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Abstract

Vision-language generative AI has demonstrated re-
markable promise for empowering cross-modal scene un-
derstanding of autonomous driving and high-definition
(HD) map systems. However, current benchmark datasets
lack multi-modal point cloud, image, and language data
pairs. Recent approaches utilize visual instruction learn-
ing and cross-modal prompt engineering to expand vision-
language models into this domain. In this paper, we pro-
pose a new vision-language benchmark that can be used
to finetune traffic and HD map domain-specific foundation
models. Specifically, we annotate and leverage large-scale,
broad-coverage traffic and map data extracted from huge
HD map annotations, and use CLIP and LLaMA-2 / Vi-
cuna to finetune a baseline model with instruction-following
data. Our experimental results across various algorithms
reveal that while visual instruction-tuning large language
models (LLMs) can effectively learn meaningful represen-
tations from MAPLM-QA, there remains significant room
for further advancements. To facilitate applying LLMs and
multi-modal data into self-driving research, we will release
our visual-language QA data, and the baseline models at
GitHub.com/LLVM-AD/MAPLM.

1. Introduction
Recent breakthroughs in large language models (LLMs),
with their incredible ability to reason [63] and interact with
various tools [48], promise to bring a significant shift in the
landscape of human-agent interaction [55, 65, 74]. They
have also led to growing interest in multi-modal vision-
language models (VLMs) [58, 78], which integrate and en-
hance the reasoning capabilities of LLMs with images, 3D
LiDAR point clouds, videos, and audio and perform various
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Figure 1. Panoramic 2D images, 3D LiDAR point cloud, and HD
map annotations in MAPLM.

tasks such as image captioning, visual question answering
(VQA), scene understanding. Besides, VLMs are used to
align and map language with visual content, allowing lan-
guage to play an important role in analyzing other signals
and passing information to downstream LLMs [33].

In the autonomous driving (AD) industry, VLMs and
LLMs have the potential to understand traffic scenes, thus
enhancing the driving decision-making process and human-
AI interaction of AD systems [10, 11, 22, 26, 76, 86]. By
training on vast amounts of traffic scene data, they can glean
insights from complex multi-modal driving resources such
as map data, traffic laws, and incident reports [9]. This al-
lows them to refine a vehicle’s navigation and planning with
safety and efficiency parameters, adapting to dynamic road
conditions with an understanding that closely mirrors hu-
man intuition [4, 61].

However, while successful in the general domains, the
current version of VLMs is less effective for traffic and
driving scenarios as traffic data-text pairs contain diverse
modalities across 3D LiDAR point clouds, panoramic 2D
images, information from high-definition (HD) maps, are
drastically different from the contexts and question-answer
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Dataset Year QA Caption Scenario Text Modality

Context Image Point Cloud HD Map Info

BDD-X [28] 2018 ✗ ✓ 7K 26K ✓ ✓ ✗ ✗
Talk2Car [13] 2019 ✗ ✓ 34K 12K ✓ ✓ ✗ ✗
SUTD-TrafficQA [71] 2021 ✓ ✗ 10K 63K ✓ ✓ ✗ ✗
DRAMA [39] 2023 ✗ ✓ 18K 103K ✓ ✓ ✗ ✗
nuScenes-QA [47] 2023 ✓ ✗ 34K 460K ✓ ✓ ✓ ✗
NuPrompt [68] 2023 ✗ ✓ 34K 35K ✓ ✓ ✓ ✗
DriveLM [8, 54] 2023 ✓ ✓ 34K 375K ✓ ✓ ✗ ✗
LINGO-QA [43] 2023 ✓ ✓ 28K 420K ✓ ✓ ✗ ✗
Rank2Tell [50] 2024 ✗ ✓ 118 >118 ✓ ✓ ✓ ✗
NuScenes-MQA [27] 2024 ✓ ✓ 34K 1.5M ✓ ✓ ✗ ✗

