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Figure 1. We present Motion2VecSets, a 4D diffusion model for dynamic surface reconstruction from sparse, noisy, or partial point cloud
sequences. Compared to the existing state-of-the-art method CaDeX [25], our method can reconstruct more plausible non-rigid object
surfaces with complicated structures and achieve more robust motion tracking.

Abstract
We introduce Motion2VecSets, a 4D diffusion model for

dynamic surface reconstruction from point cloud sequences.
While existing state-of-the-art methods have demonstrated
success in reconstructing non-rigid objects using neural
field representations, conventional feed-forward networks
encounter challenges with ambiguous observations from
noisy, partial, or sparse point clouds. To address these
challenges, we introduce a diffusion model that explicitly
learns the shape and motion distribution of non-rigid ob-
jects through an iterative denoising process of compressed
latent representations. The diffusion-based priors enable
more plausible and probabilistic reconstructions when han-
dling ambiguous inputs. We parameterize 4D dynamics
with latent sets instead of using global latent codes. This
novel 4D representation allows us to learn local shape and
deformation patterns, leading to more accurate non-linear
motion capture and significantly improving generalizabil-
ity to unseen motions and identities. For more temporally-
coherent object tracking, we synchronously denoise defor-
mation latent sets and exchange information across multi-
ple frames. To avoid computational overhead, we designed
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an interleaved space and time attention block to alternately
aggregate deformation latents along spatial and temporal
domains. Extensive comparisons against state-of-the-art
methods demonstrate the superiority of our Motion2VecSets
in 4D reconstruction from various imperfect observations.

1. Introduction
Our world, dynamic in its 4D nature, demands an increas-
ingly sophisticated understanding and simulation of our
living environment. This offers significant potential for
practical applications, including Virtual Reality (VR), Aug-
mented Reality (AR), and robotic simulations. There have
been notable advances in 3D object modeling, particularly
in representations through parametric models [27, 30, 36,
45, 67]. Unfortunately, these template-based models are
not effectively suited to capture the 4D dynamics of gen-
eral non-rigid objects, due to the assumption of a fixed tem-
plate mesh. Model-free approaches [25, 32, 52] represent
a significant advance by using coordinate-MLP represen-
tations for deformable object reconstruction with arbitrary
topologies and non-unified structures. However, these state-
of-the-art methods still encounter challenges when facing
ambiguous observations of noisy, sparse, or partial point
clouds since it is an ill-posed problem where multiple pos-
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sible reconstructions can match the input. In addition, they
represent dynamics as a sequence of single latent codes and
thus struggle to capture shape and motion priors accurately.
These issues become even more severe with unseen identi-
ties due to the limited generalizability of global latent rep-
resentation.

To address the above-mentioned challenges, we propose
Motion2VecSets, a diffusion model designed for 4D dy-
namic surface reconstruction from sparse, noisy, or partial
point clouds. It explicitly learns the joint distribution of
non-rigid object surfaces and temporal dynamics through an
iterative denoising process of compressed latent representa-
tions. This enables more realistic and varied reconstruc-
tions, particularly when dealing with ambiguous inputs. In-
spired by the observation that objects with varying topolo-
gies often share similar local geometry and deformation pat-
terns, we represent dynamic surfaces as a sequence of latent
sets to preserve local shape and deformation details: one for
shape modeling of the initial frame and others for describ-
ing the temporal evolution from the initial frame. This latent
set representation naturally enables the learning of more
accurate shape and motion priors, enhancing the model’s
generalization capacity to unseen identities and motions.
Specifically, we introduce the Synchronized Deformation
Vector Set Diffusion, which simultaneously denoises the
deformation latent sets across different time frames to en-
force spatio-temporal consistency over dynamic surfaces.
To manage the memory consumption associated with mul-
tiple deformation latent set diffusions, we design an inter-
leaved space and time attention block as the basic unit for
the denoiser. These blocks aggregate deformation latent
sets along spatial and temporal domains alternately. As il-
lustrated in Figure 1, our Motion2VecSets can reconstruct
more plausible non-rigid object surfaces with complicated
structures and achieve more robust motion tracking than the
state-of-the-art method. Our contributions can be summa-
rized as follows:

• We present a 4D latent diffusion model designed for dy-
namic surface reconstruction, adept at handling sparse,
partial, and noisy point clouds.

• We introduce a 4D neural representation with latent sets,
significantly enhancing the capacity to represent compli-
cated shapes as well as motions and improving generaliz-
ability to unseen identities and motions.

