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Abstract

This paper proposes to correct the rolling shutter (RS)
distorted images by estimating the distortion flow from the
global shutter (GS) to RS directly. Existing methods usu-
ally perform correction using the undistortion flow from
the RS to GS. They initially predict the flow from consec-
utive RS frames, subsequently rescaling it as the displace-
ment fields from the RS frame to the underlying GS im-
age using time-dependent scaling factors. Following this,
RS-aware forward warping is employed to convert the RS
image into its GS counterpart. Nevertheless, this strategy
is prone to two shortcomings. First, the undistortion flow
estimation is rendered inaccurate by merely linear scal-
ing the flow, due to the complex non-linear motion na-
ture. Second, RS-aware forward warping often results in
unavoidable artifacts. To address these limitations, we in-
troduce a new framework that directly estimates the dis-
tortion flow and rectifies the RS image with the backward
warping operation. More specifically, we first propose a
global correlation-based flow attention mechanism to es-
timate the initial distortion flow and GS feature jointly,
which are then refined by the following coarse-to-fine de-
coder layers. Additionally, a multi-distortion flow predic-
tion strategy is integrated to mitigate the issue of inaccu-
rate flow estimation further. Experimental results validate
the effectiveness of the proposed method, which outper-
forms state-of-the-art approaches on various benchmarks
while maintaining high efficiency. The project is available
at https://github.com/ljzycmd/DFRSC.

1. Introduction

We often encounter distorted images/videos when relative
movements occur between the scene and the camera dur-
ing the acquisition process. For instance, a straight building
may appear slanted in the captured photograph, while the
blades of a flying helicopter may seem distorted. This phe-
nomenon is generally referred to as the wobble or the “Jello
effect.”, which is caused by the rolling shutter (RS) mech-
anism of cameras. The image pixels are exposed from the
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Figure 1. Model comparison in terms of PSNR (dB), runtime,
and model size. The PSNR and runtime are calculated on the
Fastec-RS [24] dataset with a resolution of 640 × 480 using an
RTX 3090 GPU. The proposed method outperforms the state-of-
the-art rolling shutter correction methods with higher efficiency.

top to the bottom sequentially, instead of capturing the en-
tire frame all at once as in a global shutter (GS) camera.
This RS mechanism is employed in CMOS sensors, which
govern the cameras (e.g., smartphones, digital cameras) in
the consumer market, owing to their fast imaging and low
cost. However, some unintended distortions would occur in
the image content when capturing moving scenes, affecting
our visual perception and deteriorating the performance of
downstream tasks, especially 3D vision tasks [3, 5, 16, 23].
Consequently, developing effective and robust image/video
RS correction (RSC) algorithms to remove such distortions
holds significant research and practical application value.

To recover the latent distortion-free GS image corre-
sponding to a specific exposure scanline of the RS image,
previous research efforts [1, 8, 26, 29] have attempted to di-
rectly restore the underlying GS image from a single RS im-
age by employing additional geometric constraints and pri-
ors. However, this kind of single-image-based approach is
highly challenging and has limited effectiveness, as the mo-
tion states that form the distortion are unknown and strongly
ambiguous, making the removal of such distortions from a
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single image highly ill-posed. Utilizing multiple consecu-
tive images can significantly alleviate this issue by extract-
ing the inter-frame motion information, thereby achieving
better and more robust results [11, 21, 34, 41, 42], especially
with deep-learning-based techniques [2, 7, 10, 24, 27]. Gen-
erally, to obtain the displacement fields (i.e., the correction
fields) from RS to GS images, these methods usually first
estimate the inter-frame motion field (optical flow) between
the RS frames and then use the relationship [6, 9, 27, 42]
between RS and GS images to transform it into a correc-
tion field, thus obtaining the desired GS images through
image warping operations. These methods have achieved
great success but struggle when faced with non-linear and
large motion due to the following reasons: 1) First, some
methods [6, 9, 25, 27] employ off-the-shelf motion model-
ing networks to estimate the inter-frame motion of RS im-
ages. However, since these optical flow estimation networks
have not been trained on RS videos, their estimation results
may contain distortions and exhibit erroneous dynamic be-
havior, making it difficult to obtain an accurate correction
field for recovering underlying GS images. 2) Alterna-
tively, other methods [2, 7, 24, 40] estimate the inter-frame
optical flow within the RSC model and are trained with RS
images/videos, typically using local correlation [4], which
makes it difficult to model large motions. 3) Moreover, to
obtain the correction field, the estimated inter-frame optical
flow needs to be further linearly scaled based on the con-
stant velocity assumption [2, 10, 24]. However, the mo-
tion in the real world is highly non-linear, rendering the
obtained correction field inaccurate. Although the recent
work [27] proposes estimating a quadratic correction field,
the motion in real-world scenarios is often more complex
than quadratic and is thus more challenging to model.