MAPLM 2024 ✗ ✓ 2M 2M ✓ ✓ ✓ ✓
MAPLM-QA 2024 ✓ ✓ 14K 61K ✓ ✓ ✓ ✓

Table 1. Related datasets can be split into two types: (1) Add additional text annotations into existing datasets like nuScenes [6] (note with
orange); (2) Collect independent data (note with blue).

pairs in the general domain. As a result, general-domain
visual assistants may behave like laypersons, who would
refrain from answering in-detailed traffic and map-related
questions, or worse, produce incorrect responses or com-
plete hallucinations in counting and localization ques-
tions [83]. Much progress has been made in traffic scene
VQA and image captioning, but prior methods typically for-
mulate the problem as a short information extraction task
from single modality visual scenes and are secondary an-
notated from previous segmentation and object detection
datasets [13]. Consequently, although LLMs and VLMs
have demonstrated great potential for self-driving, map un-
derstanding applications [10, 34, 65, 76, 86], current re-
search is often limited by data scale and ignores multi-
modal alignments across different types of traffic scene
data.

In this paper, we introduce MAPLM, a new benchmark
to extend 3D LiDAR point clouds, panoramic 2D images,
and HD map information into LLMs. The dataset con-
tains a benchmark MAPLM-QA with 13,775 frames in-
cluding image-text pairs extracted and annotated from HD
maps. The scene in our dataset covers diverse image cap-
tioning and question-answer types. Inspired by recent work
in instruction-tuning [33] and GPT-4V [44], we design a
multi-modal baseline model for MAPLM.

The contributions of our work are the following:
• We propose MAPLM, a dataset consisting of millions of

complex driving scenes and corresponding HD map text
descriptions, and MAPLM-QA benchmark consisting of
14K frames containing multiple question-answer pairs for
visual instruction tuning.

• To facilitate VLMs for driving and HD map scene under-
standing, we propose a novel multi-modal instruction tun-
ing baseline model in the context of HD map information
extraction for the MAPLM-QA benchmark.

• The baseline model of our MAPLM benchmark demon-
strates superior traffic scene and map understanding per-
formance compared to the state-of-the-art methods.

2. Related Works
2.1. Vision-Language Models

Researchers in computer vision have been actively explor-
ing the use of VLMs for solving multi-modal tasks [31,
49, 82]. With the blooming of LLMs, one of the solu-
tions is tool learning with foundation models [48]. By us-
ing tool learning, the LLMs can understand the user’s in-
tention and call related APIs like code generation to read
data from different modalities when receiving the user’s in-
struction, then generate responses by incorporating the re-
sults obtained from these APIs [53, 67, 77]. Another so-
lution is finetuning or instruction tuning of fundamental
large-scale VLMs [23, 46, 84] such as Flamingo [1] and
MiniGPT4 [87]. Recent work LLaVA [33], Otter [30], In-
structBLIP [12] develop instruction-following LLMs using
the image-instruction tuning dataset, which proved the su-
periority of instruction tuning in multi-modal vision lan-
guage tasks. However, current VLMs struggle to adapt to
high-resolution and visually crowded images due to their
absence of a visual search mechanism [69] and the limited
visual grounding capabilities of CLIP [58].

2.2. Vision-Language Datasets for Driving Scenes

Since the task of visual question answering (VQA) was first
proposed by [2], there have been plenty of VQA datasets for
different research areas [5, 24, 36, 79, 80]. However, only
a few of the VQA datasets focus on traffic scenes and HD
map data which plays an important role in autonomous driv-
ing, and most of them lack key edge cases such as different
weathers and locations [42]. In several pioneering datasets
and benchmark papers, the authors have explored language-
guided visual understanding tasks in driving scenes. These
datasets can be split to two types: (1) Added addi-
tional texts for existing NuScenes [6] dataset such as
Talk2Car [13], NuScenes-QA [47], NuScenes-MQA [27],
DriveLM [8], and NuPrompt [68], NuInstruct [16]; (2) In-
dependent collected datasets such as Rank2Tell [50], BDD-
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X [28], SUTD-TrafficQA [71], DRAMA [39], and LINGO-
QA [43]. However, limited by data scale and data quality,
current datasets can not serve as useful benchmarks to eval-
uate multi-modal LLMs for driving scenes. Besides, the
newest techniques like GPT-4V [44] in the general domain
has already been trained with plenty of open-source traffic
and driving scene datasets. Those vision language datasets
annotated on nuScenes [6] can not serve as reliable bench-
marks to validate existing models. Thus, we need new out
of domain large-scale datasets and benchmarks that contain
more corner cases of various traffic and driving scenarios
and related HD map annotations.