• We design an Interleaved Spatio-Temporal Attention
mechanism for synchronized diffusion of deformation la-
tent sets, achieving robust spatio-temporal consistency
and advanced computational efficiency.

Extensive comparisons against state-of-the-art methods
demonstrate the superiority of our Motion2VecSets in dy-
namic surface reconstruction on the Dynamic FAUST [3]
and the DeformingThings4D-Animals [28] datasets.

2. Related works
3D Shapes Traditional methods in 3D representation have
primarily used meshes [18, 29, 38, 49, 50, 59], point clouds
[1, 15, 65], and voxels [12, 16, 19, 43, 48] to represent
geometry. Complementing these are parametric models,
which have effectively modeled specific shape categories,
such as human bodies (e.g., SMPL [30], STAR [36]), faces
(e.g., FLAME [27]), hands (e.g., MANO [45]), and animals
(e.g., SMAL [67]). However, these parametric approaches
often rely on fixed templates, which can result in difficulties
accurately modeling general non-rigid objects without con-
sistent topological structures. Meanwhile, recent advance-
ments in 3D representation are increasingly using implicit
methods [5, 6, 9, 10, 17, 32, 39, 51, 58, 62, 63], known for
their greater flexibility to represent objects with arbitrary
topologies. In particular, Occupancy Networks [32] and
DeepSDF [39] employ a continuous implicit framework,
enabling the representation of volumetric grids offering po-
tentially infinite resolution.

4D Dynamics Recent advancements have successfully
extended 3D representations to 4D, which more effectively
captures object dynamics [4, 15, 23, 25, 26, 35, 37, 47,
52, 53, 66]. For example, OFlow [35] incorporates Neural-
ODE [56] for simulating deformations. LPDC [52] replaces
Neural-ODE with an MLP and learns local spatio-temporal
codes, capturing both shape and deformations. CaDeX [25]
employs a learnable deformation embedding between each
frame and its canonical shape. However, methods relying
on either ODE [35] solvers or a single global latent vec-
tor [25, 37, 52] coupled with an MLP network face chal-
lenges in capturing complex real-world 4D dynamics, par-
ticularly in non-rigid objects. Drawing inspiration from
3DShape2Vecset [63], which uses a set of latent codes to
represent similar local geometry patterns across objects, our
proposed method leveragesa similar approach for charac-
terizing 4D dynamics. Different objects share similar local
deformation patterns, our framework uniquely assigns a dis-
tinct learnable latent code to each local region, significantly
enhancing their ability to precisely model and generalize to
unseen identities and motions.

Diffusion Models Diffusion models [20], known for their
Markov chain-based denoising capability, have made im-
pressive progress in multiple tasks, including image and
video processing [7, 14, 21, 33, 34], 3D vision [2, 11, 22,
31, 44, 54, 55, 57, 61]. These models are adept at captur-
ing complex data distributions. In the field of 3D vision,
their applications are varied: Luo et al. [31] have success-
fully applied diffusion models to point cloud generation,
and Rombach et al. [2, 44] have adapted them for latent
space representations. Additionally, integration with Point-
Net [41] and triplane features [40], as seen in DiffusionSDF
[11], has further enhanced their training capabilities. Con-
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Figure 2. Overview Pipeline of Motion2VecSets. Given a sequence of sparse and noisy point clouds as inputs{Pt}Tt=1, Motion2VecSets
outputs a continuous mesh sequence {Mt}Tt=1. The initial input frame P1 (top left) is used as a condition in the Shape Vector Set
Diffusion, yielding denoised shape codes S for reconstructing the geometry of the reference frame M1 (top right). Concurrently, the
subsequent input frames {Pt}Tt=2 (bottom left) are utilized in the Synchronized Deformation Vector Sets Diffusion to produce denoised
deformation codes {Dt}Tt=2, where each latent set Dt encodes the deformation from the reference frame M1 to subsequent frames Mt.

current work NAP [26] advances 3D object generation by
effectively modeling articulated objects with a novel pa-
rameterization and diffusion-denoising approach. A key
challenge in representing 4D dynamics with existing diffu-
sion models is their tendency to adapt 3D models directly to
4D and process each frame independently, which can result
in discontinuities in temporal and spatial relationships. To
bridge this gap, our approach implements synchronous de-
noising processes for sets of codes. This innovation ensures
not only a reduction in spatial complexity but also consis-
tent deformations in latent space. Moreover, recent works
[13, 22, 42, 46, 57, 60, 64] in the field of 3D pose estimation
and generation also indicate the power of diffusion models.
DiffPose [22] utilizes the diffusion model to handle very
ambiguous poses and can even predict an infinite number of
poses. PhysDiff [60] produces physically plausible motions
by incorporating a physics-based motion projection within
its diffusion process. However, these methods are still in
the realm of pose, our method expands the application of
diffusion models to a broader range of deformable surfaces
of general non-rigid objects. Similar to the concurrent work
DPHMs [54], our approach utilizes diffusion priors to facil-
itate robust 4D reconstruction from imperfect observations.

