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Abstract

High dynamic range (HDR) rendering has the ability to
faithfully reproduce the wide luminance ranges in natural
scenes, but how to accurately assess the rendering qual-
ity is relatively underexplored. Existing quality models are
mostly designed for low dynamic range (LDR) images, and
do not align well with human perception of HDR image
quality. To fill this gap, we propose a family of HDR quality
metrics, in which the key step is employing a simple inverse
display model to decompose an HDR image into a stack of
LDR images with varying exposures. Subsequently, these
decomposed images are assessed through well-established
LDR quality metrics. Our HDR quality models present three
distinct benefits. First, they directly inherit the recent ad-
vancements of LDR quality metrics. Second, they do not
rely on human perceptual data of HDR image quality for
re-calibration. Third, they facilitate the alignment and pri-
oritization of specific luminance ranges for more accurate
and detailed quality assessment. Experimental results show
that our HDR quality metrics consistently outperform ex-
isting models in terms of quality assessment on four HDR
image quality datasets and perceptual optimization of HDR
novel view synthesis.

1. Introduction
High dynamic range (HDR) images aim to faithfully cap-
ture the large luminance variations of natural scenes that
low dynamic range (LDR) images are not capable of [16].
In the past few years, numerous HDR imaging and dis-
play devices have been developed and commercialized in
response to the escalating demand for HDR images in var-
ious fields, including photography, gaming, film, and vir-
tual reality. Consequently, HDR image quality assessment
(IQA) has become a practically demanding technique for
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monitoring, ensuring, and optimizing the perceptual quality
of HDR images during imaging, compression, communica-
tion, and rendering.

At present, HDR quality metrics are largely lacking,
which is likely due to the prevailing assumption that most
LDR quality models, such as the peak signal-to-noise ratio
(PSNR) and the structural similarity (SSIM) index [59], are
readily applicable to HDR images. It was not until recently
that researchers realized their poor account for human per-
ception of HDR image quality [12, 14]. Mantiuk et al. [28]
made initial attempts by extending the classic visual differ-
ence predictor (VDP) [10] to HDR-VDP, which was subse-
quently improved from various psychophysical and phys-
iological perspectives [29, 31, 41]. Although the HDR-
VDP family embodies many aspects of the early visual sys-
tem, they contain complex and non-differentiable modules,
which may hinder their application scope, especially when
adopted as loss functions in perceptual optimization.

Other initiatives have focused on transforming linear lu-
minances into a perceptually more uniform space as a way
of improving the applicability of LDR quality metrics. Rep-
resentative transformations include the logarithmic func-
tion [60], the perceptually uniform (PU) encoding curve [1]
and its derivative, the PU21 encoding [25], and the percep-
tual quantizer [37]. The issue with perceptually uniform
transformations lies in their tendency to either map lumi-
nance values that surpass the LDR image range (e.g., PU21
assigns high luminances to values above 255), or to com-
press the values to a range of [0, 1] (e.g., the perceptual
quantizer), which alters the image contrast. In the former
case, image quality models incapable of handling values
beyond the maximum pixel value (255 or 1) will fail to
capture distortions in bright regions. In the latter case, the
compressed contrast will cause unanticipated changes in the
metric predictions.

Inspired by [38], we propose a family of full-reference
HDR quality metrics, which rely on a simple inverse display
model [26] to transform an (uncalibrated) HDR image to a
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Figure 1. Forward display model simulates the process of con-
verting digital pixel values into physical light in luminances on
display. An inverse display model provides the inverse mapping.

stack of LDR images with varying exposures, amenable to
LDR-IQA. Our HDR quality metrics offer several key ad-
vantages. First, they enjoy the latest developments of and
reduce gracefully to LDR quality metrics, with the adop-
tion of a complementary display model (see Fig. 1). Sec-
ond, they do not need human perceptual data of HDR image
quality for re-calibration. Third, they allow for the weight-
ing of specific luminance ranges to highlight their contri-
butions during quality assessment and perceptual optimiza-
tion. Fourth, they enable the efficient mitigation of possi-
ble luminance shifts between the reference and test HDR
images for more accurate quality assessment [12, 14]. Ex-
perimental results on four human-rated HDR-IQA datasets
confirm the superior performance of our metrics, compared
to existing models including the HDR-VDP family. We
further demonstrate the promise of our HDR quality met-
rics as the perceptual optimization objectives in HDR novel
view synthesis [17]. Importantly, we observe a significant
improvement in visual quality for over-exposed regions,
which is corroborated by subjective user studies and objec-
tive quality estimates.