2.3. LLMs for Autonomous Driving

LLMs have shown remarkable potential in complicated sce-
narios such as driving scene understanding and decision-
making [10, 26, 38, 41]. Recent advancements focus on
building visual-language models to generate driving poli-
cies such as DiLu [64], DriveGPT4 [72], GPT-Driver [40],
HiLM-D [15], DriveMLM [60], and DriveVLM [57].
Talk2BEV [14] and LiDAR-LLM [75] also explored the
connection between LLMs, VLMs and bird’s-eye view
(BEV), LiDAR point cloud in autonomous driving contexts.
Besides, LLMs can also enhance the interaction between
passengers and vehicles, improving the personalization and
responsiveness of autonomous driving experiences [9, 20].
An equally crucial area of research is the development
of language-guided closed-loop autonomous driving sys-
tems. These systems leverage multi-modal sensor data
from simulators, as demonstrated by LimSim++ [19] and
LMDrive [52]. Additionally, RAG-Driver [81] introduces
a novel retrieval-augmented in-context learning approach,
significantly enhancing the zero-shot generalization capa-
bilities of driving LLMs. From the industry, Wayve pro-
posed the first open-loop driving commentator LINGO-
1 [62].

Figure 2. Device and data collection of MAPLM. We use collec-
tion cars to collect panoramic images and 3D LiDAR point clouds
for the MAPLM benchmark.

3. Dataset: MAPLM

As we mentioned in the related work section, existing
traffic and driving-related question-answering benchmarks
are often limited by re-labeling previous publicly avail-

able datasets like NuScenes [6] or generated from simu-
lators [17] and are hard to enable safe and detailed analy-
sis required for real-world traffic scenes because their data
contains few edge cases. To address this issue, we propose
MAPLM, a dataset comprising real traffic scene data and
related HD map context annotation. In addition to the visual
data, we also released the MAPLM-QA benchmark, which
consists of commonly used scene understanding questions
across projected BEV images from 3D LiDAR point clouds,
and panoramic 2D images.

3.1. Dataset Collection

We collect the MAPLM using HD map production auto-
mated vehicles including 6 cameras, a LiDAR scanner, in-
stalled at the tail at a 45-degree angle, focusing on scanning
the road surface, and GPS/IMU integration systems (Fig-
ure 2) [56, 85]. The detailed collection parameters will be
released in the MAPLM Dataset document. The raw 3D
point cloud of MAPLM has the characteristics of high den-
sity, the apparent distinction between light and dark reflec-
tion intensity, and the apparent visual features of ground
elements. MAPLM was collected from a variety of traffic
scenarios, including highways, expressways, city roads, and
rural roads, along with detailed intersection scenes, which
ensure the MAPLM dataset contains enough driving edge
cases [56].

3.2. Dataset Annotation

We split the annotation of MAPLM into two phases. In the
first phase, we used our active learning-based multi-modal
vision models for pre-labeling 3D LiDAR point clouds and
panoramic RGB images, and then pre-labeling annotations
were verified by a hired HD map annotation team. The pro-
duction pipeline is similar to the traditional HD annotation
process [18, 45, 51, 66]. We select the most representative
scenarios among 3D LiDAR point clouds and panoramic
images resulting in a total of 2 million frames of LiDAR
point clouds and panoramic images (6 images). For each
data point, we first extract text information from pre-labeled
traffic scene annotations, including lane marking, ground
marking, GPS, and road surface situation. Using HD map
data, we also generate a list of text descriptions including
(1) lane marking information in front of the car; (2) lane
marking information behind the car; (3) stop line informa-
tion around the car; (4) road sign information in front of the
car; (5) road sign information behind the car; (6) cross zone
around the car; (7) intersection zone around the car; (8) lane
change zone around the car.

