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Figure 1. Top: 3D shape interpolation. Compared to the SOTA shape interpolation method NeuroMorph [27], our method obtains more
reliable interpolation even under large non-isometry. Bottom left: 3D shape matching. The point-wise correspondences found by the
SOTA shape matching method URSSM [12] contains local mismatches. In contrast, our method enables smooth shape matching. Bottom
right: 3D shape matching and interpolation. Our method is the first unsupervised method that obtains both accurate correspondences
(shown as texture transfer) and realistic interpolation that capture both the pose-dominant and shape-dominant deformations.

Abstract

Although 3D shape matching and interpolation are
highly interrelated, they are often studied separately and
applied sequentially to relate different 3D shapes, thus re-
sulting in sub-optimal performance. In this work we present
a unified framework to predict both point-wise correspon-
dences and shape interpolation between 3D shapes. To this
end, we combine the deep functional map framework with
classical surface deformation models to map shapes in both
spectral and spatial domains. On the one hand, by incorpo-
rating spatial maps, our method obtains more accurate and
smooth point-wise correspondences compared to previous
functional map methods for shape matching. On the other
hand, by introducing spectral maps, our method gets rid

of commonly used but computationally expensive geodesic
distance constraints that are only valid for near-isometric
shape deformations. Furthermore, we propose a novel test-
time adaptation scheme to capture both pose-dominant and
shape-dominant deformations. Using different challenging
datasets, we demonstrate that our method outperforms pre-
vious state-of-the-art methods for both shape matching and
interpolation, even compared to supervised approaches.

1. Introduction
Computing maps between 3D shapes is a fundamental prob-
lem in computer vision and computer graphics, since it
opens the door to understanding different object categories
and enables both shape analysis [50] and shape genera-
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tion [22]. One specific class of approaches builds shape
relationships is statistical shape models (e.g. SMPL [51]).
To do so, these methods require dense point-wise corre-
spondences between large collections of 3D shapes. Even
though shape matching has been studied extensively in the
literature [75, 77], finding accurate point-wise correspon-
dences between non-rigidly deformed 3D shapes remains
challenging due to different discretisation, non-isometry
and partiality. Once shapes are in correspondence, shape in-
terpolation methods can be applied to increase the shape di-
versity for shape generation [27, 57] and for different appli-
cations (e.g. animation [42], interactive shape editing [39]).

Despite the interrelation between shape matching and in-
terpolation, prior works mainly consider them as two sep-
arate problems. In the context of shape matching, the
functional map framework [58] is one of the most domi-
nant pipelines and has been extended by many follow-up
works [19, 61, 63, 64]. However, functional map methods
only map shapes in the spectral domain and thus lead to
local unsmooth point-wise correspondences (see URSSM
in Fig. 1 bottom left), which is undesirable for many
downstream tasks (e.g. shape interpolation [23], or statis-
tical shape analysis [45, 51]). Meanwhile, shape match-
ing methods based on non-rigid registration (i.e. spatial
maps) typically rely on time-consuming iterative optimi-
sation schemes [40, 43] and careful initialisation [6, 54],
and thus often achieve worse performance due to the op-
timisation complexity [17]. To overcome the above limi-
tations, our method takes the best of both worlds by com-
bining spectral and spatial maps. For shape interpolation,
most works assume that the shapes are already in corre-
spondence and aim to design more efficient and realis-
tic deformation energies [9, 35, 81]. As a consequence,
wrong correspondences often lead to undesirable interpo-
lation trajectories. Only few approaches [24, 27] explic-
itly consider shape matching and interpolation together, but
mostly under overly strict assumptions (e.g. volume preser-
vation). Tab. 1 summarises the comparison between dif-
ferent learning-based shape matching approaches. Unlike
prior methods, we propose the first unsupervised framework
that harmonises spectral and spatial maps for both shape
matching and interpolation. We summarise our main con-
tributions as follows:
• For the first time we fuse spectral and spatial maps to en-

able the joint unsupervised learning of both non-rigid 3D
shape matching and interpolation.

