of tokens
within the same modality and the guidance of token align-
ment across different modalities. The Token Importance
Score (TIS) is obtained by averaging three types of scores:

TIS = (Scls + Sself + Stoken)/3, (4)

where Scls represents the class attention score as imple-
mented by [29]. Sself and Stoken denote the self-attention
score and token attention score, respectively. Taking the vi-
sual modality as an example, we utilize the self-attention
maps Av

self ∈ RN×N from the MHSA layer and the token
attention maps Av

token ∈ RK×N obtained from the MAG
module to calculate the attention scores Sv

self and Sv
token

through the following steps:

Sv,k
self =

max(Av,k
self )∑N

k=1 max(Av,k
self )

, (5)

Sv,k
token =

max(Av,k
token)∑N

k=1 max(Av,k
token)

. (6)

Here, N refers to the total number of visual tokens.
max(Av,k

self ) and max(Av,k
token) represent the maximum

value for the k-th token in the self-attention maps and token
attention maps, respectively. To ensure the scores are within
the range of [0, 1], the attention scores (Sv

self and Sv
token)

are normalized by dividing them by the sum of their cor-
responding values. Note that by incorporating these three
attention scores, our TIS can effectively avoid discarding
crucial tokens by considering their relevance to the task, as
well as their importance within and across modalities.
Learnable Threshold. To achieve instance-wise adaptive
token pruning while minimizing operational costs, we pro-
pose the use of learnable thresholds for dynamic token prun-
ing within MADTP. Specifically, we utilize the token atten-
tion maps Atoken learned from the MAG module to com-
pute these thresholds. Firstly, we multiply Atoken by a tem-
perature parameter T and apply sparsemax function [30] to
obtain sparse token attention maps, denoted as Âtoken,

Âtoken = sparsemax(T ∗Atoken). (7)

The role of the sparsemax function is to produce sparse
distributions by minimizing the squared Euclidean distance
between the output distribution and the input values.

sparsemax(z) := argmin
p∈∆K−1

∥p− z∥2, (8)

STP MADTP

Text：One panda posed on its back with at least one front paw raised and mouth open.

Image

Figure 3. Visualization of token pruning results between STP and
MADTP, providing strong evidence that our approach emphasizes
modality correlation and effectively avoids pruning crucial tokens.

where ∆K−1 := {p ∈ RK |1Tp = 1,p ≥ 0}. Next, we
perform matrix multiplication between Âtoken and TIS to
obtain K thresholds, and take the minimum value among
these thresholds as the final threshold θ, used for the fol-
lowing token pruning procedure for this DTP module.

θ = min(Âtoken ⊗ TIS). (9)

Token Pruning. Based on the token importance scores and
learnable threshold mentioned above, we can proceed with
the designed token pruning scheme to reduce the number
of input tokens. Firstly, we compare the TIS score of each
token with the threshold θ to obtain the prune mask Mp,
which can be formulated in Equation 10:

Mp(xi) =

{
1, if TIS(xi) > θ,

0, otherwise.
(10)

Where xi represents the i-th input tokens. Then we keep the
tokens with scores greater than the threshold and eliminate
the other tokens according to the pruning mask. However,
directly discarding tokens may result in information loss.
To address this, we adopt a similar approach as EVit [27],
weighting the pruned tokens based on their TIS to generate
a new token, which is then added to the retained tokens.

3.4. Objective Function

Due to VLTs having different loss functions for various
multimodal tasks, we represent the specific task loss func-
tion as Ltask during training. Additionally, as explained in
Section 3.2, we incorporate a similar loss denoted as Lsim

to capture the alignment relationship between the visual fea-
tures Ev and language features El obtained from the MAG
modules for optimizing the model pruning process. Conse-
quently, the overall loss function L of the proposed MADTP
framework can be expressed as:

L = Ltask + αLsim, (11)

where α denotes the balance coefficient. The computation
for Lsim is defined as follows:

Lsim =
1

K

K∑
i=1

(1− cos(Ev
i , E

l
i)). (12)