To move beyond these limitations, in this paper, we pro-
pose to directly estimate the correction field from GS to
RS images, dubbed Distortion Flow 1. More specifically,
we first generate the latent GS feature based on the ex-
tracted RS features. Then, we obtain an initial estimation
of the distortion flow by establishing the global correlation
between the RS and GS features, with the proposed flow
attention mechanism. The GS feature and flow are continu-
ously refined through a coarse-to-fine decoder, which fuses
the warped RS appearance information to the GS feature
and updates the flow. Simultaneously, we integrate a multi-
distortion field decoding strategy to further alleviate the oc-
clusion problem. The RS features are backwardly warped
into the GS counterparts using multiple distortion fields and
decoded along with the GS features to generate the final GS
image. As shown in Fig. 1, our method achieves highly
competitive results on various datasets more efficiently.

Our contributions are threefold and can be summarized

1Distinguished with the undistortion flow field from RS to GS, used
in [6, 7, 9, 24, 27, 40].

as follows. 1) We propose a novel framework for the RSC
task that directly predicts Distortion Flow from consecu-
tive RS frames to recover the underlying GS frame. 2) We
design a global correlation-based flow attention mechanism
for GS feature and flow prediction, facilitating large motion
prediction. In conjunction, a multi-distortion flow predic-
tion strategy is formulated to further improve the perfor-
mance. 3) Extensive experiments demonstrate that the pro-
posed method achieves substantial performance improve-
ments against state-of-the-art methods on multiple datasets
while maintaining higher efficiency.

2. Related Work
2.1. Deep Rolling Shutter Correction

Existing works of RSC fall into two categories: single-
image-based and multi-frame-based methods. For the for-
mer, previous methods apply different geometric assump-
tions, such as straight lines kept straight [28], vanishing di-
rection restraint [26], and analytical 3D straight line RS pro-
jection model [21]. Driven by the surge of deep learning,
the first learning-based model proposed in [30] attempts to
remove RS distortions from a single distorted image. How-
ever, single-image-based models often exhibit unsatisfac-
tory performance due to their reliance on either strong as-
sumptions or inconspicuous features. This limitation hin-
ders their ability to accurately capture the complexity of the
underlying data, leading to sub-optimal results.

To tackle these limitations, multi-frame-based methods
are adopted to model the RS motion, which can be cate-
gorized into classical and learning-based models. For the
classical methods, modeling the RS motion from the uncal-
ibrated RS images and two consecutive frames are respec-
tively studied in [11, 20] and [34, 41]. For the learning-
based methods, the works [7, 24] are proposed to model the
RS motions between two consecutive RS frames by con-
structing cost volumes. Considering the blur in RS im-
ages, Zhong et al. [40] further designed a three-frame-based
model to remove the blur and RS distortion simultaneously.
To alleviate the inaccurate displacement field estimation
and warping, Cao et al. [2] proposed to predict multiple
fields and warp the RS features adaptively. Fan et al. [10]
and Qu et al. [27] proposed a joint motion and appearance
modeling network and a quadratic RS motion solver, re-
spectively, achieving new heights.