• Our method predicts both pose-dominant and shape-
dominant deformations, in contrast to prior interpolation
methods that mainly focus on pose-dominant ones due to
local deformation priors.

• We set the new state-of-the-art shape matching and in-
terpolation performance on numerous challenging bench-
marks, even compared to supervised methods.

Methods Unsup. Spectral Spatial Interp.

FMNet [48] ✗ ✓ ✗ ✗

3D-CODED [32] ✗ ✗ ✓ ✗

GeomFMaps [18] ✗ ✓ ✗ ✗

TransMatch [76] ✗ ✗ ✓ ✗

UnsupFMNet [33] ✓ ✓ ✗ ✗

SURFMNet [68] ✓ ✓ ✗ ✗

Deep Shells [26] ✓ ✓ ✓ ✗

CorrNet3D [82] ✓ ✗ ✓ ✗

NeuroMorph [27] ✓ ✗ ✓ ✓

AttnFMaps [44] ✓ ✓ ✗ ✗

URSSM [12] ✓ ✓ ✗ ✗

Ours ✓ ✓ ✓ ✓

Table 1. Learning-based shape matching method comparison.
Our method is the first unsupervised learning approach that oper-
ates in both spectral and spatial domains to enable accurate shape
matching and realistic shape interpolation.

2. Related work

2.1. Shape matching

Shape matching aims to find point-wise correspondences
between shapes. Classical shape matching approaches [37,
65, 80] establish correspondences by explicitly considering
geometric relations. Other methods [6, 24, 30, 40] solve the
problem based on non-rigid shape registration. However,
directly finding point-wise correspondences often leads to
complex optimisation problems that typically require time-
consuming iterative optimisation strategies and are thus
only applicable for low-resolution shapes [65, 66, 80],
which limits their applications in real-world settings.

In contrast, the functional map framework finds corre-
spondences in the spectral domain [58], where the corre-
spondence relationship can be encoded into a small matrix,
namely the functional map. Due to its simple yet efficient
formulation, the functional map framework has been ex-
tended by many follow-up works, e.g. improving the match-
ing accuracy [29, 62], extending it to more challenging sce-
narios (e.g. non-isometry [25, 53, 61, 63], partiality [49,
64]). Together with the development of deep learning, many
learning-based approaches are proposed [33, 48, 68] and
lead to state-of-the-art performance [3, 10–12]. Neverthe-
less, the map in the spectral domain does not guarantee
smooth point-wise correspondences. Therefore, the conver-
sion of functional map into smooth and accurate point-wise
correspondences is still an open-problem that is extensively
studied [31, 56, 59, 78]. Unlike most functional map meth-
ods, our method harmonises the spectral and spatial maps
together and thus leads to more accurate and smooth point-
wise correspondences.
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2.2. Shape interpolation

Shape interpolation is a well-studied problem in computer
graphics that aims to continuously deform a source shape
to a target shape. The most common strategy is to define
an interpolation path in some higher dimensional space [9,
35, 36, 81]. To this end, various deformation measure-
ments (e.g. as-rigid-as-possible (ARAP) [72], PriMo [8],
etc.) are proposed to optimise the interpolation path so
that the local distortion between any consecutive shapes
is minimised. Another direction is to interpolate intrinsic
quantities like dihedral angles before reconstructing the 3D
shape [1, 4]. Other methods formulate shape interpolation
as a time-dependent gradient flow [13, 21] by incorporat-
ing certain constraints (e.g. volume preservation [23, 24]).
Nevertheless, most of them assume known correspondences
between two shapes, which is unrealistic for real-world 3D
shapes. The most relevant approach to our work is Neuro-
Morph [27], which is an unsupervised framework for both
shape matching and interpolation. However, it has several
limitations: In the context of shape matching, it is based
on the geodesic distance preservation that is computation-
ally expensive and only valid for near-isometric shape de-
formation. In the context of shape interpolation, it solely
utilises the as-rigid-as-possible [72] to deform the source
shape into the target shape, which can only model the low-
frequency pose-dominant deformations (see Fig. 1 in [27]).
In contrast, we utilise more efficient spectral regularisation
and thus lead to more accurate shape matching even under
large non-isometry. Furthermore, our method is able to cap-
ture both pose-dominant and shape-dominant deformations
based on our novel test-time adaptation.