Where K is the number of visual and language features.
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4. Experiments
4.1. Experimental Setup
Dataset and evaluation metrics. To evaluate our method
comprehensively, four multimodal datasets are used, in-
cluding NLVR2 [38], COCO [28], Flickr30k [45] and VQA
v2.0 [16]. NLVR2 [38] contains 107,292 pairs of im-
ages and text descriptions. COCO [28] comprises around
330,000 images, each accompanied by five text descrip-
tions. Flickr30k [45] is mainly used for image and text
retrieval tasks, and consists of 31,783 images, and each
image has a descriptive title. VQA v2.0 [16] is a human-
annotated, open-ended question-and-answer dataset about
images. Performance evaluation metrics are task-specific,
while model complexity is measured in GFLOPs (Giga-
Floating-Operations per image-text pair).
Implementation details. We use the MADTP framework
to compress the CLIP [33] and BLIP [25] models, which
are initialized with pretrained weights from the official im-
plementation of [35]. During the compressing process, we
utilize 8 A100 GPUs with a batch size of 32, and the hyper-
parameter α in the loss function is set to 0.1. The temper-
ature T in the DTP module is dynamically adjusted at each
epoch, based on the GFLOPs of the pruned model. Due
to space limitations and the variability of training config-
urations across different models, more detailed experiment
settings can be found in Appendix B.

4.2. Experiments on the Visual Reasoning Task
In this section, we conduct experiments utilizing our

MADTP framework to compress the BLIP model on the
NLVR2 dataset. In Table 2, we compare our approach with
the state-of-the-art method [35] to demonstrate its effective-
ness. Additionally, we perform ablation studies to analyze
the impact of different components and hyperparameters of
the MADTP framework, presenting the results in Table 3
and Table 4, respectively. Moreover, we visualize the token
pruning results for the compressed model in Fig. 4.
Comparison to State-of-the-art Approaches. We report
the performance of the MADTP framework for compress-
ing the BLIP model at reduce ratios of 0.3, 0.5, 0.6, 0.7,
and 0.8. The reduce ratio represents the proportion of the
model’s GFLOPs targeted for compression. In order to as-
sess the efficiency of our dynamic compression approach,
we implement a baseline approach called Static Token Prun-
ing (STP) which prunes a fixed number k of redundant to-
kens at each layer of the VLTs based on their importance
scores computed in equation 4. In Table 2, under a reduce
ratio of 0.3, MADTP achieved a 2.17% increase in accuracy
on the dev set and a 2.07% increase on the test set com-
pared to Upop [35]. Notably, at a reduce ratio of 0.5, these
improvements extended to 5.08% and 5.24%, respectively.
Even at higher reduce ratios of 0.6, 0.7, and 0.8, MADTP
demonstrated its ability to further compress the model while

Approach
Reduce
Ratio

Dev Acc Test Acc GFLOPs

Uncompressed / 82.48 83.08 132.54

0.3 79.50 80.01 94.08
STP

0.5 78.08 77.61 68.31

0.3 80.33 81.13 89.36
0.5 76.89 77.61 65.29
0.6 72.85 73.55 50.35
0.7 68.71 68.76 39.93

UPop [35]

0.8 57.17 57.79 19.08

0.3 82.50 83.20 92.60↓30%

0.5 81.97 82.85 66.16↓50%

0.6 81.92 82.42 52.92↓60%

0.7 80.67 81.23 39.69↓70%

MADTP
(Ours)

0.8 78.28 79.22 26.46↓80%

Table 2. Comparison of compression results for BLIP model on
the NLVR2 dataset. Bold indicates the best results. Reduce Ratio
indicates the desired compression ratio of GFLOPs.

Components of MADTP Dev Acc Test Acc GFLOPS

only w/ Sself 81.49 82.13 70.46
only w/ Stoken 80.68 81.00 66.74TIS
only w/ Scls 81.62 82.25 69.67

w/o MAG 79.65 80.96 68.91
Module

w/o DTP 80.83 81.44 68.70

MADTP (Ours) 81.97 82.85 66.16

Table 3. Ablation study of different components in MADTP
framework for compressing BLIP on NLVR2 at 0.5 reduce ratio.