2.2. Inter-frame Motion Modeling

To model the motions across frames, computing the match-
ing cost volume to obtain the correspondence is a classi-
cal way. Optical flow networks, such as [4, 13, 32, 33],
usually apply local correlations to obtain the final flow in
a coarse-to-fine strategy with efficiency. RAFT [33] pro-
poses an all-pair correlation volume and designs a recur-
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Figure 2. (a) Schematic of the undistortion flow and distortion
flow. (b) Comparison between the two-stage flow estimation and
the proposed direct distortion flow estimation.

rent strategy to refine the predicted flow continuously, ob-
taining considerable accuracy improvement. GMFlow [38]
also constructs a global correlation between two frames to
aggregate the coordinate grid as the correspondence, form-
ing a new paradigm for optical flow estimation. These
models are widely employed as off-the-shelf modules for
motion modeling in many video-related tasks, like video
frame interpolation, video enhancement, video editing, and
RSC task [6, 9, 25, 27]. However, since these methods are
not trained in the specific domain data, the motion estima-
tion in the other tasks is inaccurate. To this point, Super-
Slomo [14] introduces a mask to handle the occlusion ex-
plicitly and provides a standard formulation for synthesiz-
ing intermediate frames. RIFE [12] and IFRNet [18] pro-
pose task-oriented flow distillation losses to provide a prior
intermediate flow in training. AMT [22] further adapts the
all-pair correlation for efficient frame interpolation. In this
paper, we also propose to learn the distortion flow for the
RSC task, by constructing global correlations between the
underlying GS image and input RS frames.

3. Proposed Method
3.1. Preliminary

RS cameras expose the pixels in a row-by-row manner, and
each scanline has a different timestamp and motion. Thus
the RS image Ir can be formed by row-by-row stacking the
virtual GS images corresponding to each row timestamp:

[Ir(x)]i = [Iig(x)]i, 0 ≤ i ≤ H − 1, (1)

where Iig is the virtual GS image corresponding to the times-
tamp of i-th RS image row, [·]i is the operation to extract the

i-th image row, H and x are respectively the image height
and the pixel location. More generally, we can obtain the
j-th RS image row with the displacement field ui→j from
the j-th row of the RS image to the i-th virtual GS image:

[Ir(x)]j = [Iig(x+ uj→i)]j , 0 ≤ i, j ≤ H − 1. (2)

With the above equation, we can obtain the RS undistortion
flow field (the yellow line in Fig. 2(a)) Ur→i from the RS
image to the i-th virtual GS image, by stacking all uj→i

from j = 0 to j = H − 1. Therefore, we can recover
the i-th underlying GS image (usually corresponding to the
first scanline [7], and the middle scanline [2, 10, 24, 27] of
the RS image) by estimating the undistortion flow field and
using a forward warping operation like the differential for-
ward warping (DFW) module [24]. As shown in the left part
of Fig. 2(b), the velocity of the RS image pixels (approxi-
mated as the optical flow between consecutive RS frames)
is first estimated, then the undistortion flow can be usually
calculated by rescaling the flow under the constant veloc-
ity assumption [2, 6, 9, 10, 24]. However, accurate Ur→i is
hard to estimate with such a linear model since the motion in
the real world is highly complex and non-linear, even with a
recently proposed quadratic motion solver [27]. Moreover,
the inaccurate Ur→i further results in undesired warping ar-
tifacts with the DFW module, e.g., black holes shown in [6].

In contrast to the Eq. 2 that forms the RS image from a
sequence of GS images, it is feasible to derive the underly-
ing i-th GS image from an RS image, when with the motion
displacement field Ur←i from GS to RS images (the green
line in Fig. 2(a)):

Iig(x) = Ir(x+Ur←i(x)). (3)

Thus we can obtain the underlying GS image by sampling
pixels in the RS image with interpolation operations, e.g.,
bilinear, and bicubic. Since the motion field attributes dis-
tort the GS image into the RS image, we dub it distortion
flow field. However, the challenge arises since the interme-
diate GS image is unknown.

In this work, we propose to estimate the intermediate dis-
tortion flow from the underlying desired GS image to the RS
image in a single-stage manner, as depicted in the right part
of Fig. 2(b). Note that the time t determines the recovery of
a specific GS image, and is optional for the RSC task since
we aim to recover only one GS frame corresponding to a
specific scanline (first or middle) of the RS frame.