3. Deep functional map in a nutshell

In this section we provide a summary of the popular deep
functional map framework [68]. We consider a pair of 3D
shapes X and Y represented as triangle meshes with nX
and nY (w.l.o.g. nX ≤ nY ) vertices, respectively. Here we
summarise the main steps of its pipeline:
1. Compute the Laplacian matrices LX ,LY [60] and the

corresponding first k eigenfunctions ΦX ,ΦY and eigen-
values ΛX ,ΛY in matrix notation, respectively.

2. Compute feature vectors FX ,FY defined on each shape
via a learnable feature extractor Fθ.

3. Compute the functional maps CXY ,CYX associated
with the Laplacian eigenfunctions by solving the opti-
misation problem

CXY = argmin
C

Edata (C) + λEreg (C) . (1)

Here, minimising Edata (C) =
∥∥∥CΦ†

XFX −Φ†
YFY

∥∥∥2
F

enforces descriptor preservation, while minimising the

regularisation term Ereg imposes certain structural prop-
erties (e.g. Laplacian commutativity [58]).

4. During training, structural regularisation (e.g. orthog-
onality, bijectivity [68]) is imposed on the functional
maps, i.e.

Lstruct = λbijLbij + λorthLorth. (2)

5. During inference, the point-wise map ΠYX is obtained
based on the map relationship CXY = Φ†

YΠYXΦX ,
e.g. either by nearest neighbour search in the spectral
domain or by other post-processing techniques [25, 31,
56, 78].

4. Our method
The framework of our method is depicted in Fig. 2. Our
method aims to predict both accurate point-wise correspon-
dences and realistic shape interpolation paths in an unsu-
pervised manner. Therefore, our framework can be divided
into two sub-modules, namely the shape matching module
(Sec. 4.1) and the shape interpolation module (Sec. 4.2).
Our unsupervised loss and test-time adaptation are intro-
duced in Sec. 4.3 and Sec. 4.4, respectively.

4.1. Shape matching module

Point-wise map computation. Point-wise map compu-
tation aims to find dense correspondences between two
shapes. In theory, the point-wise map ΠXY should be a
(partial) permutation matrix, i.e.{

Π ∈ {0, 1}nX×nY : Π1nY = 1nX ,1
⊤
nX

Π ≤ 1⊤
nY

}
,
(3)

where Π(i, j) indicates whether the vertex Xi in shape X
corresponds to the vertex Yj in shape Y . In our work the
point-wise correspondences ΠXY between shapes X and
Y are obtained based on similarity measurement of the ex-
tracted features. To this end, the Siamese feature extrac-
tor Fθ (i.e. DiffusionNet [71]) is used to extract features
FX ,FY from input shapes, respectively. Following prior
works [12, 27], we use the softmax operator to produce a
soft correspondence matrix to make the computation dif-
ferentiable, i.e. ΠXY = Softmax

(
FXFT

Y
)
. The softmax

operator is applied in each row to ensure that elements are
non-negative and ΠXY1nY = 1nX . In this way, ΠXY can
be interpreted as a soft assignment of vertices Y in shape Y
to vertices X in shape X .
Functional map computation. The goal of the functional
map computation is to impose spectral regularisation on the
obtained point-wise maps based on the coupling relation-
ship CXY = Φ†

YΠYXΦX . Therefore, the functional map
computation is only used for training as part of the spectral
loss computation. The computation pipeline of functional
maps is explained in Sec. 3 and the details of the spectral
loss can be found in Sec. 4.3.
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Figure 2. Method overview. First, the Siamese feature extractor Fθ is used to extract features FX ,FY from input shapes X ,Y , respec-
tively. The extracted features are then used to compute both bidirectional functional maps CXY ,CYX and point-wise maps ΠXY ,ΠYX .
Afterwards, the computed point-wise maps are used to bring the shape into correspondences. In the context of shape interpolation, a
series of time steps t is sampled and fed into the interpolator Ωγ together with shape information to predict a series of interpolated shapes
X(t), Y (t). During training the spectral loss Lspectral is used to regularise the predicted functional maps and point maps, while the spatial
loss Lspatial is used to regularise the interpolation trajectories of both shapes.