2. Related Work
In this section, we review two bodies of studies that are re-
lated to ours, HDR-IQA and HDR novel view synthesis.

2.1. HDR Quality Metrics

Model-based methods rely on computational models that
emulate the physiological responses of neurons in the hu-
man visual system, particularly those in the primary visual
cortex. HDR-VDP [28] is an excellent example that takes
into account aspects of nonlinear photoreceptor response
to light, contrast sensitivity, and local adaptation. Similar
to VDP [10], HDR-VDP predicts visible difference maps
without supplying a numerical quality score. HDR-VDP-
2 [29] improves upon HDR-VDP with a revised model of
the early visual system. The metric was trained on two
LDR-IQA datasets (i.e., LIVE [51] and TID2008 [45]), and
was later retrained on two additional HDR-IQA datasets:
Narwaria2013 [39] and Narwaria2014 [40], leading to
HDR-VDP-2.2 [41]. More recently, HDR-VDP-3 [31] was
developed by simulating the impact of aging on the vi-

sual system [27], modeling the effect of adaptation to lo-
cal luminances [57], and re-calibrating the metric on the
largest HDR-IQA dataset, UPIQ [34]. Other representative
model-based methods include the HDR video quality mea-
sure (HDR-VQM) [42] and the normalized Laplacian pyra-
mid distance (NLPD) [20]. Like HDR-VDP, HDR-VQM
follows an error visibility paradigm with the PU encoding
as the front-end processing, while NLPD incorporates divi-
sive normalization as a form of local gain control [7].
Encoding-based methods transform linear luminances into
a perceptually more uniform space for subsequent process-
ing. Xu et al. [60] approximated the luminance response
curve as a logarithmic function. The PU encoding [1] was
derived from the contrast sensitivity function (CSF) in [10],
which was optimized to approximate the gamma-encoding
in the range from 0.1 to 80 cd/m2. Similarly, the percep-
tual quantizer [37] was based on the Barten’s CSF [4], and
was standardized in the ITU-R Recommendation BT.2100.
As an improved version, PU21 encoding [25] relies on a
latest CSF [30], which predicts contrast thresholds at lumi-
nance levels between 0.0002 and 10, 000 cd/m2. Neverthe-
less, the PU encoding is designed for the luminance channel
only, and is less applicable to chromatic channels.

Our family of HDR quality metrics falls naturally in
the category of encoding-based methods. Inspired by
Munkberg et al. [38], we “encode” an HDR image into a
multi-exposure LDR image stack for reliable LDR-IQA.

2.2. Novel View Synthesis

Novel view synthesis, a typical application of image-based
rendering, involves generating images from novel view-
points given a set of input views [52]. The view synthe-
sis can be performed directly in the pixel domain when the
input images are densely sampled [13, 21]. It is more com-
mon and economic to capture inputs from a wider range of
sparse locations, which will be processed through a “proxy”
geometry using either a heuristic [6] or learned blending
function [15, 48, 49].

Of particular interest in this line of research is NeRF,
which represents a scene with a neural radiance field [2,
5, 9, 22, 24, 32, 35, 61]. Mildenhall et al. [35] demon-
strated that neural implicit representations yield superior re-
sults in view synthesis compared to traditional explicit rep-
resentations such as point clouds, voxels, and octrees. Var-
ious aspects of NeRF have been improved, including ren-
dering quality and capability [3], training and rendering ef-
ficiency [2, 33], robustness to varying illumination [32] and
deformable objects [44], compositionality [43], editabil-
ity [23], and generalization to novel scenes [8].

Recently, NeRF has been extended to work with HDR
image data [17, 36]. Mildenhall et al. [36] trained Mip-
NeRF [2] using linear noisy RAW images. Huang et al. [17]
modeled the physical imaging process with two implicit
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Figure 2. System diagram of the proposed family of HDR-IQA metrics. The default red arrow can be replaced by the optional green arrow,
whose goal is to compensate for the possible luminance shifts between the reference and test HDR images, similar to the camera response
function correction in [12, 14].

functions: a radiance field and a tone mapper, which are
jointly optimized taking multiple LDR images with differ-
ent exposures as inputs. In this paper, we simplify Huang’s
method [17] by stripping off the tone mapper and directly
optimizing the RAW radiance field guided by the proposed
HDR quality metrics.