3. Approach
The inputs are T frames of sparse, partial, or noisy point
clouds, represented by P = {Pt}Tt=1, where Pt ={
pi ∈ R3

}L

i=1
, L represents the number of points. The

goal is to reconstruct continuous 3D meshes with high fi-
delity, denoted as {Mt}Tt=1 = {Vt,F t}Tt=1, where Vt and

F t refer to the set of vertices faces of the reconstructed
mesh at time frame t. Conventional feed-forward mod-
els face challenges in handling ambiguous inputs within an
ill-posed problem setting. Particularly, when observations
are sparse, partial, and noisy, generating meaningful recon-
structions becomes highly challenging without robust prior
knowledge. To reconstruct high-fidelity dynamic shapes ac-
curately, we proposed 4D latent set diffusion to learn shape
and motion priors, explicitly learning the distribution of de-
formable object surface sequences via compressed latent
vector sets. While the diffusion model enhances realistic
surface reconstruction and deformation tracking, generating
multi-modal outputs, the latent set representation and trans-
former architecture provide the capability to capture more
accurate geometry and deformation priors.

3.1. 4D Neural Representation with Latent Sets
Previous works often utilize single global codes [25, 35, 52]
to represent 4D sequences, potentially losing significant
surface geometry and temporal evolution information. To
retain as much detail as possible, we advocate the use of
two distinct sets of latent vectors. Specifically, the shape
latent set is responsible for reconstructing the initial frame,
serving as the reference frame, while the deformation cor-
respondences between the reference and subsequent frames
are encoded by the deformation latent set. Compared with
previous methods [25, 35, 52] relying on a single global
code, we assign local latent codes to individual local re-
gions, which significantly improves the network’s capabil-
ity to accurately model non-linear motions and generalize
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Figure 3. Deformation Autoencoder. Given a pair of point clouds
Xsrc and Xtgt from two frames of a dynamic mesh sequence, we
initially downsample them using farthest point sampling (FPS).
Subsequently, the concatenated points are passed into transformer
encoder to generate the Deformation Latent Set D. For a query
point q in the source space, a cross-attention layer is utilized to
match the most relevant fused feature z. This selected feature is
subsequently fed into the deformation MLP decoder to predict an
offset ∆q, translating it to q′ in the target space. To reduce the
feature diversity of D, KL-regularization is employed.

to unseen identities and motions. Given that different non-
rigid objects share similar local geometry and deformation
patterns, the latent sets can also increase the generalization
ability to handle unseen motions and identities.
Shape Latent Set Similar to 3DShape2VecSet [63], we
utilize a shape autoencoder to compress the surface of the
initial frame into a set of latent codes. Concretely, we lever-
age a transformer encoder that condenses the 3D surface
of the initial frame into a set of latent vectors denoted as
 \mathcal {S} = \{\mathbf {s}_i \in \mathbb {R}^C\}_{i=1}^M    . Here,  M represents the overall count
of codes and  C denotes their dimensionality. Following
that, a cross-attention layer is used to fuse the latent codes
for occupancy field prediction through an MLP. Training
involves minimizing the binary cross-entropy (BCE) loss,
which aligns the predicted occupancy  \hat {\mathcal {O}}(\mathcal {Q})  with the actual
occupancy  \mathcal {O}(\mathcal {Q}) , Q refers to the query points:

  \mathcal {L}_{\text {recon}}\left (\mathcal {S},\mathcal {Q}\right )=\mathbb {E}_{\mathcal {Q} \in \mathbb {R}^3}[\operatorname {BCE}(\hat {\mathcal {{O}}}, \mathcal {O})] \label {eq:shape_codes} \vspace *{-2mm}       (1)