4.2. Shape interpolation module

The goal of the shape interpolation module Ωγ is to predict
the deformation field ∆(t) ∈ Rn×3, where t ∈ [0, 1], that
continuously deforms the shape X into the shape Y , and
vice versa. The deformation field of shape X forms the
interpolation trajectory

X(t) = X+∆X (t). (4)

The interpolation trajectory shifts shape X from its original
locations X(0) = X into new locations X(1) ≈ ΠXYY,
which are close to the corresponding vertices in shape Y .
Following NeuroMorph [27], we use EdgeConv [79] blocks
with residual connections [34] to build our interpolator Ωγ .
Similarly, the input feature of shape X in the interpolator is
the 7-dimensional feature vector ZX ∈ RnX×7 that can be
expressed in the form

ZX (t) = (X,ΠXYY −X, t1nX ) , (5)

where X is the vertices of the shape X , ΠXYY −X is the
vertex offsets between shape X and Y , t1nX is the sam-
pled time that broadcasts to all vertices. The deformation
fields are given by the output of the interpolator multiplied
by time, i.e. ∆X (t) = t ·Ωγ(ZX (t)). To this end, the inter-
polator can immediately predict a trivial solution (i.e. linear
interpolation) by setting Ωγ(ZX (t)) = ΠXYY −X, since
it satisfies the boundary conditions of the interpolation [27]:

X(0) = X+ 0 · (ΠXYY −X) = X, (6)
X(1) = X+ 1 · (ΠXYY −X) = ΠXYY. (7)

However, the linear interpolation is a degenerate solution,
since our goal is to obtain geometrically realistic shape
interpolation. To prevent the interpolator prediction from
falling into the trivial solution, spatial regularisation needs
to be imposed, including a deformation energy [72] and ad-
ditional regularisation, which will be introduced in Sec. 4.3.

4.3. Unsupervised loss

In this section we introduce the spectral and spatial regu-
larisation that enable unsupervised training of our method.
Spectral regularisation. To obtain accurate point-wise cor-
respondences for shape matching and shape interpolation,
we utilise a spectral regularisation based on the functional
map framework. Unlike prior works [15, 27] relying on
geodesic distance preservation that is computationally ex-
pensive and only valid for near-isometric deformation [33],
the spectral regularisation imposed on the functional maps
is more efficient and works well also for non-isometric de-
formations [12, 20, 44]. Unlike most previous deep func-
tional map methods [18, 26, 68] relying on off-the-shelf
post-processing techniques [25, 56] to obtain point-wise
maps (see Sec. 3), we aim to directly obtain point-wise
map based on deep feature similarity. To this end, we com-
bine structural regularisation in Eq. (2) with the coupling
loss [12, 63, 73] to build our spectral regularisation

Lspectral = λstructLstruct + λcoupleLcouple, (8)

where

Lcouple =
∥∥∥CXY −Φ†

YΠYXΦX

∥∥∥2
F
. (9)
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Spatial regularisation. Finding point-wise correspon-
dences solely based on spectral regularisation leads to lo-
cal mismatches, which is undesirable for many downstream
tasks including shape interpolation. To compensate for this,
one of our spatial regularisation terms aims to directly align
two shapes in the spatial domain, i.e.

