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Abstract

We propose the task of Panoptic Scene Completion (PSC)
which extends the recently popular Semantic Scene Com-
pletion (SSC) task with instance-level information to pro-
duce a richer understanding of the 3D scene. Our PSC
proposal utilizes a hybrid mask-based technique on the non-
empty voxels from sparse multi-scale completions. Whereas
the SSC literature overlooks uncertainty which is critical
for robotics applications, we instead propose an efficient
ensembling to estimate both voxel-wise and instance-wise
uncertainties along PSC. This is achieved by building on
a multi-input multi-output (MIMO) strategy, while improv-
ing performance and yielding better uncertainty for little
additional compute. Additionally, we introduce a tech-
nique to aggregate permutation-invariant mask predictions.
Our experiments demonstrate that our method surpasses all
baselines in both Panoptic Scene Completion and uncer-
tainty estimation on three large-scale autonomous driving
datasets. Our code and data are available at https://astra-
vision.github.io/PaSCo .

1. Introduction

Understanding scenes holistically plays a vital role in var-
ious fields, including robotics, VR/AR, and autonomous
driving. A fundamental challenge in this domain is the si-
multaneous estimation of complete scene geometry, seman-
tics, and instances from incomplete 3D input data, which is
often sparse, noisy, and ambiguous due to occlusions and
the inherent complexity of the real scenes. Despite these
challenges, achieving this level of understanding is crucial
to enable machines to interact with their environment in a
smart and safe manner.

Semantic Scene Completion (SSC) tackles 3D scene un-
derstanding by inferring the full scene geometry and se-
mantics from a sparse observation. There have been sig-
nificant advancements in SSC which has gained in popular-
ity. Initial methods [7, 10, 16, 45, 66] focused on indoor
scenes characterized by dense, regular, and small-scale in-
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Figure 1. PaSCo output. Our method infers Panoptic Scene Com-
pletion (PSC) from a sparse input point cloud while concurrently
assessing uncertainty at both the voxel and instance levels.

put point clouds. The recent release of the Semantic KITTI
dataset has ignited interest for SSC in outdoor driving sce-
narios [14, 63, 72, 73], which present unique challenges due
to the sparsity, large scale, and varying densities of input
point clouds [64].

Despite its remarkable performance, current SSC tech-
niques overlook instance-level information and uncertainty
prediction. The absence of instance-level prediction hin-
ders their utility in applications that require identification
and tracking of individual objects while the lack of un-
certainty estimation limits their deployment in real-world
safety-critical applications.

To address these challenges, we propose the novel task
of Panoptic Scene Completion (PSC), which aims to holis-
tically predict the geometry, semantics, and instances of
a scene from a sparse observation. We present the first
method for this task, named PaSCo, which is a MIMO-
inspired [30] ensemble approach boosting PSC perfor-
mance and uncertainty estimation at minimal computational
cost. It combines multi-scale generative sparse networks
with a transformer decoder, implementing a mask-centric
strategy for instance prediction [12, 13]. Consequently,
we introduce a novel ensembling technique for combining
unordered mask sets. Through extensive evaluations, our
method demonstrates superior performance in PSC and pro-
vides valuable insights into the predictive uncertainty. Our
contributions can be summarized as follows:
• We formulate the new task of Panoptic Scene Completion

(PSC), extending beyond Semantic Scene Completion to
reason about instances.
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• Our proposed method, PaSCo, utilizes a sparse CNN-
Transformer architecture with a multi-scale sparse gen-
erative decoder and transformer prediction, optimized for
efficient PSC in extensive point cloud scenes.

• By adapting to the MIMO setting and introducing a
novel ensembling strategy for unordered sets, our method
boosts PSC performance and enhances uncertainty aware-
ness, outperforming all baselines across three datasets.

2. Related works
Semantic Scene Completion (SSC). SSC was first pro-
posed by SSCNet [66], and recently surveyed in [64]. Prior
works mainly focus on indoor scenes [7, 10, 11, 15, 16,
18, 24, 33, 45, 46, 52, 68, 74, 75] with dense, uniform and
small-scale point clouds. Semantic KITTI [3] sparked in-
terest in SSC for urban scenes, which pose new challenges
due to LiDAR sparsity, large scale, and varying density.
To address this, a number of works rely on added modal-
ities [14, 45, 52], while JS3CNet [73] improves by jointly
training on semantic segmentation. Strategies for efficient
SSC include 2D convolutions on BEV representation in
LMSCNet [63] or group convolution in [74]. S3CNet [14]
enhances SSC with spatial feature engineering, multi-view
fusion, spatial propagation and geometric-aware loss. SCP-
Net [72] proposes a novel completion sub-network and dis-
tills knowledge from multi-frames model. Another line of
work predicts SSC [8, 35, 49] and instances [69] from a 2D
image. Despite impressive results, none of these works of-
fer instance-level predictions and uncertainty estimation.
LiDAR Panoptic Segmentation Panoptic segmentation
was initially introduced in [38] for images. Since then it
was extended to 3D point clouds, first using range-based
representations [36, 43, 59, 65] with 2D convolutions for
efficiency which sacrifice spatial detail. Consequently,
some leverage sparse convolutions [26, 32, 51, 62] for ef-
ficient 3D processing. Panoptic can be structured as a two-
stage method, comprising a non-differentiable clustering
followed by semantic segmentation [32, 43, 47, 59, 62], or
as a proposal-based approach [36, 65], building on Mask
R-CNN [31] with an added semantic head. CPSeg [44]
and CenterLPS [58] were the first to propose proposal- and
clustering-free end-to-end methods relying on pillarized
point features [44] or center-based instance encoding and
decoding [58]. MaskPLS [57] offers an end-to-end, mask-
based architecture. While these methods exhibit strong per-
formance, they only label the input points. Our work goes
a step further by predicting a complete panoptic scene with
incorporated uncertainty information, thereby facilitating a
more comprehensive understanding of the scene.
Uncertainty Estimation with Efficient Ensemble.
Early Bayesian Neural Networks (BNNs) [55] quantified
uncertainty in shallow networks, but remain limited in
scale [20], despite recent advances in variational inference