Deformation Latent Set As shown in Figure 3, to rep-
resent the deformation between different non-rigid poses,
we first sample a pair of point clouds  \mathbf {X}_{\text {src}}  and  \mathbf {X}_{\text {tgt}}  of
size N with same sampling indices from a mesh sequence.
Then, we employ a uniform farthest point sampling (FPS)
strategy to eliminate spatial redundancy while preserving
point correspondence. This process facilitates a concate-
nation step, where we combine the original and downsam-
pled pairs of point clouds {Xsrc,Xtgt}, respectively. The
subsequent transformer encoder is applied to extract de-
formation details in the local regions around subsampled

points, resulting in the deformation latent set denoted as
D = {di ∈ RC}Mi=1. Query point q ∈ Qsrc from the
source space is utilized as the query for cross-attention, ex-
tracting the most relevant fused feature  \mathbf {z} in the deforma-
tion latent space. A linear deformation layer then maps
these features to the predicted target points q′ through a
flow field. The correspondence loss calculates the  \ell _2 -norm
distance between the predicted and true target point clouds:

  \mathcal {L}_{\text {corr}}\left (\mathcal {D}, \mathcal {Q}_{\text {src}}\right ) = \mathbb {E}_{\mathcal {Q}_{\text {src}} \in \mathbb {R}^3}[\operatorname {MSE}(\hat {\mathcal {Q}}_{\text {tgt}}, \mathcal {Q}_{\text {tgt}})]       (2)

KL Regularization Consistent with the latent diffusion
framework [44], our model incorporates KL-regularization
in the latent space to modulate feature diversity. This en-
sures the preservation of high-level features and keeps co-
herent global geometric and deformation patterns, which
promotes the learning of diffusion models. In summary,
we characterize a sequence through the shape latent set S1

of the initial reference frame, which describes the implicit
surface, and deformation latent sets D2,D3, ...,DT that de-
pict the dense correspondences between the initial reference
frame and the subsequent frames.

3.2. 4D Latent Set Diffusion
3.2.1 Shape Diffusion
Following the diffusion paradigm in EDM by Karras et al.
[24], we aim to minimize the expected  \ell _2 -denoising error.
This is achieved by adding the noise ϵ sampled from the
Gaussian distribution to the shape latent set S, and then
feeding the noise-added code Ŝ = S + ϵ to the denoiser
(to avoid confusing, we also use S to represent its matrix
form RN×C). The whole process is denoted as:

  \mathbb {E}_{\mathbf {\epsilon } \sim \mathcal {N}(0, \sigma ^2 \mathbf {I})} \left \| \text {Denoiser}\left (\hat {\mathcal {S}}, \sigma , \mathcal {C} \right ) - \mathcal {S} \right \|_2^2 



 







(3)

Here,  \sigma represents the noise level. Conditional latent set C is
defined as C(P1) = {ci ∈ RC}Mi=1, which is generated by
sending the first input frame  \mathbf {P}^1  to the conditional encoder.

3.2.2 Synchronized Deformation Diffusion
To adapt these 3D models [27, 36, 45, 67] directly to 4D,
the most straightforward approach is frame-by-frame pro-
cessing, which may lead to discontinuities in temporal and
spatial correspondence. Another approach is to aggregate
all spatial-temporal point clouds, which would significantly
increases the time complexity to O(T^2 N^2)  for a sequence
of T frames and N points each. However, our 4D latent set
representation allows us to bypass the need for brute-force
attention across spatial and temporal domains. As discussed
in Sec. 3.1, the deformation latents at identical spatial po-
sitions across different frames correspond to the deforma-
tion behaviors of the same local surface region. Leverag-
ing this property, we implement an alternating aggregation
approach for the latent features, systematically switching
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Figure 4. Synchronized Deformation Vector Set Diffusion.
Given noised deformation vector sets {D̂t}Tt=2 (top) from a se-
quence, each set denoted as D̂t = {d̂t

1, ..., d̂
t
M} of timestep

t ∈ [2, T ], we use repeated Interleaved Spatio-Temporal Atten-
tion Blocks (ISTA) as our denoising network. In each ISTA block,
we first pass them to the space self-attention layer (Space Atten-
tion) to aggregate latent features D̂t across different spatial loca-
tions within each frame to explore spatial contexts. Next, we in-
ject conditional information extracted from sparse or partial point
clouds via cross-attention (Condition Attention) between condi-
tional codes Ct and noised deformation codes D̂t at each frame.
Lastly, to enhance temporal coherence, a time self-attention layer
(Time Attention) is used to aggregate latent codes from the same
position but from different frames, i.e. {d̂t

i}Tt=2. Repeat this ISTA
block and we finally get denoised deformation latent sets {Dt}Tt=2