Lalign = ∥X(1)−ΠXYY∥2F + ∥Y(1)−ΠYXX∥2F .
(10)

As mentioned in Sec. 4.2, additional spatial regularisation
for shape deformation is needed to avoid trivial degenerated
solutions. To this end, similar to [27, 83], the ARAP defor-
mation energy [72] is used to regularise the interpolation
trajectory. ARAP is a low-frequency preserving deforma-
tion energy that encourages locally rigid transformations.
During training, we sample T + 1 discrete timesteps uni-
formly Xk := X(k/T ) for k ∈ {0, . . . , T} to compute the
ARAP energy as

Earap(Xk,Xk+1) =

min
Ri∈SO(3)

nX∑
i=1

∑
j∈Ni

∥∥∥RiE
ij
k −Eij

k+1

∥∥∥2
F
, (11)

where Eij
k = Xi

k −Xj
k ∈ R3 is the triangle edge between

mesh vertices Xj
k and Xi

k. The rotation matrices Ri can
be computed in closed form for an efficient deformation
(see [72] for details). Finally, our ARAP regularisation term
can be expressed in the form

Larap =

T−1∑
k=0

Earap(Xk,Xk+1). (12)

Analogously, the loss in Eq. (12) is also applied to the re-
verse sequence for shape Y . However, the ARAP deforma-
tion energy only enables low-frequency pose-dominant de-
formation. To capture the shape-dominant deformation, we
propose a test-time adaptation described in Sec. 4.4. Apart
from the ARAP regularisation, we propose two additional
regularisation terms to encourage smooth and symmetric
deformation trajectories from shape X to shape Y , and vice
versa. The symmetry loss encourages symmetric deforma-
tion trajectories from both directions, i.e.

Lsym =

T−1∑
k=1

∥Xk −ΠXYYT−k∥2F . (13)

This loss is also applied with the roles of X and Y swapped.
Since we would like to also model the shape-dominant de-
formation, we only want Xk ≈ ΠXYYT−k allowing for
shape-based variations. To this end, we introduce a tempo-
ral shape variance loss defined as

Lvar =

nX∑
i=1

Var
(
∥Xk −ΠXYYT−k∥i

)
, (14)

where Var(Xi) = 1
T−1

∑T
k=1(X

i
k − X̄i)2 is the alignment

error variance of the i-th vertex during the interpolation se-
quence and X̄i = 1

T

∑T
k=1 X

i
k is the mean. In this man-

ner, we assume that shape variations are nearly constant
throughout the interpolation sequence. Similar to Eq. (13),
the loss is also applied for the reverse direction Y. The spa-
tial loss is the linear combination of the above losses, i.e.

Lspatial = λalignLalign+λarapLarap+λsymLsym+λvarLvar.
(15)

The total loss is the sum of the spectral loss and spatial loss.

4.4. Test-time adaptation

The spatial loss defined in Eq. (15) encourages low-
frequency pose-dominant deformations, while the shape-
based deformations are not well-modelled. To this end, we
propose a novel test-time adaptation to obtain more accu-
rate correspondences and better capture the shape-dominant
deformation. Specifically, we optimise for an additional
shape-dominant deformation field ∆s(t) ∈ RnX×3 (with
t ∈ [0, 1]) between X(t) and Y(1− t):

∆s(t) = argmin
∆

CD(X(t) +∆,Y(1− t))+λDLD(∆),

(16)
where we consider the standard Chamfer distance

CD(S1,S2) =
1

|S1|
∑
x∈S1

min
y∈S2

∥x− y∥22

+
1

|S2|
∑
y∈S2

min
x∈S1

∥x− y∥22, (17)

and LD(·) is the Dirichlet energy [53] which promotes
smooth deformations. The VectorAdam [47] optimiser is
used to optimise the additional shape-based deformation
field. Once we obtain the optimal ∆s(t), we use linear
interpolation to obtain the shape-dominant deformation tra-
jectory, i.e.

X(t, ts) = (1− ts) · (X(t)+∆s(t))+ ts ·Y(1− t), (18)

where ts ∈ [0, 1] is the sampled time for shape-dominant
deformation. Fig. 3 demonstrates an example of our test-
time adaptation for t = {0, 0.5, 1} and ts = {0, 0.5, 1}.