Hyperparameters Dev Acc Test Acc GFLOPS

50 81.44 82.03 67.70
100 81.97 82.85 66.16
150 81.49 82.19 66.79

K

200 81.74 81.96 66.99

256 81.79 82.28 66.94
512 81.79 82.46 68.63
768 81.97 82.85 66.16dk

1024 81.60 81.95 66.55

mean-keep 81.34 81.70 67.10
Operation max-keep 81.97 82.85 66.16

Table 4. Hyperparameters for compressing BLIP on NLVR2 at
0.5 reduce ratio. K and dk donets the number and the channel
dimension of learnable tokens. The ”mean-keep” and ”max-keep”
operations are utilized for parallel training within each mini-batch.

maintaining performance within an acceptable range. Re-
markably, at a reduce ratio of 0.8, our method only experi-
enced a 3.86% drop on the test set compared to the uncom-
pressed model. These results highlight the effectiveness and
superiority of our MADTP in achieving substantial model
compression while preserving task performance across dif-
ferent reduce ratios.
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Image→Text Text→Image
Dataset Approach

Reduce
Ratio R@1 R@5 R@10 R@1 R@5 R@10

GFLOPS

Uncompressed / 96.8 100.0 100.0 86.6 97.8 99.1 395.7
0.5 93.2 99.4 99.8 80.5 95.4 97.6 201.1

UPop [35]
0.75 82.9 95.7 97.8 67.3 89.5 93.5 102.6
0.5 93.9 99.5 99.8 83.3 97.0 98.5 178.8↓55%

Flickr30K
(1K test set)

MADTP (Ours)
0.75 88.4 97.3 99.0 76.9 94.2 97.0 99.5↓75%

Uncompressed / 71.5 90.8 95.4 56.8 80.7 87.6 395.7
0.5 70.8 90.8 95.2 53.1 79.9 87.3 196.3

UPop [35]
0.75 56.1 82.4 90.2 41.1 71.0 81.4 105.9
0.5 72.7 91.8 96.1 55.0 79.9 87.5 190.2↓52%

COCO
(5K test set)

MADTP (Ours)
0.75 66.2 88.4 93.7 49.9 76.3 85.1 92.4↓77%

Table 5. Compress CLIP on the Flickr30K and COCO datasets of the Image-Text Retrieval task. The R@1, R@5, and R@10 are the higher
the better. The best results are in bold.

Image→Text Text→Image
Dataset Approach

Reduce
Ratio R@1 R@5 R@10 R@1 R@5 R@10

GFLOPS

Uncompressed / 96.8 99.9 100.0 86.9 97.3 98.7 153.2
0.5 94.0 99.5 99.7 82.0 95.8 97.6 91.0

UPop [35]
0.75 85.8 97.4 98.4 71.3 91.0 94.9 51.0
0.5 95.1 99.5 99.7 82.3 96.2 98.0 74.5↓51%

Flickr30K
(1K test set)

MADTP (Ours)
0.75 91.8 98.5 99.6 77.1 93.2 96.1 58.7↓62%

Uncompressed / 81.9 95.4 97.8 64.3 85.7 91.5 153.2
0.5 77.4 93.4 97.0 59.8 83.1 89.8 88.3

UPop [35]
0.75 62.9 86.2 92.3 47.4 74.8 83.9 50.2
0.5 79.1 94.2 97.2 60.3 83.6 89.9 87.4↓43%

COCO
(5K test set)

MADTP (Ours)
0.75 71.2 90.0 94.0 53.4 78.4 86.2 50.2↓67%

Table 6. Compress BLIP on the Flickr30K and COCO datasets of the Image-Text Retrieval task. The R@1, R@5, and R@10 are the higher
the better. The best results are in bold.

Effect of Components. Table 3 illustrates the contributions
of different components in the proposed MADTP frame-
work. We evaluate the impact of Token Importance Scores
(TIS) and observe that combining scores from three sources
yields the best results for token pruning. Additionally, we
assess the individual effects of the two modules introduced
in the MADTP framework. The MAG module improves
performance by 2.32% on the dev set and 1.89% on the
test set. Similarly, the DTP module leads to performance
improvements of 1.14% and 1.41% on the respective sets.
These experiments confirm the effectiveness of our pro-
posed module within the MADTP framework.

Effect of Hyperparameters. To illustrate the influence of
various hyperparameters in the proposed MADTP frame-
work, we compare the performance of the pruned model
under different hyperparameter settings. Table 4 showcases
how the compression results are influenced by the number
and channel dimensions of learnable tokens in the MAG
module. The best performance is achieved when K is set
to 100 and dk is set to 768. Additionally, we discuss the
pruning strategy used in the dynamic token pruning pro-
cess. The results indicate that the ”max-keep” operation
yields the best results, which determine the number of to-

kens to prune for a mini-batch based on the instance with
the highest inference complexity.