3. Proposed HDR Quality Metrics
In this section, we propose to transform the problem of
HDR-IQA into LDR-IQA, with the help of a simple inverse
display model [26]. Fig. 2 shows the system diagram of the
proposed family of HDR-IQA metrics.

3.1. Inverse Display Model

A forward display model simulates how the display trans-
forms digital pixel values to physical units of light, while
the opposite mapping from physical units to digital values,
is referred to as an inverse display model, as illustrated in
Fig. 1. Here, we resort to an inverse gain-offset-gamma dis-
play model [26]:

L(k) =

([
H · v(k) − b

1− b

]1
0

) 1
γ

, 1 ≤ k ≤ K, (1)

where v(k) is the k-th exposure value, determining the posi-
tion of the dynamic range window to be mapped to the avail-
able luminance range of the display. We assume a fixed dis-
play device with the minimum and maximum luminances
of Imin = 1 cd/m2 and Imax = 200 cd/m2, respectively.
These are typical specifications of consumer-grade displays
of standard dynamic ranges, resulting in the window size
w = log2(200/1) = 7.64 in the logarithmic scale. H de-
notes the reference HDR image, and L(k) represents the k-
th LDR image. b indicates the black-level factor, accounting

for the limited contrast of the display due to the light leak-
age and the ambient light reflections from the display. [·]10
denotes the clamping function with the output range [0, 1].
(·)1/γ represents the gamma correction. We follow the de-
fault configurations in [26], and set b = 1/128 and γ = 2.2.
Eq. (1) is independently applied to the three color channels.

It is noteworthy that we intentionally avoid employ-
ing state-of-the-art tone mapping operators (TMOs) for the
HDR-to-LDR conversion. This is because they are essen-
tially dynamic range compressors, leading to the unavoid-
able loss of information and the emergence of algorithm-
dependent artifacts. In contrast, the adopted inverse dis-
play model incurs minimal contrast distortions by mapping
a portion of the luminance range to that of the LDR dis-
play. Moreover, it acts as a local dynamic range magnifier,
expanding a specific luminance range for a more detailed
examination.

We follow [26] to determine the positions of the sliding
windows (i.e., the values of {v(k)}). Specifically, we select
K uniformly spaced overlapping windows such that each
eight stops1 of the luminance range are covered by three
windows. This can be done by dividing the eight stops into
three equal dynamic ranges and setting the endpoint of the
k-th window to be

l(k) = l0 +
8

3
k, (2)

where l0 represents the minimum log-luminance in the
scene. The exposure value v(k) is then computed by

v(k) = 2−l(k)

. (3)

Fig. 3 (a) shows such an example HDR image with eight
stops. Fig. 3 (b)-(d) show the corresponding LDR images,
which exhibit different exposures.

1When photometric units (e.g., luminances) are plotted on the log2
axis, each logarithmic unit corresponds to 1 stop.
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Figure 3. Decomposition of an HDR image with eight stops into
three LDR images of different exposures using the inverse display
model in Eq. (1). l0 and l1 denote the minimum and maximum lu-
minances in the log-scale. (a) indicates the positions of the sliding
windows by Eq. (2). (b)-(d) are the LDR images corresponding to
Window 1 to Window 3, respectively.

(a) LDR images

(b) Weighting maps

Figure 4. LDR image stack generated by the inverse display
model (in Eq. (1)) and the corresponding local weighting maps
(by Eq. (6)) for the “Forest” scene.

3.2. Quality Assessment Model

In the same vein, we may utilize another set of {v̂(k)}Kk=1

to compute an LDR image stack {L̂(k)}Kk=1 from the test
HDR image Ĥ . Subsequently, we evaluate the perceptual
quality of L̂(k) using L(k) as reference:

Q
(k)
i = Di

(
L(k), L̂(k); v(k), v̂(k)

)
, (4)

where D(·, ·) denotes an LDR quality metric that produces
a local quality map, indexed by i. A larger Q(k)

i indicates
higher predicted quality at the i-th spatial location and k-th
exposure. We pool local quality scores with a local weight-
ing map:

Q(k) =

∑
i W

(k)
i Q

(k)
i

(
L(k), L̂(k); v(k), v̂(k)

)

∑
i W

(k)
i

, (5)

where

W
(k)
i =

{
1 if 0.1 ≤ L

(k)
i ≤ 0.9

ε otherwise,
(6)