techniques [5, 37]. Instead, Deep Ensemble [41] offers
a practical approach to approximate BNNs’ posterior
weight distribution [71] and is acknowledged as the leading
technique for uncertainty estimation and predictive perfor-
mance [29, 42, 60]. Yet, its computational demand spurred
alternatives like deep sparse networks [53] or BatchEnsem-
ble [70] using partially shared weights. Multi-input
multi-output (MIMO) [30] offers a lightweight alternative
with diversified outputs, training independent subnetworks
within a larger network. Techniques also involve selective
dropping of neural weights [19, 23] or multiple model
checkpoints of a training session [25, 34] but require
multiple inferences. Alternatives also approximate the
weight posterior during training to sample ensemble mem-
bers [22, 56], or use grouped convolution [42]. Our work
builds on the simplicity and single-inference MIMO [30],
which we complement with a novel permutation-invariant
mask ensembling.

3. Method
We introduce the task of Panoptic Scene Completion (PSC),
taking an incomplete point cloud X as input and produc-
ing a denser output Y=f(X) as K voxels masks each with
semantic class, i.e. {(mk, ck)}Kk=1. Inspired by Semantic
Scene Completion [64] (SSC), we build a more holistic un-
derstanding by reasoning jointly about geometry, semantics
and instances. Like panoptic segmentation [38] for seman-
tic segmentation, PSC is a strict generalization of SSC.

To address PSC, we propose PaSCo, which leverages a
multiscale sparse generative architecture and proxy comple-
tion in a mask-centric architecture [12, 13, 57]. As model
calibration is critical for real-world applications like au-
tonomous driving, we also seek to estimate uncertainty.
This is crucial as generative tasks hallucinate part of the
occluded scenery. Yet, to the best of our knowledge, un-
certainty is overlooked in the SSC literature. To boost un-
certainty awareness, we employ a multi-input multi-output
strategy [30] with a constant computational budget, which
outputs multiple PSC variations from augmentations of a
single input point cloud. To then infer a unique PSC output,
we introduce a custom permutation-invariant ensembling.

The schematic view of our method is in Fig. 2, highlight-
ing how PaSCo enables panoptic scene completion with
both semantic and instance-wise uncertainty. For simplicity,
we first describe the architecture for panoptic scene com-
pletion in Sec. 3.1 and then extend to multi-input/output in
Sec. 3.2 for uncertainty awareness. Finally, we detail the
training strategy in Sec. 3.3.

3.1. Panoptic Scene Completion

Fig. 3 describes our PSC architecture which employs a
mask-centric backbone [12, 13, 57]. We rely on mul-
tiscale geometric completion (Sec. 3.1.1) followed by a
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Figure 2. PaSCo overview. Our method aims to predict multiple variations of Panoptic Scene Completion (PSC) given an incomplete 3D
point cloud, while allowing uncertainty estimation through mask ensembling. For PSC we employ a sparse 3D generative U-Net with a
transformer decoder (Sec. 3.1). The uncertainty awareness is enabled using multiple subnets each operating on a different augmented ver-
sion of an input data source (Sec. 3.2). PaSCo allows the first Panoptic Scene Completion while providing a robust method for uncertainty
estimation. Instance-wise uncertainty shows only “things” classes for clarity.
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Figure 3. Architecture for PSC. Our architecture builds on a
sparse generative U-Net coupled with a transformer decoder ap-
plied on pruned non-empty voxels to predict PSC.

transformer decoder for mask predictions of both stuff and
things (Sec. 3.1.2) to produce panoptic scene completion.

3.1.1 Multiscale Geometric Guidance

We first extract multiscale semantic completion to serve as
geometric guidance for PSC. For computational efficiency,
we rely on sparse generative 3D U-Net as in [14, 17].

Technically, as detailed in Fig. 3, we process unstruc-
tured input point cloud X with an MLP and pass the vox-
elized features through a light-weight encoder E to produce
1:8 resolution features. To generate geometry beyond input
manifold, we then employ a dense CNN, resulting in den-
sified 1:8 features f1:8 which are decoded with sparse gen-
erative decoders {D1:ℓ} ,∀ℓ ∈ {4, 2, 1} producing features,
written as f1:ℓ. At each scale, a lightweight segmentation
head H1:ℓ extracts the proxy SSC, i.e., S1:ℓ = H1:ℓ(f1:ℓ).