In the second phase, we hired another annotation team to
verify the data caption annotation and create 13,775 new
question-answer annotations from MAPLM as MAPLM-
QA. Question-answer pairs target various tag dimensions,
such as scene type, number and attributes of lanes, presence
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Annotation

Review by Engineers

HD Map Information:
(1) Lane marking
(2) Ground marking
(3) Traffic sign
(4) Road scene

3D Point Cloud Panoramic 2D images

Q: What kind of road scene is 
it in the images?
Your potential choice is: (1) 
Normal city road. (2) 
Construction road. (3) 
Undeveloped road. (4) Road mark 
repainting. (5) Roundabout. (6)
None of the above.
A: The answer is Normal city 
road.

Q: How many lanes in 
current road? 
A: The answer is 2

Q: Is there any road 
cross, intersection 
or lane change zone 
in the main road?
A: The answer is no.

…

HD Map Raw Data Annotation Procedure Annotated Data

Figure 3. MAPLM and MAPLM-QA Dataset annotation procedure.

of intersections, etc. Sample questions are as follows (To
simplify understanding, we employ abbreviations for each
question type: SCN for road scene understanding; QLT for
quality analysis of point cloud; INT for road intersection
recognition; LAN for lane counting; DES for road and lane
description. The number of questions is shown in brackets):
• SCN: What kind of road scene is it in the images?

(13,775)
• QLT: What is the point cloud data quality in the current

road area of this image? (13,775)
• LAN: How many lanes are on the current road? (13,775)
• INT: Is there any road cross, intersection, or lane change

zone in the main road? (13,775)
• DES: Describe the lane attribute in the current road.

(5,643)
The answers of SCN, QLT, and INT are from a set of

choices, while the answers of DES are followed by LAN.
It is used to describe the lane attribute in the current road
scene, so the description will include two parts, (1) number
of lanes; and (2) attribute of the lane. For example, Figure 4
shows the DES ground truth of a group of scenes.

Figure 4. The DES of this scene is “There are 4 lanes in this scene,
lane attributes from left to right are: bike lane | motorway lane |
motorway lane | bike lane.”

3.3. Data Statistics & Analysis

As Figure 6 describes, after removing general conversation
words, the raw dataset contains well-balanced traffic and

driving-related words. In Table 1, we compare our dataset
MAPLM with other publicly available traffic, map, driv-
ing scene image captioning, and QA datasets. Below we
will make a detailed comparison and explain the advantages
of MAPLM from three aspects: scale, modality, and data
quality. For data scales, MAPLM contains more scenar-
ios than nuScenes-based datasets. Besides, MAPLM does
not only include panoramic 2D images and projected BEV
images from 3D LiDAR point clouds but also contains ad-
ditional HD map information annotation which will be used
as image captioning pretraining tasks for the CLIP visual
encoder. The main edge cases in MAPLM are about geo-
graphical locations and lane attribute diversity based on HD
map annotations (Table 2). The weather edge cases are also
considered in data collection but the weather data statistics
are not included in HD map annotations temporally. From
our experiment, GPT-4V with zero-shot or few-shot infer-
ence can not perform well in MAPLM-QA, but a recently
published tech report showed it can achieve good perfor-
mance in traffic scenes in NuScenes [65]. A possible ex-
planation is there is not enough out-of-domain knowledge
included during the GPT-4V training.