After the optimisation of the shape-dominant deforma-
tion field ∆s(t), we obtain the final point-wise correspon-
dences based on the spatial map using

ΠXY = NN(Y,X(1, 1)) , (19)

where NN denotes nearest neighbour search in Y for each
entry in X(1, 1). Optimisation based on the Chamfer dis-
tance is highly non-convex and prone to local minima for
non-rigid shape registration [32, 74, 82]. However, for the
optimisation in Eq. (16), the two shapes are already in the
same pose with only minor shape variations.
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Figure 3. Visualisation of our test-time adaptation. Start-
ing from pose-dominant deformation based on ARAP, we obtain
X(t, ts = 0) (i.e. the last row). Afterwards, we optimise the
shape-dominant deformation field ∆s(t) for each sampled time
point. Finally, the linear interpolation is performed to obtain the
shape-dominant interpolation trajectories (shown by arrows).

5. Experimental results

In this section we demonstrate the advantages of our method
in the context of 3D shape matching and interpolation.

5.1. Shape matching

Near-isometric shape matching. We evaluate the match-
ing accuracy of our method on three near-isometric bench-
marks: FAUST [7], SCAPE [2] and SHREC’19 [55]. In-
stead of the original meshes, we consider the more challeng-
ing remeshed versions from [18, 61]. The FAUST dataset
consists of 10 humans with 10 different poses each, where
the training and testing split is 80/20. The SCAPE dataset
contains 71 different poses of the same person, split into
51 and 20 shapes for training and testing. The SHREC’19
dataset is subject to particular challenges with significant
variance in the mesh connectivity and shape geometry. It
has a total of 430 pairs for evaluation.
Results. The mean geodesic error [41] is used as evalu-
ation metric. We compare our method with state-of-the-
art axiomatic, supervised and unsupervised methods. The
results are summarised in Tab. 2. Our method outper-
forms the previous state-of-the-art methods (see the PCK
curves in Fig. 4). Meanwhile, our method achieves substan-
tially better cross-dataset generalisation ability than existing
learning-based methods.
Non-isometric shape matching. Regarding non-isometric
shape matching, we consider the SMAL dataset [84] and
DT4D-H dataset [53]. The SMAL dataset contains 49 four-
legged animal shapes of 8 species [28]. Following Donati
et al. [20], we use the last 20 shapes for testing, resulting
in a 29/20 split of the dataset. DT4D-H dataset is based on
the large-scale animation dataset DeformingThings4D [46].
Nine classes of humanoid shapes are used for evaluation,
resulting in 198/95 shapes for training/testing.

Train FAUST SCAPE FAUST + SCAPE

Test FAUST SCAPE SHREC’19

Axiomatic Methods
BCICP [61] 6.1 11.0 -
ZoomOut [56] 6.1 7.5 -
Smooth Shells [25] 2.5 4.7 -
DiscreteOp [63] 5.6 13.1 -

Supervised Methods
FMNet [48] 11.0 17.0 -
GeomFMaps [18] 2.6 3.0 7.9

Unsupervised Methods
WSupFMNet [70] 3.8 4.4 -
Deep Shells [26] 1.7 2.5 21.1
NeuroMorph [27] 2.3 5.6 8.5
DUO-FMNet [20] 2.5 2.6 6.4
AttnFMaps [44] 1.9 2.2 5.8
URSSM [12] 1.6 1.9 4.6
Ours 1.4 1.8 3.2

Table 2. Near-isometric shape matching and cross-dataset gen-
eralisation on FAUST, SCAPE and SHREC’19. Our method
outperforms prior axiomatic, supervised and unsupervised meth-
ods and demonstrates superior cross-dataset generalisation ability.
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Figure 4. Near-isometric shape matching on FAUST, SCAPE.
Proportion of correct keypoints (PCK) curves and corresponding
area under curve (scores in the legend) of our method in compari-
son to existing state-of-the-art methods.

Results. The results are summarised in Tab. 3. Our method
substantially outperforms the previous state-of-the-art in the
context of non-isometric shape matching, even compared
to recent supervised methods. In Fig. 5, we summarise
the PCK curves of our method compared to state-of-the-
art methods on both non-isometric datasets. Fig. 6 provides
qualitative results of our method compared to them.