Importantly, we prune features after each decoder to pre-
serve sparsity and thus computational efficiency:

f1:ℓ = D1:ℓ
(
prune(f1:2ℓ)

)
,∀ℓ ∈ {4, 2, 1}. (1)

Contrary to the literature [14, 17] using binary occupancy
maps, we use semantic predictions for prune(·). We ad-
vocate that semantics better balance performance across

small classes, while binary occupancy is dominated by large
structural classes (road, building, etc.). As such, PSC can
better inherit geometric guidance.

3.1.2 Semantic and Instance Prediction as Masks

We now estimate the panoptic completion {(mk, ck)}Kk=1,
with mk being a voxel mask and ck its corresponding se-
mantic class, for both stuff and things. To do so, we follow
the latest mask-centric transformer models [12, 13, 57] pre-
dicting PSC from the multiscale features of Sec. 3.1.1.

The transformer takes input queries as mask proposals
and use the multi-scale features {f1:4, f1:2, f1:1} to pre-
dict the final queries for mask prediction. We use the
multi-scale decoder layer of Mask2Former [13, 57] with
masked attention to foster spatial relationships, improving
efficiency and training. Hence, each transformer decoder
layer T 1:ℓ, ∀ ℓ ∈ {4, 2, 1} is a tailored mix of masked cross
attention, self-attention and feed forward network which ul-
timately produces a set of queries Q1:ℓ ∈ RK×D where K
is the number of queries and D is feature dimension. No-
tably, unlike Mask2Former [13], our mask decoder queries
and predicts only on pruned occupied voxels.

In practice, since empty voxels dominate 3D scenes [64]
and contribute little to semantic understanding, we apply
mask prediction only on non-empty voxels. In fine, trans-
former T 1:ℓ takes in query embeddings of the lower scale

Q1:2ℓ, and sparse query features f̂
1:ℓ

from non-empty voxels

of the same scale decoder D1:ℓ, i.e., f̂
1:ℓ

=nonempty(f1:ℓ).
Notably, at the lowest resolution (1:4) the input query em-
bedding Q1:8 is initialized and optimized during training.

For each query embedding Q1:ℓ, semantic probabilities
p ∈ RK×C and mask scores m ∈ RK×N are extracted,
where C is the number of classes and N the number of
voxels. Probability p is derived by applying a linear layer
to Q1:ℓ. The mask score m is computed from the dot prod-

14556



uct of Q1:ℓ and the full scale non-empty voxel features f̂
1:1

:
m1:ℓ = sigmoid(̂f

1:1
·Q1:ℓ⊤). The resulting masks are ob-

tained with argmax over p and m.
Similar to previous works, small masks occluded by oth-

ers are filtered out to minimize false positives [12, 13, 57].
In fine, the PSC output is the 1:1 panoptic prediction, so
Y = {(m, c)}Kk=1={(m1:1, p1:1)}Kk=1, while predictions
from query embeddings at other scales (i.e., ℓ̸=1) serve for
additional guidance with mutiscale supervision.

3.2. Uncertainty awareness

We equip PaSCo with uncertainty awareness for both ef-
ficient and robust panoptic scene completion. Inspired by
MIMO [30] doing image classification, we employ a sub-
networks formulation to estimate uncertainty on the much
more complex task of panoptic scene completion.

Hence, we adjust our PSC architecture (Sec. 3.1) to pre-
dict M variations of PSC outputs with different voxel sets
and multi-scale contexts, using per-scale voxel pruning in a
single inference fashion, as seen in Fig. 2, and at a similar
computation cost. Intuitively, having several PSC outputs
yield better predictive uncertainty estimation and robustness
to out-of-distribution [30, 41, 70]. At inference, we use a
permutation-invariant mask ensembling strategy to obtain a
final unique PSC output.

3.2.1 MIMO Panoptic Scene Completion

In the general case of M subnets, PaSCo infers M outputs1

given inputs {Xi}Mi=1. Crucially, at training {Xi} are dis-
tinct point clouds while, in inference, they are augmenta-
tions of the same point cloud. As in MIMO [30], only heads
are duplicated and subnets are in fact trained concurrently
in our architecture with minimal but effective adjustments,
thus keeping the parameter number roughly constant irre-
spective of the subnets used. E.g., a subnet of PaSCo(M=3)
has 3 times less capacity than that of PaSCo(M=1).

Specifically, referring to Sec. 3.1.1 we share the MLP
among subnets and then concat the voxelized representa-
tions along the features dimension before passing it to the
encoder and decoders. A major difference, is that each sub-
net has its own semantic heads leading to {H1:ℓ

i }Mi=1 so
that they infer distinct semantic outputs {S1:ℓ

i }Mi=1. Notably
also, the prune(·) operation of Eq. (1) prune only voxels
predicted empty by all subnets.

To decode per-subnet panoptic output, we fol-
low Sec. 3.1.2, using a dedicated set of query embeddings
per subnet, with a shared transformer decoder to increase
diversity of the masks predictions at little cost. Interest-
ingly, we note that this also introduces more diversity into
the mask predictions, as each query represents one mask.

1In this new light, our PSC architecture in Sec. 3.1 is equal to the special
case of M = 1 subnetwork. i.e., PaSCo(M=1).