(bottom). Within each layer, different colored latents represent the
dynamics of distinct local regions, while the same colored latents
represent the dynamics of a local region at different time steps.

between the spatial and temporal domains. This method
not only enhances efficiency but also preserves the accu-
racy of our model, leading to a reduction in time complex-
ity to O(T N^2) in the spatial domain and O(N T^2)  in the
temporal domain. The details of synchronized deformation
diffusion are described as follows. Given sparse input point
clouds \protect \mathcal  {P}=\left \{\mathbf {P}^t\right \}_{t=1}^{T}  , we pair subsequent frames with the
first reference frame  \mathbf {P}^1 , i.e., \ifmmode \lbrace \else \textbraceleft \fi  \mathbf {P}^1,\mathbf {P}^t \}_{t=2}^{T}. These pairs are
encoded into a series of conditional latents \protect \mathcal  {C}^t(\mathbf {P}^1, \mathbf {P}^t) = \{\mathbf {c}_i \in \mathbb {R}^C\}_{i=1}^M 
   via a transformer encoder. Then these con-
ditional latents, together with the diffused shape latent set
\protect \mathcal  {S}^1 in Sec. 3.2.1, are injected into the denoising network as
the condition providing guidance for the network to handle
ambiguous scenarios, like partial observation.
Interleaved Spatio-Temporal Attention Figure 4 de-
picts the denoiser network of our proposed synchronized

deformation latent set diffusion. The basic unit is the de-
signed Interleaved Spatio-temporal Attention Block (ISTA).
Each ISTA block contains three attention layers: Space Self-
Attention Layer, Conditional Cross-Attention Layer and
Time Self-Attention Layer. The Space Self-Attention Layer
initiates spatial information exchange within each set of
noised deformation codes D̂t = {d̂t

i}Mi=1:

  \mathbf {SpaceAttn}= \operatorname {SelfAttn}(\{\hat {\mathbf {d}}_i^t \}_{i=1}^{M})  
 (4)

This is then followed by the Conditional Cross-Attention
Layer. Conditional codes Ct(P1,Pt) = {ci ∈ RC}Mi=1

from a partial or sparse point cloud are subjected to cross-
attention with CondAttn:

  \mathbf {CondAttn} = \operatorname {CrossAttn}( \{\hat {\mathbf {d}}_i^t \}_{i=1}^{M},\mathcal {C}^t)  
  (5)

Finally, to improve coherence in the time dimension, a Time
Self-Attention Layer is implemented among deformation
codes from different timesteps but from the same position
(same index i but different t). Consequently, through this
setup, the TimeAttn is effectively obtained:

  \mathbf {TimeAttn}= \operatorname {SelfAttn}(\{\hat {\mathbf {d}}_i^t\}_{t=2}^{T})  
 (6)

In the denoising phase, we regard the entire sequence of
deformation codes as a unified entity and apply a uniform
noise reduction strategy across all codes, which preserves
the consistency of local deformation patterns. Contrary to
assigning individual noise to each set of shape codes, we
add a consistent uniform noise ϵ to the deformation codes of
the entire sequence {D̂t}Tt=2 = {Dt}Tt=2+ϵ. The denoising
objective is thus formulated as:

  \mathbb {E}_{\mathbf {\epsilon } \sim \mathcal {N}(0, \sigma ^2 \mathbf {I})} \left \| \text {Denoiser}\left (\{\hat {\mathcal {D}^t}\}_{t=2}^{T}, \sigma , \mathcal {C} \right ) - \{\mathcal {D}^t\}_{t=2}^{T} \right \|_2^2 



  






(7)

Here, C represents conditional codes derived from observa-
tions, {Dt}Tt=2 can also be represented in its 3D matrix form
as RM×(T−1)×C . This approach not only ensures unifor-
mity in the denoising process but also significantly reduces
computational overhead.