(a) Reference

(b) Uncompensated

(c) Compensated

Figure 5. Illustration of compensation for the luminance shifts
through Eq. (8). (a) LDR image stack generated from the refer-
ence HDR image. (b) LDR image stack generated from the HDR
image by MaskHDR [50] with the same exposure values used in
(a). (c) LDR image stack generated from the HDR image by
MaskHDR [50] with optimized exposure values.

is determined by a simple well-exposedness measure to ex-
clude under- and over-exposed regions. ε is a small positive
constant set to 10−5. In practice, we further normalize the
local weightings for the same spatial location across dif-
ferent exposures (i.e.,

∑
k W

(k)
i = 1) to make each spa-

tial location contributes equally in the computation. Fig. 4
shows the local weighting maps corresponding to the LDR
image stack of the “Forest” scene. The overall quality score
is computed by aggregating global quality estimates across
exposures:

Q =

K∑
k=1

G(k)Q(k)
(
L(k), L̂(k); v(k), v̂(k)

)
, (7)

where G(k) is the k-th global weighting constrained to be
non-negative, and

∑
k G

(k) = 1. It is flexible to put more
emphasis on assessing specific luminance ranges by raising
the associated G(k) values. Unless otherwise specified, we
set G(k) = 1/K.

As noticed by Hanji et al. [14], the reference and test
HDR images may exhibit luminance shifts that will signifi-
cantly bias quality prediction. To mitigate this issue, we opt
to further maximize Q in Eq. (7) with respect to {v̂(k)}Kk=1:

Q� = max
{v̂(k)}K

k=1

Q
(
{L(k), L̂(k); v(k), v̂(k)}Kk=1

)
, (8)

which can be decomposed into K one-dimensional opti-
mization problems, and solved efficiently by the golden-
section, bisection, or Newton’s methods. Fig. 5 provides a
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Table 1. Performance comparison in terms of SRCC and PLCC of the proposed HDR quality metrics against 19 existing methods on four
HDR-IQA datasets. The left and right numbers separated by “/” indicate the performance on the whole UPIQ dataset and its HDR image
subset, respectively. The weightings to compute the average results in the last column are proportion to the numbers of HDR images in
respective datasets. The top-2 results are highlighted in bold.

Model Narwaria2013 [39] Valenzise2014 [56] Zerman2017 [62] UPIQ [34] Weighted Avg
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

NLPD 0.716 0.747 0.828 0.845 0.752 0.755 0.817/0.814 0.833/0.821 0.785 0.797
HDR-VQM 0.761 0.788 0.865 0.892 0.762 0.774 0.788/0.818 0.817/0.819 0.801 0.812
HDR-VDP-3-Q 0.742 0.770 0.835 0.874 0.700 0.695 0.826/0.845 0.871/0.843 0.801 0.808
HDR-VDP-3-D 0.723 0.735 0.829 0.854 0.700 0.708 0.801/0.800 0.806/0.784 0.771 0.768
MAE 0.107 0.101 0.225 0.373 0.361 0.355 0.534/0.256 0.570/0.294 0.238 0.269
PU-MAE 0.543 0.620 0.435 0.625 0.553 0.568 0.556/0.620 0.602/0.639 0.579 0.623
PU21-MAE 0.560 0.600 0.470 0.575 0.557 0.555 0.585/0.613 0.625/0.617 0.582 0.601
Q⋆

MAE 0.624 0.653 0.838 0.868 0.750 0.728 0.602/0.642 0.635/0.646 0.670 0.677
PSNR 0.124 0.139 0.371 0.416 0.465 0.506 0.645/0.299 0.650/0.341 0.293 0.329
PU-PSNR 0.532 0.595 0.529 0.611 0.649 0.677 0.643/0.631 0.651/0.644 0.605 0.636
PU21-PSNR 0.546 0.574 0.588 0.655 0.633 0.662 0.666/0.585 0.665/0.591 0.584 0.603
Q⋆

PSNR 0.682 0.716 0.766 0.812 0.789 0.774 0.700/0.709 0.701/0.716 0.720 0.733
SSIM 0.126 0.313 0.322 0.502 0.493 0.451 0.677/0.383 0.706/0.475 0.341 0.440
PU-SSIM 0.651 0.690 0.840 0.880 0.754 0.750 0.665/0.736 0.667/0.738 0.729 0.741
PU21-SSIM 0.633 0.679 0.837 0.863 0.757 0.744 0.680/0.674 0.677/0.671 0.691 0.699
Q⋆