Finally, PaSCo output is the combination of all subnets
outputs, so

{
Yi

}M

i=1
with Yi = {(mk, ck)}Kk=1.

3.2.2 Mask ensembling

Unlike classification in MIMO [30], ensembling several
PSCs is complex since each subnet infers a set of masks
that are permutation invariant. To ensemble these sets, we
introduce a pair-wise alignment strategy.

Given two sets of K masks Y={(mk, pk)}Kk=1 and
Ŷ={(m̂k, p̂k)}Kk=1. We densify the voxel grid, setting
empty voxels to 0, such that both mask sets have the same
dimension. As they are permutation invariant, we map the
two sets using Hungarian matching [40] with the assign-
ment cost matrix C(·, ·) ∈ RK×K where

C(Y, Ŷ )lk = − mlm̂
⊤
k

|ml|+ |m̂k| −mlm̂⊤
k

, (2)

l and k iterate over all mask indices. Rather than match-
ing binary masks, we find that using “soft matching” with
sigmoid probabilities improves results (see Sec. 4.3).
Once mapped together, the ensemble output is obtained by
averaging the semantic probability p and binary mask prob-
ability m of these mapped queries.

With more than two sets, we arbitrarily use the first set
of masks and iteratively align with the remaining sets.

3.3. Training

We train PaSCo end-to-end from scratch with pairs of input
point cloud and semi-dense panoptic/semantic labeled vox-
els, applying losses only on voxels with ground truth labels
as in [63, 72, 73].
Voxel-query semantic loss. For subnet i predicting bi-
nary mask mi ∈ RN×K and mask softmax probability
pi ∈ RK×C , we estimate a subsidiary per-voxel semantic
prediction: S′

i = mipi, S′
i ∈ RN×C . As masks are pre-

dicted at full scale, S′
i is optimized with:

L′
sem =

M∑
i=1

(CE(S
′1:1
k , S̄1:1) + λ1lovasz(S

′1:1, S̄1:1)),

(3)
being S̄1:1

i the labels, and λ1 = 0.3 empirically fixed [4].
Semantic loss. For each scale 1:ℓ and subnet i, we opti-
mize the semantic output S1:ℓ

i against the ground truth S̄1:ℓ
i

(majority pooled to scale 1:ℓ), using a similar loss as Eq. (3),
applied across all scales ℓ ∈ {1, 2, 4}.
Masks matching loss. For each subnet i, we match
the output masks Yi = {(mk, ck)}Kk=1 to the ground truth
masks Ȳi = {(m̄k̄, c̄k̄)}K̄k̄=1

, using the Hungarian matching
as in [12, 57] to learn an optimal mapping σ̄ by minimizing
the assignment map C(·, ·) ∈ RK×K̄ . The latter is defined
as Ck,k̄ = −pk(c̄k̄) + Lmask with

Lmask = λdicedice(mk, m̄k̄) + λbceBCE(mk, m̄k̄). (4)
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Semantic KITTI (val set) SSCBench-KITTI360 (test set)
All Thing Stuff All Thing Stuff

Method PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU↑ Params↓ Time(s)↓ PQ†↑ PQ↑ SQ RQ PQ SQ RQ PQ SQ RQ mIoU↑ Params↓ Time(s)↓

LMSCNet [63] +MaskPLS 13.81 4.17 36.13 6.82 1.62 29.87 2.68 6.02 40.69 9.82 17.02 31.9M 0.72 12.76 4.14 26.52 6.45 0.88 20.41 1.58 5.78 29.58 8.88 15.10 31.9M 0.87
JS3CNet [73] +MaskPLS 18.41 6.85 41.90 11.34 4.18 43.10 7.22 8.79 41.03 14.34 22.70 34.7M 1.46 16.42 6.79 51.16 10.71 3.36 48.41 5.83 8.51 52.54 13.15 21.31 34.7M 1.13
SCPNet [72] +MaskPLS 19.39 8.59 49.49 13.69 4.88 46.41 7.70 11.30 51.73 18.04 22.44 89.9M 0.91 16.54 6.14 51.18 10.15 4.23 48.46 7.05 7.09 52.55 11.70 21.47 89.9M 1.10
SCPNet* [72] +MaskPLS 23.21 10.89 48.29 17.80 7.35 42.98 12.75 13.46 52.15 21.46 27.89 91.9M 1.36 18.20 7.47 50.67 11.92 3.98 48.13 6.80 9.21 51.94 14.48 22.66 91.9M 1.31
PaSCo(M=1) 26.49 15.36 54.15 23.65 12.33 47.42 18.78 17.55 59.05 27.19 28.22 111.0M 0.67 19.53 9.91 58.81 15.40 3.46 57.72 6.10 13.14 59.35 20.05 21.17 111.0M 0.39
PaSCo (Ours) 31.42 16.51 54.25 25.13 13.71 48.07 20.68 18.54 58.74 28.38 30.11 120.0M 1.32 26.29 10.92 56.10 17.09 4.88 57.53 8.48 13.94 55.39 21.39 22.39 115.0M 0.65

Table 1. Panoptic Scene Completion. On both Semantic KITTI [3] (val) and SSCBench-KITTI360 [48] (test), our method PaSCo outper-
forms all baselines across almost all metrics, in particular, All PQ†. * denotes our own re-implementation of SCPNet.