4. Experiments
Datasets: We conducted experiments on two 4D datasets.
The first, Dynamic FAUST (D-FAUST) [3], focuses on hu-
man body dynamics, including 10 subjects and 129 se-
quences. It is split into training (70%), validation (10%),
and test (20%) subsets, following [35]. The second,
DeformingThings4D-Animals (DT4D-A) [28], includes 38
identities with a total of 1227 animations, divided into train-
ing (75%), validation (7.5%), and test (17.5%) subsets as
[25]. The training and validation sets use motion sequences
of seen individuals. The test set is divided into two parts:
unseen motions and unseen individuals.
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Figure 5. Comparisons of 4D Shape Reconstruction from sparse and noisy point clouds on the D-FAUST [3] (left) and the DT4D-A [28]
(right) datasets. We visualize the Chamfer Distance between reconstruction and ground-truths as error maps. Our method can reconstruct
more accurate surface geometries and motion dynamics.
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Figure 6. Comparisons of 4D Shape Completion from monocular noisy depth scans on D-FAUST [3] (left) and DT4D-A [28] (right)
datasets. Our method exhibits lower reconstruction errors and achieves more plausible tracking.

Baselines: We compare against state-of-the-art methods
in 4D reconstruction, including OFlow [35], LPDC [52],
CaDex [25]. OFlow assigns each 4D point both an occu-
pancy value and a motion velocity vector, utilizing a Neural-
ODE framework [8] for learning deformations. LPDC em-
ploys a MLP to parallelly learn correspondences among
occupancy fields across different time steps via explicitly
learning continuous displacement vector fields from spatio-
temporal shape representation. CaDeX introduces a canon-
ical map factorization and utilizes invertible deformation
networks to maintain homeomorphisms. For fair compar-
isons, we follow their original training paradigms.
Evaluation Metrics: The Intersection over Union (IoU)
evaluates the overlap between predicted and ground truth
meshes; The Chamfer distance calculates the average

nearest-neighbor distance between two point sets; ℓ2-
distance error measures the Euclidean distance between cor-
responding points on the predicted and ground truth meshes.
Implementations: The training of our approach consists
of two stages. The first stage involves two auto-encoders.
The input point clouds (N = 2048) are randomly sam-
pled from object surfaces and near-surface regions. For
the shape auto-encoder, the learning rate is 10−4, with KL-
divergence loss weights 10−3. For the deformation auto-
encoder, the learning rate is 10−4, with KL-divergence loss
weights 10−6. They are trained for 100 epochs with batch
size 24. The second stage is the diffusion models, the learn-
ing rate for both shape and deformation diffusion models is
10−4 and they are trained for 50 epochs with a batch size of
8 for shape diffusion and 4 for deformation diffusion.
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Input Method Unseen Motion Unseen Individual

IoU ↑ CD ↓ Corr ↓ IoU ↑ CD ↓ Corr ↓

DT4D-A
[28]

OFlow [35] 70.6% 0.104 0.204 57.3% 0.175 0.285
LPDC [52] 72.4% 0.085 0.162 59.4% 0.149 0.262
CaDex [25] 80.3% 0.061 0.133 64.7% 0.127 0.239

Ours 88.9% 0.050 0.061 83.7% 0.058 0.074

D-FAUST
[3]

OFlow [35] 81.5% 0.065 0.094 72.3% 0.084 0.117
LPDC [52] 84.9% 0.055 0.080 76.2% 0.071 0.098
CaDex [25] 89.1% 0.039 0.070 80.7% 0.055 0.087

Ours 90.7% 0.033 0.047 83.7% 0.045 0.064

Table 1. Quantitative comparisons of 4D Shape Reconstruc-
tion from sparse and noisy point cloud sequences on the
DT4D-A [28] and the D-FAUST [3] datasets.

Input Method Unseen Motion Unseen Individual

IoU ↑ CD ↓ Corr ↓ IoU ↑ CD ↓ Corr ↓

DT4D-A
[28]

OFlow [35] 64.2% 0.305 0.423 55.1% 0.408 0.538
LPDC [52] 62.2% 0.339 0.427 51.6% 0.467 0.488
CaDex [25] 70.8% 0.254 0.499 59.2% 0.379 0.498

Ours 73.3% 0.177 0.404 66.3% 0.193 0.438

D-FAUST
[3]

OFlow [35] 76.9% 0.084 0.165 66.4% 0.109 0.194
LPDC [52] 68.3% 0.138 0.167 59.6% 0.156 0.204
CaDex [25] 80.7% 0.074 0.123 70.4% 0.096 0.157

Ours 83.8% 0.054 0.111 74.4% 0.075 0.140

Table 2. Quantitative comparisons of 4D Shape Completion
from monocular noisy depth scans on the DT4D-A [28] and
the D-FAUST [3] datasets.

Runtime: The training takes about 60 hours(2*RTX 4090) .
The inference takes about 11s for 17 frames(1*RTX 3080).