Scene Proportion

Highway 60%
Normal Road (city, rural area) 40%

City Small Road / Alley 3.8%
Mountain Road 4.7%
Toll gate 2.8%
Tunnel 6.6%

Road Construction 1.75%

Low Quality Data (lane marking occlusion, overlap, damage) 7.12%

Intersection 17.3%

Table 2. Geographical locations and lane attributes diversity in
MAPLM.
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Caption 1: One lane marking in front of the vehicle. From
left to right: broken line.
Caption 2: Three lane marking behind the vehicle. From
left to right: solid line, solid line, solid line.
Caption 3: One stop line around the vehicle.
Caption 4: Four road sign in front of the vehicle. From
left to right, they are pavement arrow with go straight, turn
right; pavement arrow with turn right; pedestrian crossing;
pedestrian crossing.
Caption 5: No road sign behind the vehicle.
Caption 6: No crossroad or T-junction around the vehicle.
Caption 7: No small intersection zone around the vehicle.
Caption 8: No lane change zone around the vehicle.

Figure 5. Image caption description in MAPLM.
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Figure 6. Word distribution in the HD map extracted captions
of MAPLM. The figure is drawn based on 2,000 samples in the
MAPLM dataset.

3.4. Evaluation Metrics

To test different VQA baselines for the MAPLM-QA task,
we split the question-answer pairs into two types: Open
QA and Fine-grained QA. Since the answer in Open QA
is unstructured during annotation, we use rule-based met-
rics to evaluate the generated contents. To evaluate LAN,
we extract the lane counting number from the output con-
text and then calculate the correct ratio. The DES is de-

fined based on the rule: if the LAN is predicted wrong,
the DES will be 0; if LAN is predicted correct, the DES
will be the correct ratio of each lane. Fine-grained QA can
be considered as a multi-class classification problem with
multiple options, thus they can be evaluated with the cor-
rect ratio as the accuracy metric. In addition to the evalua-
tion of each item, we also propose to use two overall met-
rics: Frame-overall-accuracy (FRM) and Question-overall-
accuracy (QNS). FRM is 1 if all Fine-grained QA and LAN
are answered correctly for one frame, otherwise, it will be
0. QNS is the correct ratio of all questions.

DES =
1

N

N∑
k=1

(LANk ·
1

M

M∑
j=1

DESk,j) (1)

FRM =
1

N

N∑
k=1

(SCNk ·QLTk ·LANk · INTk) (2)

QNS =
1

N

∑N
k=1 SCNk +QLTk +LANk +INTk

4
(3)

where SCNk ∈ {0, 1}, QLTk ∈ {0, 1}, LANk ∈ {0, 1},
INTk ∈ {0, 1}, DESk,j ∈ {0, 1} are the binary result for
related questions for one frame or one lane. N is the number
of frames in the test set. M is the number of lanes for each
frame.

4. Methodology - Baseline for MAPLM-QA
In this section, we present the baseline model, which serves
as a multi-modal VLM developed for map and traffic scene
comprehension in the domain of autonomous vehicles. The
primary aim of this baseline model is to establish a stan-
dard for future research, enabling performance comparison
for subsequent methods. It is important to note that our in-
tent is not to surpass the performance of existing state-of-
the-art multi-modal LLM approaches, but rather to facili-
tate consistent benchmarking. We first introduce the back-
ground and task definition of multi-modal traffic scene un-
derstanding in the context of autonomous driving and HD
map analysis (Section 4.1). Then, we show the proposed
multi-modal baseline model (Section 4.2). Finally, we in-
troduce the two-stage pretraining and finetuning strategy for
the MAPLM baseline (Section 4.3).

4.1. Task

The goal of multi-modal traffic scene understanding in the
context of autonomous driving and HD map analysis is to
align traffic and map context and driving perception such
as panoramic 2D images and 3D LiDAR point cloud, and
enhance downstream driving decision-making and explain-
able motion planning. The input of the task is multi-modal
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Visual Encoder
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BEV Projection
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A: There are 5 lanes in the image, lane 
attributes from left to right are:
bicycle lane | motorway | motorway | 
motorway | bicycle lane

Q: <image><bev> Describe the 
lane attribute in current road.

… … …

…

…

…

Adapter

[A normal road section scene.] 
[4 lane marking forward.] 
[No stop line around.]
[3 ground arrow around.]
[No zebra marking.]