We set K always greater than K̄ the number of ground truth
masks. Predicted masks without ground truth are mapped to
a generic ∅ class. For the k-th mask of Yi matched to the
σ̄(k)-th ground truth mask, the loss is

Lmatched =

K̄∑
k=1

λCECE(ck, c̄σ̄(k)) + Lmask. (5)

The K−K̄ unmatched predicted masks are optimized to
predict ∅ class Lunmatched =

∑K
k=K̄+1 λ∅CE(ck,∅).

where λ∅ is set to 0.1 as in [12]. λdice and λbce are em-
perically set to 1 and 40. We further apply auxiliary mask
matching losses and L′

sem on the PSC outputs of intermedi-
ate scales, i.e., {(m1:ℓ, p1:ℓ)}, ℓ̸=1.

4. Experiments
We evaluate PaSCo on both panoptic scene completion and
uncertainty estimation, while also reporting the subsidiary
SSC metrics. As there are no urban PSC datasets and base-
lines, we produce our best effort to extend existing SSC
datasets and baselines for fair evaluation.
Datasets. To evaluate PSC, we extend three large-scale
urban LiDAR SSC datasets: Semantic KITTI, SSCBench-
KITTI360 and Robo3D. Semantic KITTI [3] has 64-layer
LiDAR scans voxelized into 256x256x32 grids of 0.2m
voxels. We follow the standard train/val split [63, 72],
leading to 3834/815 grids. SSCBench-KITTI360 [48] is
a very recent SSC benchmark derived from KITTI-360 [50]
with urban scans encoded as in Semantic KITTI. We follow
the standard train/val/test splits of 8487/1812/2566 grids.
Robo3D [39] is a new robustness benchmark, extending
popular urban datasets [3, 6, 27, 67] by modifying point
cloud inputs with various type and intensity of corruptions
(e.g., fog, motion blur, etc.). We use corrupted input point
clouds from the SemanticKITTI-C set of Robo3D to evalu-
ate robustness to Out Of Distribution (OOD) effects.

To extract pseudo panoptic labels from semantic grids,
we cluster things instances from ad-hoc classes using DB-
SCAN [9, 21] with a distance of ϵ = 1 and groups with
MinPts = 8. Following the original panoptic segmenta-
tion formulation [38], stuff masks are made of voxels with
ad-hoc classes. For Semantic KITTI, labels cannot be gen-
erated on the hidden test set, so we evaluate on val. set only.
We assess our pseudo labels quality in the supplementary.

PSC/SSC metrics. We evaluate panoptic quality (PQ),
segmentation quality (SQ) and recognition quality (RQ) fol-
lowing [38] on the complete scene. Due to the difficulty of
the PSC task, most masks have low IoU w.r.t. ground truth.
Hence, we note that the over-penalization effect of stuff
classes described in [61] is amplified for PSC. Thus, we
also evaluate PQ†, as in [61], removing the >0.5−IoU rule
for stuff classes. We also complement our PSC study with
subsidiary SSC metrics, i.e., mean IoU (mIoU).
Uncertainty metrics. Following [42], we employ the
maximum softmax probability as a measure of model con-
fidence. Consistent with the established practices [30, 41,
42], we assess the model predictive uncertainty by evaluat-
ing its calibration [28] using the Expected Calibration Er-
ror (ECE) and Negative Log Likelihood (NLL). Notably,
we distinguish between two forms of uncertainty: voxel un-
certainty and instance uncertainty. The former is derived
voxel-wise from semantic completion outputs, and the lat-
ter mask-wise from class probability predictions. To ac-
count for the dominance of empty voxels within 3D scenes,
we calculate voxel uncertainties by averaging the uncertain-
ties for empty and non-empty voxels. In line with [38],
the label of predicted masks are assigned by finding the
matched ground truth masks with >0.5−IoU rule. Un-
matched masks are classified under a ‘dustbin’ category.
Training details. We train PaSCo for 30 epochs on Se-
mantic KITTI and 20 epochs on SSCBench-KITTI360, both
using AdamW [54] optimizer and batch size of 2. The
learning rate is 1e-4, unchanged for Semantic KITTI but
divided by 10 at epoch 15 on SSCBench-KITTI360. We
apply random rotations in [−30◦, 30◦] on Semantic KITTI
and in [−10◦, 10◦] on SSCBench-KITTI360, random crop
to reduce the scene size to 80% along both the x and y axes,
and random translations of ±0.6m on x/y axes and ±0.4m
on z axis. Unless otherwise mentioned, PaSCo refers to the
optimal number of subnets, which is M = 3 for Semantic
KITTI and Robo3D, and M = 2 for SSCBench-KITTI360.
This choice of subnets is justified in Tab. 4.