SSIM 0.658 0.664 0.893 0.917 0.814 0.801 0.731/0.750 0.745/0.747 0.752 0.751
LPIPS 0.650 0.695 0.768 0.780 0.684 0.695 0.844/0.829 0.876/0.824 0.765 0.774
PU-LPIPS 0.801 0.823 0.883 0.922 0.779 0.759 0.834/0.832 0.870/0.837 0.822 0.829
PU21-LPIPS 0.815 0.833 0.903 0.921 0.806 0.804 0.779/0.822 0.838/0.828 0.825 0.833
Q⋆

LPIPS 0.823 0.839 0.905 0.918 0.847 0.837 0.844/0.836 0.880/0.835 0.840 0.843
DISTS 0.515 0.593 0.794 0.848 0.811 0.846 0.860/0.691 0.882/0.701 0.680 0.712
PU-DISTS 0.847 0.867 0.910 0.929 0.862 0.870 0.805/0.788 0.857/0.804 0.821 0.837
PU21-DISTS 0.860 0.872 0.907 0.921 0.829 0.831 0.798/0.801 0.854/0.822 0.826 0.842
Q⋆

DISTS 0.868 0.877 0.917 0.930 0.904 0.901 0.861/0.853 0.881/0.857 0.869 0.873

visual comparison of the test LDR image stacks without and
with the luminance shift compensation. When adopting Q
in Eq. (7) as the loss function for perceptual optimization of
HDR image rendering tasks, we can more effectively min-
imize the luminance shifts in an online fashion by setting
v̂(k) = v(k), for 1 ≤ k ≤ K.

The proposed HDR quality metric naturally reduces to
its base LDR metric (D(·) in Eq. (4)) when assessing LDR
images. This is because the LDR images would need to
be first transformed from the display-encoded color space
(e.g., sRGB) to linear color values through the forward dis-
play model:

L = (1− b)P γ + b and L̂ = (1− b)P̂ γ + b, (9)

where P and P̂ are digital pixel values of the reference and
test LDR images, respectively. The black-level factor b and
gamma parameter γ are the same as in Eq. (1). The maxi-
mum luminances of L and L̂ are scaled to 200 cd/m2. The
integration of the forward display model with the inverse
display model in Eq. (1) results in an identity mapping,
thereby leaving the input LDR image intact.

4. Quality Assessment Validation
In this section, we compare our HDR quality metrics with
existing model-based and encoding-based methods on four
HDR-IQA datasets.

4.1. Experimental Setups

Implementation Details. We adopt five base LDR qual-
ity models to implement D(·, ·) in Eq. (4): the mean abso-
lute error (MAE), PSNR, SSIM, the learned perceptual im-
age patch similarity (LPIPS) model [63] with VGGNet [53],
and the deep image structure and texture similarity (DISTS)
metric [11]. To solve the K one-dimensional optimization
problems in Eq. (8), we employ the gradient ascent method
with an initial learning rate of 10−3, and decay the learning
rate by a factor of 5 for every 1, 000 iterations with a max-
imum of 5, 000 iterations. Early stopping is enabled if the
absolute difference of the losses between two consecutive
iterations is less than 10−3.
Datasets. Four publicly available HDR-IQA datasets are
adopted for benchmarking: Narwaria2013 [39], Valen-
zise2014 [56], Zerman2017 [62], and UPIQ [34], which
contain 140, 50, 100 and 4, 159 images, respectively. The
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Table 2. Performance comparison in terms of SRCC and PLCC of
the proposed HDR quality metrics without and with the luminance
shift compensation.

Method
Weighted average across the four datasets
w/o compensation w/ compensation

SRCC PLCC SRCC PLCC
QMAE 0.525 0.586 0.670 0.677
QPSNR 0.537 0.546 0.720 0.733
QSSIM 0.575 0.600 0.752 0.751
QLPIPS 0.694 0.702 0.840 0.843
QDISTS 0.708 0.711 0.869 0.873