Map Info 
Tokenizer

HD map APIs

Figure 7. Schematic of the Baseline Instruction Tuning Model. The system ingests multi-modal inputs including panoramic 2D images,
3D LiDAR point clouds, and HD map contexts. Dual CLIP-based visual encoders are utilized to distill features from the images and point
clouds respectively. These extracted features with the HD map info are integrated and processed by LLMs to synthesize coherent responses.

observations O = {Xv, Xpc, Xhd} and the question Xq

from question answer pair (Xq, Y ). Xv , Xpc, Xhd is the
panoramic image input, point cloud input, and HD map
context extracted by other predefined segmentation or ob-
ject detection models. Xq is the question input, while Ŷ is
the answer prediction. The multi-modal traffic scene under-
standing function Fθ can be formulated as:

Ŷ = Fθ(O,Xq) (4)

4.2. Baseline Framework Overview

As shown in Figure 7, MAPLM designed a simple baseline
architecture using a multi-modal encoder and shared LLM
decoder framework. The baseline model will be used for
comparison with other state-of-the-art models.

Baseline Architecture. Following the idea from
LLaVA [33], the MAPLM baseline model used patch
embedding from CLIP to tokenize each panoramic 2D
image into visual tokens. After concatenating tokens from
different views into the input feature map, a pretrained
CLIP visual encoder is used to extract joined features. We
also generate a BEV representation from the 3D LiDAR
point cloud. Each BEV representation is rotated in the
direction of vehicle moving trajectories, and each pixel
gray-scale value represents the reflection intensity of the
local point cloud. The semantic information such as lane
markings, ground signs, and zebra crossing in traffic

scenes can be distinguished according to the light and dark
changes of the reflection intensity. Then, several trainable
projection matrix is used to align panoramic imaging
tokens, and LiDAR point cloud BEV tokens into the text
embedding space of the LLM.

Panoramic 2D image. For m input panoramic 2D images
X1

v , X2
v , ..., Xm

v we use the same tokenizer ϕv from CLIP
visual encoder (ViT-L/14-336) to embed them into tokens
and then concatenate all tokens. The visual feature is ex-
tracted from CLIP’s vision encoder and then the adaptor
layer to map image features into the LLM’s word embed-
ding space:

Zv = Wv ·fv(ϕv(X
1
v )⊕· · ·⊕ϕv(X

m
v )), Zv ∈ Rd×kv (5)

where ⊕ is the concatenation operation. fv is the CLIP
encoder. Wv is the weight of the adaptor layer. d is the
dimension of the LLM embedding. kv is the number of
visual tokens.

LiDAR Point Cloud & BEV. The point cloud BEV im-
age is tokenized by another CLIP’s patch embedding ϕbev

and then extracts point cloud features by CLIP visual en-
coder (ViT-L/14-336). A projection layer is used to map
point cloud tokens into language tokens.
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Zbev = Wbev · fbev(ϕbev(BEV(Xpc))), Zbev ∈ Rd×kbev

(6)
where fbev is the pretrained BEV visual encoder. Wbev is

the projection matrix of the adaptor layer. d is the dimension
of the LLM embedding. kbev is the number of BEV visual
tokens.

Question-Answer with Visual Features and HD Map
Captions. For a sequence of length L, the autoregressive
encoder in the LLM for generation answer is as follows:

P (Ŷ |Zv, Zbev, Xhd, Xq) =

L∏
i=1

P (yi|Zv, Zbev, Xhd, Xq,<i, Ŷ<i; θ)
(7)

where Xq,<i is all of the question tokens (the whole
question) before yi. Ŷ<i is all answer tokens before yi. P is
the conditional probability and θ is the trainable parameter
in LLMs. In our experiment, we adopt Low-Rank Adapta-
tion (LoRA) [25] to finetune the LLM models.

4.3. Training

Inspired by LLaVA [33] and InstructBLIP [12], MAPLM
multi-modal baseline proposed a two-stage training strat-
egy. The first stage is the pretraining of the CLIP visual en-
coder for BEV images. To balance modality coverage and
pretraining efficiency, we merge and filter the 2M image-
HD map information pairs to remove duplicated and sim-
ilar road trajectories and finalize them to 510K image-text
pairs. Then we used cleaned data to train the CLIP’s visual
encoder for BEV images. In the following experiment, we
freeze the weights of both panoramic 2D images and BEV
images’ CLIP visual encoder.