4.1. 4D Shape Reconstruction
We initially assessed our models’ ability for 4D reconstruc-
tion from sparse and noisy point cloud sequences Consis-
tent with the setup in OFlow [35], our network processed
sequences of T = 17 continuous frames. Each frame rep-
resented a sparse point cloud, with L = 300 for D-FAUST
[3] or L = 512 for DT4D-A [28]. We also simulate noisy
observations with Gaussian noise (σ = 0.05).

Quantitatively, our model demonstrates superior perfor-
mance over state-of-the-art models on the D-FAUST [3] and
DT4D-A [28] datasets, as detailed in Tab. 1. This superior-
ity is particularly notable in the unseen individual category
of the DT4D-A dataset, which features more diverse topolo-
gies from various animals. Additionally, both chamfer dis-
tance and \ell _2-correspondence error are reduced to less than
half of those recorded by the previous state-of-the-art meth-
ods. Qualitatively, as illustrated in Fig. 6, our model out-
performs in reconstructing complete shapes and minimiz-
ing chamfer distance errors, particularly in capturing fast-
moving structures like feet of humans and heads of animals.

The superiority of our model is attributed to the pro-
posed 4D latent set diffusion, enabling a more precise cap-
ture of local geometry and deformation patterns. Methods
like LPDC [52] and OFlow [35] perform well in human
settings thanks to similar human topologies, while CaDex
[25] benefits from canonical shape learning. However, the
diverse topologies and scales in animal setup, such as drag-
ons, present a significant challenge for models that optimize
global codes. Our approach, in contrast, effectively captures
these complex 4D dynamics of general non-rigid objects.

4.2. 4D Shape Completion
4.2.1 Monocular Depth Sequences
To simulate sparse and partial real-world scans, we gener-
ated monocular depth sequences by rendering from a fixed
camera angle. The size of the point cloud input and the
frame length are the same as Sec. 4.1. The qualitative and
quantitative comparisons are presented in Fig. 6 and Tab. 2.

As seen, our method consistently outperforms all state-of-
the-art methods in all metrics and produces more complete
surface geometries with more plausible motion tracking.
This demonstrates the effectiveness of the motion priors
learned by our proposed 4D latent set diffusion in address-
ing ambiguous data such as partial observations.

4.2.2 Partial Scan Sequences
To assess the robustness of our method to extremely am-
biguous data, we set up a challenging experiment on the
D-FAUST [3] dataset. This involved reconstructing whole
body motions based on partial point clouds of the upper
bodies. This setup creates a highly ambiguous scenario,
as the same upper body motion can correspond to many
different lower-body. We adopt the same configuration as
Sec. 4.1, with a frame length (T = 17) and input point
cloud size (L = 300). As the Fig. 7 shows, OFlow [35],
LPDC [52], and CaDex [25] face challenges in reconstruct-
ing the complete shape, often producing distorted shapes
such as broken feet. In contrast, our method excels in recon-
structing more complete geometries while achieving tempo-
rally coherent tracking. Additionally, our approach present
a diverse range of plausible full-body reconstructions that
align with the given upper-body scans. The superior perfor-
mance is primarily attributed to the 4D latent set diffusion.
Our diffusion-based method is more capable of tackling the
‘one-to-many’ complexities from extremely partial data.

4.3. Ablation Study
We conducted ablation studies to validate the effectiveness
of each component (See Tab. 3, Fig. 8) under the setting of
4D Shape Completion from monocular noisy depth scans
on the D-FAUST [3] dataset.
What is the effect of diffusion model? 4D surface recon-
struction from ambiguous observations of noisy, sparse, or
partial point clouds is an ill-posed problem. Deterministic
models often yield sub-optimal results. We provide com-
parisons against the variant of one-step regression without
diffusion models. As shown in Fig. 8 and Tab. 3, diffusion
model uses a probabilistic way to deal with highly ambigu-
ous inputs and generate plausible predictions. Also, diffu-
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t Input OFlow LPDC CaDeX Ours

Figure 7. Comparisons of 4D Shape Reconstruction from
highly partial point cloud sequences, such as half-body
scans obtained from the D-FAUST [3] dataset. The colors
of the meshes encode the correspondence. Our diffusion-
based method produces highly complete human shapes with
more favorable motions, offering multiple possible outputs
that match the input observations.