UPIQ dataset stands out for its collection of 380 HDR and
3, 779 LDR images from four sub-datasets [19, 39, 46, 51],
whose scores have been carefully re-aligned to a common
perceptual scale to ensure consistency.
Competing Metrics. We select nine model-based meth-
ods for comparison, including 1) NLPD [20], 2) HDR-
VQM [42], 3) the quality score of HDR-VDP-3 [31] (de-
noted by HDR-VDP-3-Q) and 4) the difference score of
HDR-VDP-32 (denoted by HDR-VDP-3-D) as four HDR
quality metrics, and 5) MAE, 6) PSNR, 7) SSIM [59], 8)
LPIPS [63] and 9) DISTS [11] as five LDR quality metrics.
We also equip the five LDR quality models with the PU [1]
and PU21 encoding, giving rise to 10) PU-MAE, 11) PU-
PSNR, 12) PU-SSIM, 13) PU-LPIPS, 14) PU-DISTS, 15)
PU21-MAE, 16) PU21-PSNR, 17) PU21-SSIM, 18) PU21-
LPIPS, and 19) PU21-DISTS. As suggested in [1, 25, 29],
we assume a test HDR display model with a maximum lu-
minance of 1, 000 and 4, 000 cd/m2 for the PU and PU21
encoding, respectively, which are independently applied to
the three color channels. We find empirically that the per-
formance ranking is fairly robust to the selection of the max-
imum luminance of the display. For the LDR images in
UPIQ, we first convert digital pixel values to luminance val-
ues via the display model in Eq. (9) before applying HDR
quality metrics, and adjust the hyperparameters of the base
LDR quality metrics if necessary3.
Evaluation Criteria. We use two evaluation criteria:
Spearman’s rank correlation coefficient (SRCC) and Pear-
son linear correlation coefficient (PLCC). As a standard
practice [51, 58], we fit a four-parameter logistic function
before computing PLCC.

4.2. Results

Table 1 presents the performance comparison results, where
we find that the adopted inverse display model leads to

2The current version under evaluation is HDR-VDP-3.0.7 with the de-
fault parameter setting.

3For example, in PU21-SSIM, the two normalizing constants are ad-
justed to C1 = (0.01× 4000)2 = 1, 600 and C2 = (0.03× 4000)2 =
14, 440, respectively, as the maximum luminance is 4, 000 cd/m2.

Ray origin o

Ray direction d

MLP
Radiance h

Density 𝜎𝜎

HDR Radiance Field

Figure 6. The inputs and outputs of the MLP implicitly model the
HDR radiance field. Image adapted from [17].

consistent improvements for all base LDR quality models.
In particular, the instantiation Q⋆

DISTS achieves the best re-
sults on all four datasets, even surpassing the re-calibrated
HDR-VDP-3-Q on UPIQ. Consistent with previous stud-
ies [1, 25], the PU and PU21 encoding can boost the perfor-
mance of base LDR quality measures, but not as substantial
as our metrics. When applied to the LDR images in UPIQ,
the PU and PU21 encoding incur noticeable performance
degradation. In stark contrast, our metrics maintain reli-
able LDR-IQA capabilities. Last, there is a clear trend that
a better base LDR quality metric generally delivers better
performance, affirming our objective of transferring the ad-
vancements in LDR-IQA to HDR-IQA.

Table 2 shows the ablation results of the proposed HDR
quality metrics without and with the luminance shift com-
pensation (see Eq. (8)). It is evident that our compen-
sated metrics consistently outperform the non-compensated
counterparts. This performance gap is expected to be even
more pronounced in the presence of large luminance shifts,
such as assessing HDR images derived from single image
HDR reconstruction methods [12, 14]. Thus, compensating
for luminance shifts is recommended as a standard proce-
dure when comparing HDR images.

5. Perceptual Optimization Validation
In this section, we explore the application of the proposed
HDR quality metrics for perceptual optimization of HDR
novel view synthesis.

5.1. HDR Novel View Synthesis

We select HDR-NeRF [17] as the starting point. The origi-
nal HDR-NeRF employs a multilayer perceptron (MLP) to
implicitly represent the radiance field of an HDR scene, and
uses a separate MLP to function as a tone mapper to recon-
struct multiple input LDR images of different exposures.
Here, we simplify HDR-NeRF by stripping off the tone
mapper, and directly reconstruct the HDR scene, guided by
the proposed HDR quality metrics (see Fig. 6). We refer to
the simplified method as HDR-NeRF†.
Network Design. We employ an eight-layer MLP with 256
channels to implicitly reconstruct the HDR scene radiance.
For a given ray r = o+sd, where o is the origin, d is the ray
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Table 3. Quantitative comparison of HDR novel view synthesis methods averaged across eight synthetic scenes.