In the second stage, we keep the CLIP weights frozen
and focus on training both the panoramic 2D image and
BEV image adaptor layers (projection layers) between the
CLIP visual encoder and LLM. The adaptor layers for
panoramic 2D images use the same initial weight from
LLaVA [33]. The trainable parameters in the second stage
are Wbev , Wv , and LoRA weight in the LLM.

5. Experiments and Results
Our experiment is designed to set up and test visual-
language baselines and state-of-the-art methods on the pro-
posed MAPLM-QA benchmark for all metrics.

5.1. Experimental Setting

We used the 510K image-text pairs data from MAPLM to
pretrain the CLIP visual encoder. The MAPLM-QA dataset
for instruction tuning is split into the train/validation/test

Hyperparameters Pretraining Finetuning

batch size 16 2
learning rate 1e-4 1e-5
lr scheduler cosine decay [35] cosine decay [35]
lr warmup ratio 0.05 0.05
epoch 2 10
optimizer AdamW [29] AdamW [29]

Table 3. Hyperparameters setup. The rank in LoRA in the experi-
ment is 128.

set with 10775/1500/1500 frames, respectively, for all three
tasks. For GPT-4V models, we used the official model
API gpt-4-vision-preview (Access Date: Nov. 2023). All
frames sent to GPT-4V include panoramic 2D images and
one LiDAR BEV projection image. 0-shot in Table 4 means
no additional data from the training set are provided to
GPT-4 in the input prompt. 5-shot means 5 frames and
QA annotations from the training set are provided to the
input prompt as reference. For instruction tuning models,
all models use LLaMA-2-7B [59] or Vicuna-7B [7] as the
LLM. We pretrain and finetune them following the setups
in Table 3 with 8 NVIDIA V100 GPUs in CLIP pretrain-
ing and 2 NVIDIA A100 GPUs for finetuning. Besides, to
solve the class imbalance problem during baseline model
finetuning, we randomly remove some questions based on
their frequency of occurrence for each training epoch in the
MAPLM-QA dataset.

5.2. Results

Table 4 shows the quantitative comparison between zero-
shot / few-shot GPT-4V [44] and instruction tuning-based
VLMs. Table 5 is the ablation study to compare the GPT-4V
(zero-shot) and baseline model’s performance when using
different modalities as input. GPT-4V [44] is the recently
released cutting-edge VLM, which opens up new vistas for
research and development. LLaVA [33] is an open-source
VLM that showed strong multimodal chat abilities in vari-
ous QA benchmarks [36]. After comparing these methods,
we can observe that:

• Though it performed well in previous open-source
datasets [65], GPT-4V demonstrated challenges in dis-
tinguishing the number of lanes in the MAPLM-QA test
set. Sometimes, it generates incorrect responses to count
lanes. These lane hallucination problems are likely due
to the lack of relevant traffic scene reasoning information
during model training [83].

• Initial weights of LLMs for visual instruction tuning will
influence the multi-modal model’s capability to learn traf-
fic and map-related features.

• Using LoRA can improve the performance of visual in-
struction tuning for the MAPLM-QA benchmark.

• Both GPT-4V and baseline method’s FRM and QNS in-
crease when adding more modalities.
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Method Learning Backbone Open QA Fine-grained QA FRM(↑) QNS(↑)
LAN(↑) DES((↑)) INT(↑) QLT(↑) SCN(↑)

Random Select - - 21.00 - 16.73 25.20 15.27 0 19.55

GPT-4V [44] 0-shot - 56.25 - 62.53 43.75 68.73 18.75 57.81
GPT-4V [44] 5-shot - 58.32 - 74.33 53.18 69.57 20.18 60.94