4.1. Panoptic Scene Completion

To evaluate PSC, we first establish baselines for this new
task, and then report results on the aforementioned datasets.
Baselines. We combine existing SSC methods with 3D
panoptic segmentation. We select three SSC open-source
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Figure 4. Qualitative Panoptic Scene Completion. We report PSC outputs for all baselines of Tab. 1. PaSCo shows better instance
separation, with stronger instance shapes and scene structure, with fewer holes.

methods: LMSCNet [63], JS3CNet [73], SCPNet [72], and
also add SCPNet* — our own reimplementation with much
stronger performance. For 3D panoptic segmentation, we
use MaskPLS [57], well-suited for dense voxelized scene
and the best open-source 3D panoptic segmentation to date.
All baselines are retrained with their reported parameters.
We train the four PSC baselines using the SSC method to
predict the complete semantic scene followed by the 3D
panoptic segmentation method.
Performance. Tab. 1 compares PaSCo with the 4
baselines on Semantic KITTI and SSCBench-KITTI360.
Our method is superior across all panoptic metrics (All,
Things, Stuff) on both datasets. We see a major boost
in All-PQ†/PQ of +8.21/+5.62 on Semantic KITTI and
+8.09/+3.45 on SSCBench-KITTI360, due to our effec-
tive ensembling approach for PSC. Regarding inference
time, PaSCo is only slower than LMSCNet+MaskPLS and
SCPNet+MaskPLS but performs significantly better. Addi-
tionally, PaSCo outperforms baselines in individual metrics
for both ‘things’/‘stuff’ categories, showing significant im-
provements in PQ with +6.36/+5.08 and +0.9/+4.73 on
each dataset. On the subsidiary mIoU metric we perform
on-par, being first on Semantic KITTI (+2.22) and 2nd in
SSCBench-KITTI360 (−0.27). Incidentally, we note that
PSC and SSC metrics are not directly correlated since we
improve the former drastically.

Fig. 4 shows that our qualitative PSC results similarly
show visual superiority. Overall, we observe that instances
are much better separated by PaSCo compared to SCPNet*

(our best competitor), with less holes in the geometry.

4.2. Uncertainty estimation

We further evaluate uncertainty as it correlates with model
calibration [1], and is crucial for many applications.
Baselines. Using our architecture, we design three uncer-
tainty estimation baselines based on state-of-the-art uncer-
tainty literature. Each baseline provides multiple outputs,
enabling similar computation of uncertainty to ours from
the maximum softmax probability across inferences. Test-
Time Augmentation (TTA) is a classical strategy [2] to im-
prove robustness using multiple inferences of a unique net-
work with input augmentations. MC Dropout [23] provides
a bayesian approximation of the model uncertainty by ran-
domly dropping activations (i.e., setting to 0) of neurons,
applied with multiple inferences. Finally, we report Deep
Ensemble [41], where duplicate networks solving the same
task are trained independently and ensembled at test time
for better predictive uncertainty than a single network.

For fair comparison, all baselines use our architecture.
However, we note that in contrast to our approach, these
baselines require more than one pass, either using multiple
inferences for TTA and MC Dropout or multiple networks
for Deep Ensemble which translate in more parameters.
Uncertainty estimation. Tab. 2 reports uncertainties for
all baselines using our architecture, as well as for PaSCo
and PaSCo(M=1) which uses a single subnet. To ensure
comparable performance, we set the number of inferences
(for TTA and MC Dropout) and number networks (for Deep
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Semantic KITTI (val set)

method ins ece↓ ins nll↓ voxel ece↓ voxel nll↓ All PQ†↑ All PQ↑ mIoU↑ Params↓ Passes ↓ Time(s) ↓

TTA - - 0.0456 0.7224 - - 28.84 111M 3 1.78
MC Dropout [23] - - 0.0472 0.7437 - - 28.82 111M 3 1.70
Deep Ensemble [41] - - 0.0428 0.6993 - - 30.10 333M 3 1.69
PaSCo(M=1) 0.6181 4.6559 0.0610 0.8250 26.49 15.36 28.22 111M 1 0.67
PaSCo (ours) 0.4922 3.9155 0.0426 0.5835 31.42 16.51 30.11 120M 1 1.32

SSCBench-KITTI360 (test set)

method ins ece↓ ins nll↓ voxel ece↓ voxel nll↓ All PQ†↑ All PQ↑ mIoU↑ Params↓ Passes ↓ Time(s) ↓

TTA - - 0.1580 2.1282 - - 21.78 111M 2 0.85
MC Dropout [23] - - 0.1548 2.0737 - - 21.73 111M 2 0.79
Deep Ensemble [41] - - 0.1540 2.0653 - - 22.51 222M 2 0.90
PaSCo(M=1) 0.7899 5.4405 0.1749 2.3556 19.53 9.91 21.17 111M 1 0.38
PaSCo (ours) 0.6015 4.1454 0.1348 1.6112 26.29 10.92 22.39 115M 1 0.65

Table 2. Uncertainty evaluation. We evaluate uncertainty on Se-
mantic KITTI (top) and SSCBench-KITTI360 (bottom). Baselines
only produce voxel uncertainty (‘voxel ece,’ ‘voxel nll’) which we
outperform while also estimating PSC uncertainty (All PQ/PQ†).
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Figure 5. Qualitative uncertainty comparison on SSCBench-
KITTI360 and Semantic KITTI. Note that “ins. unc.” only
shows examples from the “thing” class for clearer visualization.
PaSCo(M=1) tends towards overconfidence in both voxel and ins.
unc. In contrast, PaSCo gives more intuitive uncertainty estimates,
e.g., at segment boundaries, in areas with hallucinated scenery, and
in regions with low input point density.