4.3. Experiments on the Retrieval Task
We compress the CLIP [33] and BLIP [25] models on

the Flickr30K and COCO datasets with reduce ratios of 0.5
and 0.75, respectively. Tables 5 and 6 demonstrate the su-
perior performance of our MADTP framework in image-
text retrieval tasks across different model architectures. It
can be observed that when compressing the CLIP model on
COCO dataset using our MADTP, there is a significant im-
provement in various metrics compared to the Upop [35].
Particularly, for high reduce ratio such as 0.75, we achieved
improvements of up to 10% in certain metrics (e.g., image-
to-text recall@1 increased from 56.1% to 66.2%), and our
GFLOPS metric is lower. Similarly, our MADTP compres-
sion experiments on the BLIP model also achieve impres-
sive results compared to the Upop [35] method.

4.4. Experiments on the Image Caption Task
To assess the generalization capability of our proposed

MADTP, we conducted additional experiments on the Im-
age Caption task. Specifically, we compressed the BLIP
model using reduce ratios of 0.5 and 0.75 on the COCO
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Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 8 Block 12Image

Text:

The animal in the image on the right is standing with its body fully above the surface.Text:

In one image, trucks with snowblades are moving in a coordinated row to remove snow from highway lanes.Text:

Each image features a leaping horned animal jumping toward the right, with front legs bent down instead of extended forward.

Figure 4. Visualization of our MADTP’s compressed BLIP results on NLVR2 dataset at each transformer block. The white mask in the
image represents the pruned visual tokens, while the gray words in the text indicate the discarded language tokens. Our method effectively
learns semantic relevance between modalities and effectively prunes tokens that are unimportant in both modalities.

Approach
Reduce
Ratio

Image Caption Visual Question Answering
CIDEr SPICE GFLOPs Test-dev Test-std GFLOPs

Uncompressed / 133.3 23.8 65.7 77.4 77.5 186.1

0.5 128.9 23.3 39.8 76.3 76.3 109.4
UPop [35]

0.75 117.4 21.7 22.2 74.5 74.6 62.3

0.5 131.0 23.5 39.7↓39% 76.8 76.8 79.4↓57%MADTP (Ours)
0.75 120.1 22.0 22.1↓66% 76.3 76.2 61.6↓67%

Table 7. Compress BLIP on the Image Caption task and the Visual Question Answering task. The CIDEr, SPICE, test-dev, and test-std are
the higher the better. The best results are in bold.

caption dataset. The results in Table 7 demonstrate the supe-
rior performance of our MADTP in the Image Caption task.
Specifically, our MADTP method surpasses Upop [35] in
terms of the CIDEr metric, achieving a 2.1% improvement
at a reduce ratio of 0.5 and a 2.7% improvement at a re-
duce ratio of 0.75. These results emphasize the potential
of MADTP in finding a balance between the computational
cost of Vision-Language Transformers (VLTs) and main-
taining high-quality image captioning capabilities.

4.5. Experiments on the Visual QA Task
In order to further validate the effectiveness of our

MADTP method, we conducted compression experiments
on the BLIP model using the VQA v2.0 dataset with reduce
ratios of 0.5 and 0.75. The results, as depicted in Table 7,
provide clear evidence that MADTP outperforms Upop [35]
in terms of compression performance on the Visual QA
task, particularly at higher reduce ratios. It is worth noting
that our MADTP method achieves a remarkable 57% reduc-
tion in the GFLOPs of the BLIP model while maintaining
a performance degradation of less than 1%. These experi-
mental findings serve as strong validation for the capability
of our MADTP method to effectively accelerate VLTs while
preserving model performance.

5. Conclusion
We present the Multi-modality Alignment-Guided Dy-

namic Token Pruning (MADTP) framework to tackle the
heavy computation costs of VLTs. Our MADTP integrates
the MAG module, which aligns features across modal-
ities and guides the token pruning process to eliminate
less important tokens in both modalities. Additionally, the
DTP module is introduced to dynamically adjust the token
compression ratio based on complexity of input instance.
Through extensive experiments, we show that MADTP is
a promising approach for accelerating VLTs by reducing
computational costs without sacrificing performance.
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