LLaVA [33] IT+LoRA LLaMA-2-7B [59] 64.33 47.13 65.27 81.60 90.94 38.13 76.08
LLaVA [33] IT+LoRA Vicuna-7B [7] 75.40 64.89 77.53 82.40 95.53 52.27 82.72

Baseline IT LLaMA-2-7B [59] 59.67 47.03 75.87 77.47 92.53 36.27 76.38
Baseline IT Vicuna-7B [7] 72.93 62.75 78.40 82.27 94.93 50.53 82.13
Baseline IT+LoRA LLaMA-2-7B [59] 72.33 56.40 78.67 82.07 93.53 49.07 81.65
Baseline IT+LoRA Vicuna-7B [7] 78.53 70.60 83.20 84.33 96.00 57.99 85.52

Table 4. MAPLM QA Benchmark: Compare both GPT-4V [44] (Accessed Date: Nov, 2023) and state-of-the-art instruction tuning-based
VLMs under MAPLM-QA benchmark. IT: Visual Instruction Tuning, LoRA: Low-Rank Adaptation [25]

Method Modality FRM QNS
image. point cloud.

GPT-4V [44] ✗ ✓ 12.57 53.28
✓ ✓ 18.75 57.81

Baseline ✗ ✓ 45.47 80.25
✓ ✓ 57.99 85.52

Table 5. Ablation study to evaluate the modalities as input. GPT-
4V is under 0-shot setting

The result also proves that currently released LLMs can
work on traffic and HD map data, however, it is still difficult
to answer all questions for one frame correctly. Both GPT-
4V and instruction tuning-based baseline can not achieve
over 60% in FRM. Compared with GPT-4V, the instruc-
tion tuning-based baseline can answer well in lane count-
ing. Furthermore, it is worth noting that the baseline model
achieves 85.52% overall accuracy in answering all ques-
tions from MAPLM-QA (QNS) and 57.99% frame-level ac-
curacy (FRM).

6. Discussion and Outlook

Map systems play a crucial role in autonomous driving nav-
igation, with HD maps providing more refined information
about the vehicles’ operating environments [32, 37, 56, 70].
The integration of LLMs can significantly improve how HD
maps are interpreted, leading to enhanced navigation preci-
sion and a deeper understanding of traffic scenarios. Our
research introduces a new benchmark aimed at advancing
this emerging field, advocating for the application of VLMs
in aligning visual scenes and textual information within HD
maps.

During our experimentation with MAPLM-QA, we iden-
tified a notable challenge: multi-modal LLMs trained with
general domain knowledge often exhibit inaccuracies, such
as lane misperceptions, particularly in scenarios not covered
by existing open-source datasets. Although leveraging Re-

inforcement Learning from Human Feedback (RLHF) can
mitigate these issues in the future, the time cost and safety
concerns are still key limitations. In our paper, we explored
visual instruction tuning as a potential solution. By inte-
grating multi-modal inputs, the baseline model can signif-
icantly enhance performance in comprehending HD map
scenes. Beyond understanding basic traffic elements, multi-
modal LLMs hold the potential for higher-level reasoning
about HD maps. In the future, traffic scene understand-
ing in HD maps can be embedded with Mixture of Experts
(MoE) [3, 21, 73] LLMs as additional API tools for current
autonomous driving systems.

7. Conclusion
In this paper, we introduced MAPLM, a large-scale real-
world vision-language dataset specifically designed for map
and traffic scene understanding. In contrast to the existing
dataset, MAPLM contains more data ensuring broad cov-
erage of real-world scenarios, and can be used to solve the
multi-modal data alignment among panoramic 2D images,
3D LiDAR point cloud, and text data extracted from HD
maps. Our baseline model focused on using projected BEV
images of 3D LiDAR point clouds and panoramic 2D im-
ages together with HD map descriptions to answer ques-
tions from MAPLM-QA. Our experimental results illumi-
nate the need for further advancements in designing new
multi-modal LLMs to fully leverage the dataset’s potential.
The dataset will be made fully available to the public to ac-
celerate the progress of applying LLMs into this new field.
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