Ensemble) equal to the number of subnets in PaSCo — i.e.,
3 on Semantic KITTI and 2 on SSCBench-KITTI360. No-
tably, baselines can only estimate voxel-wise uncertainties,
for which we outperform by a large margin. Only the voxel
ece of Deep Ensemble for Semantic KITTI is a close second
(0.0428 vs. 0.0426), though at the cost of ≈ 3 times our pa-
rameters count, 3 passes, and is ≈30% slower. Comparing
PaSCo(M=1) and PaSCo highlights that our ensemble ap-
proach brings a clear boost on all metrics at a minor increase
of number of parameters (111M vs 115M).

Fig. 5 visualizes uncertainty estimation
from PaSCo(M=1) and PaSCo on Semantic KITTI
and SSCBench-KITTI360. For clarity, instance-wise
uncertainty shows only “thing” categories. PaSCo(M=1)
often shows high confidence, likely due to deep networks’

Semantic KITTI (val set) SSCBench-KITTI360 (test set)
method All PQ†↑ All PQ↑ ins ece↓ ins nll↓ Passes ↓ All PQ†↑ All PQ↑ ins ece↓ ins nll↓ Passes ↓

TTA 28.16 15.95 0.5295 4.3804 3 23.31 9.76 0.6953 4.8958 2
MC Dropout 29.62 16.11 0.5684 4.8617 3 23.73 9.95 0.6804 4.6174 2
Deep Ensemble 30.71 16.41 0.5008 3.9181 3 23.85 9.88 0.6673 4.7809 2
PaSCo (Ours) 31.42 16.51 0.4922 3.9155 1 26.29 10.92 0.6015 4.1454 1

Table 3. Effect of our ensembling. We apply our permutation-
invariant ensembling strategy (Sec. 3.2.2) to all baselines to enable
PSC uncertainty estimation. Even when using our technique, we
note PaSCo remains the best performing.

Figure 6. Effects of Out Of Distribution. We evaluate uncer-
tainties on corruptions of the Robo3D [39], shown in the x axis.
Each bar reports the metric average per corruption while its er-
ror bar indicates the per-intensity minimum and maximum metric.
PaSCo outperforms all methods by a large margin on all corrup-
tions for instance-wise uncertainty (left) and better on 7 of 8 con-
ditions (xcept ‘cross-talk’) on voxel-wise uncertainty (right).

tendency for overconfidence [28]. For voxel-wise uncer-
tainty, PaSCo exhibits increased uncertainty at segment
boundaries (e.g., roads, sidewalks), low point density areas,
and large missing regions. Instance-wise, PaSCo indicates
more uncertainty in regions with ambiguous predictions,
like sparse input points or close object proximity.
Mask ensembling. As the uncertainty-aware base-
lines do not estimate instance uncertainties, we apply our
permutation-invariant ensembling (Sec. 3.2.2) to all base-
lines, in order to enable instance-wise uncertainty estima-
tion for all. Tab. 3 shows that our MIMO-strategy performs
better than the baselines on all metrics, using a single pass.
Effects of Out Of Distribution. In the literature, uncer-
tainty is classically used as a proxy of robustness to Out Of
Distribution (OOD). To complement our study, we evalu-
ate on the Robo3D [39], which provides point cloud under
eight types of corruptions (e.g., fog, beam missing, cross-
sensor, wet ground, etc.), each with three level of intensities
(light, moderate, heavy). We evaluate on the complete set
of 24 corruptions and plot instance and voxel uncertainties
in Fig. 6, showing that PaSCo demonstrates consistent im-
provement over baselines. Each bar shows the mean uncer-
tainty of a method on a given corruption, while the error bar
shows the per-level minimum and maximum uncertainties.
Interestingly, we note that instance (Fig. 6, left) and voxel
(Fig. 6, right) uncertainties are not strongly correlated, al-
though methods’ rankings remain rather stable across con-
ditions. For instance-wise uncertainty (‘ins ece’), PaSCo is
significantly better than all baselines on all corruptions, im-
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Semantic KITTI (val. set) SSCBench-KITTI360 (val. set) # Params↓
# subnets All PQ†↑ All PQ↑ mIoU↑ ins ece↓ ins nll↓ voxel ece↓ voxel nll↓ All PQ†↑ All PQ↑ mIoU↑ ins ece↓ ins nll↓ voxel ece↓ voxel nll↓

1 26.49 15.36 28.22 0.6181 4.6559 0.0610 0.8250 18.87 7.77 20.59 0.8355 6.2581 0.1744 2.5785 111M
2 30.34 17.23 30.04 0.5535 4.1474 0.0530 0.6449 27.20 8.36 21.63 0.6022 4.4120 0.1285 1.8063 115M
3 31.42 16.51 30.11 0.4922 3.9155 0.0426 0.5835 22.31 6.88 20.60 0.5293 3.4189 0.1233 1.6188 120M
4 31.20 16.33 29.41 0.5304 4.2681 0.0349 0.5572 23.23 6.49 20.34 0.4098 2.4370 0.1011 1.4814 125M

Table 4. Performance when varying number of subnets on Semantic KITTI [3] and SSCBench-KITTI360 [48] validation sets. PSC
performance improves as the number of M increases, peaking at M=3 for Semantic KITTI and at M=2 for SSCBench-KITTI360.
Further increasing the subnets can also help with uncertainty estimates. We choose M=3 for Semantic KITTI and M = 2 for SSCBench-
KITTI360 to balance high PSC performance and uncertainty estimation.