3.2. Model Overview

Our method aims to alleviate the inaccurate motion mod-
eling under large and complex non-linear motions in the
RSC task, by directly estimating the intermediate distor-
tion flows. Our method takes N consecutive RS frames

25340



ConvBlock

DownSample

ConvBlock

InConv

DownSample

ConvBlock

Flow Attention 
Block

UpSample

RefineBlock

Multi-Flow Decoder

OutConv

𝐈𝐫 𝐈𝐠

𝑁 × 𝐻 × 𝑊 × 3

𝑁 × 𝐻 × 𝑊 × 16

𝑁 ×
𝐻

8
×

𝑊

8
× 64

𝑁 ×
𝐻

16
×

𝑊

16
× 96

RS Encoder GS Decoder𝐻 × 𝑊 × 3

UpSample

RefineBlock

⋯⋯

𝐔 ← and 𝐅

𝐔 ← and 𝐅

𝐔 ← and 𝐅

(a) Overall Architecture (b) Flow Attention Block

(c) Refine Block
𝑁 ×

𝐻

2
×

𝑊

2
× 64

𝐔 ← and 𝐅

Warp

Fusion C
onv

Refined distortion flow 
and GS features

RS features 𝐅

GS feature 𝐅

𝐔 ←

ConvBlock
Flow

 A
ttention

𝑄

𝐾

𝑉

Refined Initial GS 
feature 𝐅

Distortion flow
𝐔 ←

Predicted GS 
feature  𝐅

𝒕

RS features 𝐅
Time offset

Coordinate 𝐆

Warped RS features 𝐅

𝑁 × 𝐻 × 𝑊 × 16

𝑁 ×
𝐻

2
×

𝑊

2
× 64

𝑁 ×
𝐻

16
×

𝑊

16
× 96

Figure 3. Overview of the proposed method (a) and the detailed architecture of the key components (b), (c). Our model directly predicts
the distortion flow for efficient and high-quality RSC.

as input, and recovers the latent GS image correspond-
ing to the timestamp of the middle scanline of the mid-
dle input RS frame, consistent with the settings in previous
works [2, 10, 24, 27, 40]). The overall architecture of the
proposed method is illustrated in Fig. 3. We first extract
multi-scale frame-level RS features, using a weight-sharing
image encoder. After that, we obtain the initial distortion
flow along with the GS features at the lowest resolution with
a global correlation-based flow attention mechanism. Then,
the coarse-to-fine decoder refines and upscales the resolu-
tion of the flow and GS features simultaneously. The final
GS image is obtained by a multi-flow predicting strategy.

3.3. Intermediate Distortion Flow Estimation

Initial distortion flow estimation. After obtaining the L-
scale features {Fl}Ll=0 of the input N RS frames Ir ∈
RN×H×W×3 from the encoder, we can directly predict the
initial intermediate distortion flow Ur←g with the lowest
resolution features FL ∈ RN×H′×W ′×D in a naive way:

UL
r←g = IDFE(FL, t), (4)

where IDFE is the prediction network, and t is the expo-
sure time offset between the target GS image and the middle
scanline of the RS frame.

To obtain a more accurate intermediate distortion flow
estimation under large motions, we further perform global
correlation modeling across the desired underlying GS and
RS features. The Attention = Softmax(QKT

√
d
)V mech-

anism [35] tries to aggregate the value V ∈ RS×d with
the correlation between the query Q ∈ RS×d and value
K ∈ RS×d, excelling at long-range modeling and corre-
lation modeling. We extend such an operation to build the
global correlation between GS and RS frames for distortion
flow estimation and RS feature warping shown in Fig. 3(b),
dubbed flow attention. While the GS feature is missing, we
thus estimate it FL

g ∈ RH′×W ′×D firstly by fusing the con-
secutive RS features with the time offsets condition:

FL
g = ConvBlock(FL, t). (5)

Let the GS features and RS features serve as query and
key, respectively, and we can compute the attention map be-
tween them:

M = Softmax

(
FL

gF
L

√
D

)
∈ RN×H′×W ′×H′×W ′

, (6)

where each element (n, i, j, k, l) in M represents the corre-
spondence probability between the GS feature FL

g (i, j) and
the RS frame feature FL(n, k, l). Note that the above equa-
tion is consistent with the differentiable matching layer [36,
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38] in image matching and optical flow estimation. With the
global correlation matrix M, we can simultaneously com-
pute the globally warped RS features and the distortion flow
by aggregating 1) the RS features and 2) the 2D coordinates
grid G ∈ RH′×W ′×2 of the RS frame, respectively. As a
result, both FL and G serve as the value for the decoding:

FL
warped = MFL ∈ RN×H′×W ′×D, (7)

UL
r←g = MG−G ∈ RN×H′×W ′×2. (8)

The warped RS features are further used to refine the pre-
dicted FL

g using a convolutional block.
Employing the global correlation attention mechanism

enables obtaining a more precise distortion flow from RS
frames, especially with non-linear and large motions. In ad-
dition, the predicted GS feature can be further refined with
the globally warped RS features, by fusing the complemen-
tary information RS features.

Progressive refinement. The predicted initial distortion
flow and GS feature at the lowest resolution are progres-
sively refined by the decoder. Inspired by [10], we em-
ploy the joint appearance and motion refinement strategy,
while we directly predict the upsampled refined distortion
flow rather than scale the optical flow between RS frames.
Specifically, given the current refined distortion flow Ul

r←g

and the GS features Gl
g at level l, we first warp the RS fea-

tures extracted from the image encoder at the corresponding
level to the GS candidates:

Fl
warped = W(Fl,Ul

r←g), (9)

where W is the backward warping operation. Next, the
warped RS features, distortion flow, and GS feature are
fused and upscaled to the refined distortion flow and GS
feature at the next scale l − 1:

Ul−1
r←g,Fl−1

g = Upsample(FusionBlock(Ul
r←g,Fl

g,F
l
warped)).

(10)
By progressively fusing the complementary information
from the RS features, more accurate distortion flow and cor-
responding GS features are obtained to be decoded as the
final GS image.

Multi-distortion flow fields decoding. At the 0-level with
the largest resolution, we further employ a multiple distor-
tion fields prediction strategy [2] to alleviate some incor-
rectly estimated displacement in the distortion flow. With
the refined U0

r←g and F0
g , rather than utilize them to syn-

thesize the GS image directly, we instead predict multiple
groups of fields with a convolutional block:

{U1,r←g, · · · ,UG,r←g} = ConvBlock(Ur←g,Fg,Fwarped)).
(11)

Therefore, the RS features F0 are further warped according
to Eq. 9, resulting in G groups of warped RS features. The

final GS image Ig is predicted from the refined GS features,
undistortion flow, and warped multiple RS features.

3.4. Training Strategy

GS image supervision. Following previous works [2, 7,
10, 24, 40], we employ a combination of the Charbonnier
loss [19]

Lc = d(Igt − Ig) (12)

and the Perceptual loss [15]

Lp = ∥ϕ(Igt)− ϕ(Ig)∥1, (13)

for the recovered GS image supervision, where d(x) =√
(x)2 + ϵ2 is a distance function, and ϵ is set to 1e−3, and

ϕ is the extractor to obtain the features from layer Conv5 4
of pretrained VGG-19 network [31].

Distortion flow supervision. To ensure the accuracy of
the estimated distortion flow, we employ an indirect super-
vision method that ensures the backward warped RS im-
ages with the undistortion flow align consistently with the
ground truth GS image:

Lw =
1

L

L∑
l=0

d(Il,warped
r − Ilgt), (14)

where Il,warped
r = W(Ilr,U

l
r←g) is the warped downsam-

pled RS frames Ir at the l-th level, and Ilgt is the downsam-
pled ground truth GS image at level l.

The total loss for the model training can be formulated
as follows:

L = Lc + λ1Lp + λ2Lw, (15)

where λ1 and λ2 are loss weights.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate the proposed method on both syn-
thetic datasets Fastec-RS [24], Carla-RS [24], and the real-
world datasets BS-RSC [2]. The Fastec-RS dataset is syn-
thesized from the extremely high-speed videos captured by
a GS camera, mainly containing RS effects caused by hori-
zontal camera movements. Another synthetic dataset Carla-
RS is generated from a virtual 3D environment, with con-
stant translational velocity and angular rate during the RS
video sequence generation process. The recently proposed
BS-RSC dataset is collected from the real world. The RS
videos and corresponding GS videos are captured simulta-
neously by a well-designed beam-splitter acquisition sys-
tem. The scenes contain natural non-linear and large mo-
tions, including both camera and objects.