Method HDR-VDP-3-Q PSNR SSIM
Without CRF correction With CRF correction Q� (Our metric)

PU21-PSNR PU21-SSIM PU21-PSNR PU21-SSIM Q�
PSNR Q�

SSIM

HDR-NeRF 7.023 25.513 0.863 31.388 0.901 38.485 0.929 28.957 0.899
HDR-NeRF+ 9.634 27.358 0.929 35.758 0.953 41.350 0.957 32.457 0.937
HDR-NeRF† 9.863 28.754 0.933 38.202 0.967 43.483 0.973 34.539 0.968

Ground-truthHDR-NeRF HDR-NeRF+ HDR-NeRFGround-truth HDR-NeRF HDR-NeRF+ HDR-NeRF
57% 57%54%50%35%35% 50% 54%

Ground-truth
57%

57%35% 57%35%50% 50%54% 54%

Figure 7. Visual comparison of HDR novel view synthesis methods on the “Sponza” scene. For the reference HDR view as the ground-
truth, we set the exposure value v in Eq. (1) to be the 57-th of the full dynamic range. Other percentages are the optimally matched v̂ for
different synthesis methods by Eq. (8).

direction, and s denotes a position along the ray, the MLP
outputs the radiance h and density σ, based on which the
luminance value can be computed by

Ĥ(r) =

∫ sf

sn

T (s)σ(r(s))h(r(s))ds, (10)

where

T (s) = exp

(
−
∫ s

sn

σ(r(v))dv

)
. (11)

sn and sf denote the near and far boundary of the ray,
respectively. T (s) denotes the accumulated transmittance
along the ray from sn to s.
Loss Function. For computational convenience, we adopt
the proposed HDR quality metric, Q�

MAE (rather than
Q�

DISTS), as the loss function to encourage high-fidelity
novel view synthesis across all luminance levels.

5.2. Experimental Setups

Model Training and Testing. We employ the dataset
in [17], comprising 8 synthetic scenes rendered by
Blender4. There are 35 HDR views for each scene, and we
select 18 views for training, and leave the remaining 17 for
testing. The resolution of each view is 400× 400.

Training follows the original paper [17]. We employ the
positional encoding in [35], and optimize a coarse model
and a fine model, where the density predicted by the coarse
model is used to bias the sampling of a ray in the fine model.
We sample 64 points along each ray in the coarse model

4https://www.blender.org/

Figure 8. Subjective quality scores across all test views and ob-
servers in the 2AFC subjective user study. HDR-NeRF serves as
the baseline with the global quality score of zero.

and 128 points in the fine model. We employ the Adam
optimizer [18] with an initial learning rate 5× 10−4, which
decays exponentially to 5 × 10−5 with a total of 200, 000
iterations. The batch size of rays is set to 1, 024.
Competing Methods. We compare our method against
HDR-NeRF [17] and its variant optimized for HDR views
directly, denoted by HDR-NeRF+. When training HDR-
NeRF+, the reference and predicted HDR luminance values
are tone mapped to LDR values by a simple TMO [47], as
suggested in [17].
Evaluation Criteria. We employ several objective quality
metrics: 1) HDR-VDP-3-Q [31] 2) PSNR, 3) SSIM [59],
4) PU21-PSNR, 5) PU21-SSIM, 6) PU21-PSNR with cam-
era response function (CRF) correction [14], 7) PU21-SSIM
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Table 4. Quantitative comparison of HDR-NeRF† optimized by different loss functions.

Loss HDR-VDP-3-Q PSNR SSIM
Without CRF correction With CRF correction Q⋆ (Our metric)

PU21-PSNR PU21-SSIM PU21-PSNR PU21-SSIM Q⋆
PSNR Q⋆

SSIM

MAE 6.224 17.181 0.454 25.842 0.613 31.577 0.856 22.928 0.849
PU21-MAE 9.717 28.670 0.929 37.293 0.960 42.245 0.970 33.477 0.949
log-MAE 9.720 23.173 0.840 34.006 0.936 41.267 0.961 32.423 0.944
µ-MAE 9.784 25.645 0.894 35.408 0.948 42.104 0.968 33.227 0.948

Q⋆
MAE 9.863 28.754 0.933 38.202 0.967 43.483 0.973 34.539 0.968

with CRF correction, 8) the proposed quality metric with
PSNR as the base model (i.e., Q⋆

PSNR), and 9) the proposed
quality metric with SSIM as the base model (i.e., Q⋆

SSIM).
The CRF correction compensates for the metric sensitivity
to the shifts in tone and color [12], and is applied before the
PU21 encoding.