All PQ†↑ All PQ↑ mIoU↑ ins ece↓ ins nll↓ voxel ece↓ voxel nll↓

w/o augmentation 27.89 14.07 28.30 0.5031 4.4245 0.0442 0.6713
w/o rotation augmentation 28.84 14.95 28.95 0.5074 4.2987 0.0432 0.6309

w/o voxel-query sem. loss 28.82 15.55 29.87 0.5205 4.2909 0.0437 0.5878
w/o sem. pruning 30.12 15.04 29.04 0.5380 4.1814 0.0440 0.5980
PaSCo (Ours) 31.42 16.51 30.11 0.4922 3.9155 0.0426 0.5835

Table 5. Method ablation. We ablate inference (top) and train-
ing (bottom) components of our method, showing that each con-
tributes to the best performance.

proving in 7 out of 8 on voxel-wise uncertainty (‘ssc ece’).

4.3. Ablation Studies

Method ablation. We ablate our method on Se-
manticKITTI [3] in Tab. 5 and report SSCBench-KITTI360
in the supp. The upper table ablates our inference aug-
mentations (i.e., rotation+translation), which benefit over-
all performance, especially All-PQ†/PQ. We attribute this
to the increased variance profitable to the subnetworks as
in MIMO [30]. In the lower table, we retrain PaSCo while
removing some components. We show that removing our
voxel-query semantic loss L′

sem (Eq. (3)) harms training;
such proxy supervision boosts performance at no additional
cost. Finally, ‘w/o sem. pruning’ replaces our semantic
pruning with binary occupancy pruning [14, 17], resulting
in degraded performance due to loss of smaller classes.
Subnets ablation. Tab. 4 ablates different numbers of
subnets M ∈ {1, 2, 3, 4} on the validation sets of our
main datasets. Our main PQ metrics increase significantly
with more subnets, though plateauing at M = 3 for Se-
manticKITTI and M = 2 for SSCBench-KITTI360. This
is due to the preserved constant computational cost imply-
ing that more subnets mean less per-subnet capacity, leading
to more noise in the ensembling. Our finding confirms that
of MIMO [30] in the classification setting, though we argue
our plateau is reached before since PSC being is a much
more complex task than classification.
Mask matching. We ablate our mask matching, substitut-
ing our ‘soft matching’ (sigmoid probabilities) with ‘hard
matching’ with binary mask IoU for assignment cost matrix
calculation (Sec. 3.2.2). This results in a large drop in All-
PQ†/PQ of -3.75/-1.12. Entirely removing mask matching
severely impacts mask quality, dropping to 0.02/0.02.

Figure 7. Ensemble vs subnets averaging. We compare our en-
semble method with averaging individual subnets, across varying
# subnets (x-axis). Error bars show standard deviation across sub-
nets. Peak performance is at M=3, where our ensembling com-
pensates for reduced per-subnet capacity with more subnets.

Ensemble vs. Subnets averaging. To further shed light
on subnets performance, Fig. 7 displays metrics of Se-
manticKITTI as a function of number of subnets M for our
ensembling (Sec. 3.2.2) or the averaging of the individual
subnet performance. When averaging subnets, optimal per-
formance is reached at M = 2, with larger M unable to
solve PSC efficiently. However, ensembling reaches im-
proved performance at M = 3, showing that our ensem-
bling effectively leverages weaker subnets.
Limitations. Like MIMO [30], our method can accommo-
date a limited number of subnets, depending on the task
nature and the network’s capacity. Our approach may over-
look objects or mix up nearby objects, particularly when
they are small and exhibit semantic resemblance. Our
method does not distinguish between types of uncertainty,
such as epistemic or aleatoric. Exploring this aspect could
be a valuable direction for future research.

5. Conclusion

We first address Panoptic Scene Completion (PSC) which
aims to complete scene geometry, semantics, and instances
from a sparse observation. We introduce an efficient ensem-
bling method complemented by a novel technique that com-
bines predictions of unordered sets, enhancing the overall
prediction accuracy and reliability in terms of uncertainty.
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Peter Kontschieder. Seamless scene segmentation. In CVPR,
2019. 5

[62] Ryan Razani, Ran Cheng, Enxu Li, Ehsan Taghavi, Yuan
Ren, and Liu Bingbing. Gp-s3net: Graph-based panoptic
sparse semantic segmentation network. In ICCV, 2021. 2

[63] Luis Roldão, Raoul de Charette, and Anne Verroust-Blondet.
Lmscnet: Lightweight multiscale 3d semantic completion.
In 3DV, 2020. 1, 2, 4, 5, 6

[64] Luis Roldão, Raoul De Charette, and Anne Verroust-
Blondet. 3D Semantic Scene Completion: a Survey. IJCV,
2021. 1, 2, 3

[65] Kshitij Sirohi, Rohit Mohan, Daniel Büscher, Wolfram Bur-
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