Implementation details. During the training process, our
model accepts N = 3 consecutive RS frames in RGB for-
mat as input, while we also train a 2-frame-based model
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Method # Params. Runtime # NF Fastec-RS Carla-RS

(Million) (ms) PSNR↑(dB) SSIM↑ LPIPS↓ PSNR↑(dB) SSIM↑ LPIPS↓
DiffSfM [42] - 4.7× 105 2 21.44 0.710 0.2180 21.28 0.775 0.1322
DSUN [24] 3.91 131 2 26.73 0.819 0.0995 26.46 0.807 0.0703
SUNet [7] 12.0 92 2 27.06 0.825 0.1030 29.18 0.850 0.0658
VideoRS [25] 24.26 1.3× 106 2 28.57 0.844 - 31.43 0.919 -
JAMNet [10] 4.73 28 2 28.70 0.865 0.0691 30.70 0.905 0.0371
Ours (2F) 2.87 26 2 28.88 0.870 0.0699 31.33 0.921 0.0228

JCD [40] 7.51 225 3 26.48 0.821 0.0943 27.75 0.836 0.0595
AdaRSC [2] 4.25 302 3 28.56 0.855 0.0796 - - -
QRSC (3F) [27] 12.72 401 3 28.18 0.853 0.0912 29.81 0.919 0.0313
QRSC (4F) [27] 12.74 759 4 28.26 0.854 0.0901 30.98 0.925 0.0282
QRSC (5F) [27] 12.75 1149 5 29.49 0.872 0.0814 32.01 0.933 0.0253
Ours (3F) 3.15 34 3 30.00 0.882 0.0665 32.10 0.930 0.0218

Table 1. Quantitative comparison against the state-of-the-art methods on the synthetic RSC datasets Carla-RS [24] and Fastec-RS [24].
Our method achieves highly competitive results while maintaining high efficiency. #NF indicates the input RS frames of the model. The
runtime is calculated using an NVIDIA RTX 3090 GPU.

Method BS-RSC ACC

PSNR↑(dB) SSIM↑ PSNR↑(dB) SSIM↑
DiffSfm [42] 19.80 0.698 15.74 0.551
DSUN [24] 25.21 0.833 22.39 0.780
SUNet [7] 27.76 0.875 27.29 0.870
JAMNet [10] 32.93 0.941 32.71 0.940
Ours (2F) 33.39 0.947 33.21 0.947

JCD [40] 25.59 0.841 23.73 0.808
AdaRSC [2] 28.23 0.882 28.73 0.892
QRSC (5F) [27] 33.50 0.946 33.36 0.945
Ours (3F) 34.48 0.954 34.35 0.954

Table 2. Quantitative comparison against the state-of-the-art meth-
ods on the real-world RSC dataset BS-RSC [2].

that inputs two frames. The feature scales L = 4. For
the data augmentation, the input RS frames are first ran-
domly cropped with a width of 256 while keeping the height
unchanged, and a random horizontal flip is performed on
the cropped patch. The loss hyper-parameters are set to
λ1 = 0.005, λ2 = 0.05. The model is trained for 150k iter-
ations with a step learning rate adjustment strategy. When
testing, no augmentation is applied to the input consecutive
RS frames. The experiments are conducted on the PyTorch
platform on a single NVIDIA V100 GPU. The initial learn-
ing rate is set to 4× 10−4, and the ADAM optimizer [17] is
employed to update the model parameters.

Evaluation metrics. Both PSNR and SSIM [37] are em-
ployed to evaluate the correction accuracy quantitatively.
Meanwhile, the learned perceptual metric LPIPS [39] is
also applied to measure the visual quality quantitatively. In
addition, the corrected RS frames are also displayed for the
qualitative comparison.