5.3. Experimental Results

Quantitative Evaluation. Table 3 lists the average results
of rendered novel HDR views of the eight synthetic scenes.
The primary observation is that the proposed HDR-NeRF†
outperforms HDR-NeRF+ by a clear margin under all eval-
uation metrics. This demonstrates the superiority of the
adopted inverse display model over the simple tone mapper
in HDR-NeRF+. Lack of direct supervision, HDR-NeRF
performs marginally in synthesizing HDR views, despite its
ability to reconstruct a satisfying output LDR image.
Qualitative Evaluation. Fig. 7 visually compares the re-
sults on a test view of the “Sponza” scene. The HDR view
synthesized by HDR-NeRF suffers from color cast and de-
tail loss. HDR-NeRF+ recovers more details, but not as
sharp as those rendered by the proposed HDR-NeRF†.
Subjective User Study. We perform a subjective user study
to verify the perceptual advantages of HDR-NeRF†. For
each of the eight scenes, we randomly choose five test
views, reconstructed by the three competing methods (in-
cluding HDR-NeRF†). We manually select {v(k)}3k=1 to
zoom in the low, middle, and high luminance range of each
reference HDR view, respectively. All LDR images are
aligned to the reference LDR images by solving Eq. (8). We
adopt the two-alternative forced choice (2AFC) approach to
gather human preferences of

(
3
2

)
× 8 × 5 × 3 = 360 im-

age pairs from 15 participants. They are given unlimited
time to review the images, and are allowed to take a break
at any time during subjective testing to mitigate fatigue ef-
fects. The global quality scores are aggregated by the max-
imum likelihood estimation [55]. Fig. 8 shows the results,
which verify the perceptual gains of HDR-NeRF† driven by
the proposed HDR quality metric.
Ablation study. We evaluate the view synthesis perfor-
mance of HDR-NeRF† optimized by several different qual-
ity metrics as the loss functions: 1) MAE, 2) PU21-MAE,
3) log-encoded MAE (i.e., log-MAE), 4) MAE computed

in the LDR domain tone mapped by the µ-law [54] (i.e.,
µ-MAE), and 5) the proposed Q⋆

MAE. Table 4 presents the
quantitative comparison results, where HDR-NeRF† opti-
mized by Q⋆

MAE delivers the best results. The encoding-
based metrics like PU21-MAE and log-MAE do not nec-
essarily surpass µ-MAE, even though tone mapping would
cause detail loss and color distortion.

6. Conclusion and Discussion

We have described a family of HDR quality metrics by aug-
menting current LDR quality metrics with a simple inverse
display model. Our metrics are efficient in inheriting the
benefits of advanced LDR quality metrics, flexible to zoom
in and align specific luminance ranges for more detailed as-
sessment, and training-free. We have validated our HDR
quality metrics in terms of correlation with human percep-
tual scores on four HDR-IQA datasets and perceptual opti-
mization of HDR novel view synthesis.

Previous studies of HDR image processing are inclined
to adopt a global tone mapper for visualizing and compar-
ing the processed results. In contrast, this paper suggests
an alternative visualization method of using the inverse dis-
play model in Eq. (1). This method allows us to focus
on and enhance the visibility of different portions of lumi-
nance ranges for a more fine-grained visual comparison (see
Fig. 7). Together with the proposed family of HDR quality
metrics, we expect more rapid and reliable progress of HDR
imaging and rendering in the near future.

As one of the limitations, our metrics do not account
for the reduced sensitivity of the visual system at low lu-
minances. That is, the predictions are the same regardless
of whether the image is meant to be shown on a dark or
bright display. The PU/PU21 encoding and HDR-VDP are
designed to model the changes in sensitivity with absolute
luminance levels.
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Wilson Suen, and Rafał K. Mantiuk. Consolidated dataset
and metrics for high-dynamic-range image quality. IEEE
Transactions on Multimedia, 24(67):2125–2138, 2021. 2,
5

[35] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 2,
7

[36] Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla,
Pratul P. Srinivasan, and Jonathan T. Barron. NeRF in the
dark: High dynamic range view synthesis from noisy raw
images. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 16190–16199, 2022. 2

[37] Scott Miller, Mahdi Nezamabadi, and Scott J. Daly. Per-
ceptual signal coding for more efficient usage of bit codes.
SMPTE Motion Imaging Journal, 122(4):52–59, 2013. 1, 2

[38] Jacob Munkberg, Petrik Clarberg, Jon Hasselgren, and
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