sion models can handle “one-to-many” problems and gen-
erate diverse and creative outputs as shown in Fig. 7.
What is the effect of latent vector set representation?
Instead of using single global latent code, our approach em-
ploys 4D latent vector sets. As indicated in Tab. 3, our
method significantly outperforms the global latent codes
(with M = 1) and captures more accurate 4D motions. It
becomes more apparent in unseen identities, demonstrating
an enhanced generalization ability.
What is the effect of time attention layers? For the syn-
chronized deformation latent set diffusion, we have inte-
grated the time self-attention layer in our interleaved spatio-
temporal attention mechanism. We attempted to remove the
layer. However, the results showed a decrease in all met-
rics, highlighting the effectiveness of the time self-attention
layer in maintaining temporal coherence.
What is the effect of the number of channels of la-
tent set? To find out the optimal configuration for learn-
ing shape and deformation priors within time-varying de-
formable surfaces, we tried the channel numbers C of the
shape and deformation latent sets. The experimental results
indicated that using C = 32 channels for 4D latent set dif-
fusion is more suitable, yielding more favorable results.

5. Conclusion
We present Motion2VecSets, a 4D diffusion model for dy-
namic surface reconstruction from point cloud sequences.
Our method explicitly models the shape and motion distri-
butions of non-rigid objects through an iterative denoising
process, using compressed latent sets to generate plausible

Method Unseen Motion Unseen Individual

IoU↑ CD↓ Corr↓ IoU↑ CD↓ Corr↓

W/o. Diffusion 71.1% 0.097 0.173 64.2% 0.107 0.194
M = 1 68.5% 0.120 0.301 57.7% 0.149 0.327
C = 8 78.9% 0.078 0.180 68.0% 0.105 0.225
C = 16 78.0% 0.080 0.189 66.8% 0.109 0.254

W/o. TimeAttn. 81.2% 0.061 0.127 70.8% 0.086 0.158
Full 83.8% 0.054 0.111 74.4% 0.075 0.140

Table 3. Quantitative ablation studies on the D-FAUST [3] dataset.
M denotes the number of latent codes and C represents the num-
ber of latent code channels.

t Input W/o.
Diffusion M = 1 C = 8 C = 16 W/o.

TimeAttn. Full

Figure 8. Qualitative ablation studies on the D-FAUST [3] dataset.

and diverse outputs. The learned shape and motion diffu-
sion priors can effectively deal with ambiguous observa-
tions, including sparse, noisy, and partial data. Compared
to encoding shape and deformation with a global latent, our
novel 4D latent set representation enables more accurate
non-linear motion capture and improves the generalizability
to unseen identities and motions. The designed interleaved
space and time attention block for synchronized deforma-
tion vector sets diffusion enforces temporal-coherent object
tracking while reducing computational overhead. Extensive
experiments demonstrate our approach’s superiority in re-
constructing sparse, partial, and even half-body point clouds
on the D-FAUST [3] and DT4D-A [28] datasets, underlin-
ing its robustness to various types of imperfect observations.
We believe that Motion2VecSets has the potential for future
extension into multi-modal domains, such as text-driven 4D
generation and RGB video-based 4D reconstruction.
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[4] Aljaž Božič, Pablo Palafox, Michael Zollhöfer, Justus Thies,
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Zollhöfer, Carsten Stoll, and Christian Theobalt. Patch-
Nets: Patch-Based Generalizable Deep Implicit 3D Shape
Representations. European Conference on Computer Vision
(ECCV), 2020. 2

[59] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In ECCV, 2018. 2

[60] Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan
Kautz. Physdiff: Physics-guided human motion diffusion
model. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 16010–16021, 2023. 3

[61] Biao Zhang and Peter Wonka. Functional diffusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2024. 2

[62] Biao Zhang, Matthias Niessner, and Peter Wonka. 3DILG:
Irregular latent grids for 3d generative modeling. In Ad-
vances in Neural Information Processing Systems, 2022. 2

[63] Biao Zhang, Jiapeng Tang, Matthias Nießner, and Peter
Wonka. 3DShape2VecSet: A 3d shape representation for
neural fields and generative diffusion models. ACM Trans.
Graph., 42(4), 2023. 2, 4

[64] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou
Hong, Xinying Guo, Lei Yang, and Ziwei Liu. Motiondif-
fuse: Text-driven human motion generation with diffusion
model. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024. 3

[65] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 16259–16268, 2021. 2

[66] Kaifeng Zou, Sylvain Faisan, Boyang Yu, Sébastien Valette,
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