4.2. Comparison to the State-of-the-art

We compare the proposed method to the state-of-the-art
RSC methods quantitatively and qualitatively, including 1)
traditional method DiffSfM [42], 2) deep learning-based
methods DSUN [24], SUNet [7], VideoRS [25], JAM-
net [10] that take two consecutive frames as input, and
3) deep learning-based methods JCD [40], AdaRSC [2],
QRSC [27] that require inputting three or more frames. We
also implemented two versions of the proposed method: 2-
frame-based and 3-frame-based, to better demonstrate the
effectiveness of the proposed method.

Quantitative comparison. Table 1 presents the per-
formance of different methods on the synthetic datasets
Factec-RS and Carla-RS. We see that the proposed method
achieved highly competitive performance that obtains
higher PSNR, SSIM, and lower LPIPS than the state-of-
the-art methods JAMNet [10] and QRSC [27], thanks to
the direct distortion flow estimation strategy and the model
design. The quantitative results on the real-world BS-
RSC dataset are shown in Tab. 2, where the proposed
method shows significant improvements against other meth-
ods. Specifically, our 3-frame-based model achieves 2.5dB
PSNR improvement compared to the 3-frame-based QRSC
(3F), and even surpasses the 5-frame-based QRSC (5F) with
about 1dB PSNR. Note that BS-RSC contains both camera
and object motions in the real world.

These competitive results demonstrate the effectiveness
of the proposed method in removing the RS effects under
non-linear and large motions. Unlike previous methods that
estimate the optical flows between RS frames and utilize
linear [2, 10, 24] or quadratic [27] motion models to obtain
the correction fields, our methods directly predict the dis-
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DSUN AdaRSCJCDDiffSfM

JAMNet Ours

RS Frame

GSQRSCSUNet

Figure 4. Qualitative results comparison against state-of-the-art methods on the synthetic Fastec-RS dataset [24]. Our method removes the
RS distortions well and preserves more details in the recovered GS image on such an occluded scene.

DSUN AdaRSCJCDDiffSfM

JAMNet Ours

RS Frame

GSQRSCSUNet

Figure 5. Qualitative results comparison against state-of-the-art methods on the real-world BS-RSC dataset [2]. Our method is effective
and robust in recovering the latent GS image accurately from the RS frames distorted by complex non-linear and large motions.

tortion flow and can better model the non-linear motions to
obtain better results. Meanwhile, as shown in the right part
of Tab. 2, our method also achieved superior results on the
ACC dataset [27], which is derived from BS-RSC by ex-
cluding frames with constant motions. These quantitative
results demonstrate that the proposed method is effective
and robust in removing RS distortions under complex non-
linear and large motions.

Qualitative comparison. Figures 4 and 5 illustrate the
qualitative results of different methods on the synthetic
dataset Fastec-RS and the real-world dataset BS-RSC, re-
spectively. As for the occluded scene shown in Fig. 4, we
see that existing methods struggle to either remove the dis-
tortions or preserve details for high-quality GS restoration.
In contrast, our method successfully recovers the corrected

GS image while preserving more details (e.g., the number
marked with the yellow box). Meanwhile, as for the scene
containing both non-linear camera motion and object mo-
tion shown in Fig. 5, existing methods can hardly obtain
the correct shape of the latent GS image (marked by the
yellow box). These methods make it difficult to obtain an
accurate correction field with a linear motion model, e.g.,
DSUN, AdaRSC, and JAMNet, even with a quadratic mo-
tion model, i.e., QRSC. Thanks to the proposed direct inter-
mediate distortion flow estimation and the network design,
our model performs better in removing the RS distortions
caused by complex and large motions and recovering the
desired GS image accurately.

Efficiency comparison. As shown in Tab. 1, our method is
also highly competitive in terms of efficiency. More specif-
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Model PSNR SSIM # Params.

W/o motion modeling 26.88 0.833 2.43
W/ undistortion flow Ur→g 27.78 0.847 2.86
W/ distortion flow Ur←g 28.39 0.864 2.79
Full model 28.88 0.870 2.87

(a) Effectiveness of the distortion flow estimation.

Model PSNR SSIM # Params.

W/o Flow attention 28.52 0.865 2.79
W/ 1 field 28.73 0.867 2.87
W/ 4 fields 28.88 0.870 2.87
W/ 8 fields 28.82 0.865 2.88

(b) Ablation study on the model design.
Table 3. Ablation study of the motion modeling and the model design. The settings employed in our final model are highlighted.

ically, our 2-frame-based model achieves a higher PSNR
than the previous most efficient RSC model JAMNet, and
has 40% fewer parameters. Moreover, our method (3-
frame-based version) realizes a significant performance
gain on all three datasets while only slightly slower than
JAMNet. Compared to QRSC, the proposed method is more
than 30 times faster with a much smaller number of model
parameters. This is because QRSC requires computing the
optical flows several times among input RS frames using the
off-the-shelf flow models, while our method performs RSC
in an end-to-end manner.

4.3. Ablation Studies

We ablate the proposed method in terms of the distortion
flow estimation and the network modules with our 2-frame-
based model on the popular Fastec-RS dataset, and the abla-
tion of our 3-frame-based model on the real-world BS-RSC
dataset can be found in the supplementary materials.

Distortion flow estimation. To validate the effectiveness
of the direct distortion flow estimation for the RSC task, we
first remove the flow-attention module and multi-distortion
flow decoding module, then 1) remove the flow estimation
and warping operation to obtain a vanilla encoder-decoder-
like model (without motion modeling), 2) replace the distor-
tion flow estimation with direct undistortion flow Ur→g es-
timation and apply differential forward warping [24] mod-
ule for warping. The results of the above model vari-
ants are shown in Tab. 3a. We see that a vanilla encoder-
decoder model achieves the lowest metrics, while the mod-
els with motion modeling (with undistortion or distortion
flow) significantly improve the performance. This verifies
that inter-frame motion modeling is beneficial and neces-
sary to achieve high-quality RSC results. Meanwhile, the
model with distortion flow estimation obtains higher PSNR
and SSIM than the undistortion flow-based model. We ar-
gue that the backward warping operation contributes to the
performance improvement. In addition, when the distortion
flow-based model with the delicate network design (i.e., the
global correlation-based flow attention and multi-distortion
flow decoding strategy), the performance has been further
improved with a slight parameter number increase.

Flow attention and multi-flow decoder. As shown in
Tab. 3b, when adding the flow attention module or the multi-
distortion flow decoding, PSNR and SSIM metrics have

been further improved by better modeling the large com-
plex motions and occlusions. Meanwhile, as the flow group
number increases, the model exhibits minor performance
fluctuations. However, it still achieves improvement when
compared to the single-field-based model.

The Number of input RS frames. As shown in Tabs. 1
and 2, the performance of the two-frame-based version
model declines drastically on all datasets. With two frames,
some contents in the latent GS image corresponding to the
middle scanline of the second RS image still cannot be
found in the first RS image. As a result, the missing regions
should be generated, which is highly challenging. When
with three frames, more complementary appearance infor-
mation in the neighboring RS frames can be aggregated to
obtain a higher-quality GS image.

5. Limitation
Although our method achieves highly competitive perfor-
mance in recovering high-quality GS images and surpasses
existing methods with a large margin, it still can not fully
address the RS distortions encountered in real-world sce-
narios, constrained by the scale of existing datasets and the
unknown camera parameters of the capture. In the follow-
ing work, we want to integrate explicit camera exposure pa-
rameters into the model design for a more effective and gen-
eralized real-world RSC task.

6. Conclusion
This paper explores the intermediate distortion flow estima-
tion for the high-quality performance on the RSC task. A
novel framework, equipped with a global correlation-based
flow attention module and a multi-distortion flow decoding
strategy, is proposed to estimate the distortion flows from
the latent GS image to the RS frames directly. Experimen-
tal results on both synthetic and real-world datasets demon-
strate the effectiveness of the proposed method, and that
it can remove the RS distortions under complex non-linear
and large motions efficiently. We hope the proposed method
can serve as a new paradigm to develop more effective and
efficient methods for the RSC task.
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