5.2. Shape interpolation

Datasets. Following NeuroMorph [27], we evaluate our
method on the FAUST [7] and MANO [67] datasets. The
MANO dataset contains synthetic hands in various poses
with a train/test split of 100/20.
Results. Two metrics are applied to evaluate the per-
formance of the shape interpolation. The first conformal
distortion metric [38] measures how much individual tri-
angles of a mesh distort throughout the interpolation se-
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Geo. error (×100) SMAL DT4D-H

intra-class inter-class

Axiomatic Methods
ZoomOut [56] 38.4 4.0 29.0
Smooth Shells [25] 36.1 1.1 6.3
DiscreteOp [63] 38.1 3.6 27.6

Supervised Methods
FMNet [48] 42.0 9.6 38.0
GeomFMaps [18] 8.4 2.1 4.1

Unsupervised Methods
WSupFMNet [70] 7.6 3.3 22.6
Deep Shells [26] 29.3 3.4 31.1
NeuroMorph [27] 5.9 14.4 25.3
DUO-FMNet [20] 6.7 2.6 15.8
AttnFMaps [44] 5.4 1.7 11.6
URSSM [12] 3.9 0.9 4.1
Ours 1.9 0.9 3.3

Table 3. Non-isometric matching on SMAL and DT4D-H. Our
method substantially outperforms previous state-of-the-art meth-
ods even in comparison to supervised methods, especially for non-
isometric shape matching (i.e. SMAL and DT4D-H inter-class).
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Figure 5. Non-isometric matching on SMAL, DT4D-H inter-
class datasets. Our method sets to new state of the art by a large
margin based on the combination of spectral and spatial maps.
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Figure 6. Non-isometric matching on SMAL and DT4D-H. Our
method obtains more accurate matching results even in the pres-
ence of large non-isometric shape deformations.

quence, compared to the original shape. The second met-
ric is the Chamfer distance between the target and the final
deformed shapes. Besides NeuroMorph, we further evalu-
ate our method against other two baselines (i.e. LIMP [15]

and Hamiltonian [23]) that require ground-truth correspon-
dences for interpolation. Fig. 7 summarises the perfor-
mance of our method against other baselines. Our method
achieves state-of-the-art performance on both datasets, even
compared to methods relying on ground-truth correspon-
dences. Fig. 8 shows the interpolation results of our method
on the MANO dataset.
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Figure 7. Interpolation on FAUST and MANO datasets. Our
method achieves state-of-the-art performance on both datasets,
even in comparison to methods that requires ground-truth corre-
spondences (shown as dashed lines).

Figure 8. Shape interpolation on MANO. Our method obtains a
smooth interpolation trajectory between hands in different poses.

5.3. Statistical shape analysis on medical data

To better demonstrate the potential of our method for real-
world applications, we conduct statistical shape analysis
using medical data. To this end, we use the real-world
LUNA16 dataset [69] that contains chest CT scans with
corresponding lung segmentation masks. Based on the pro-
vided segmentation masks, we reconstruct 3D lung shapes
represented as triangle meshes using Marching Cubes [52].
In this way, we get a total of 22 shapes from manual se-
lection. Starting from 22 shapes, our method obtains both
accurate point-wise correspondences and smooth interpola-
tion trajectories between them (see Fig. 9). Using our ob-
tained correspondences, we build a statistical shape model
(SSM) based on a point distribution model (PDM) [14]. The
modes of variation of the SSM are summarised in Fig. 10.
We evaluate the quality of the SSM w.r.t. the two standard
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metrics: generalisation and specificity [16] based on the
Chamfer distance. We compare our method to the most re-
cent method (i.e. S3M [5]). Tab. 4 summarises the results.
Compared to S3M, our method obtains better generalisation
and specificity.

Figure 9. Matching and interpolation on LUNA16 dataset. Our
method obtains accurate correspondences and realistic interpola-
tions between each two lungs despite of large non-isometry.
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Figure 10. Statistical shape analysis on LUNA16 dataset. The
first row visualises the mean shape. While the second row and
third row demonstrate the mean shape plus and minus (×2) the
corresponding principal components, respectively.

Error [mm] Generalisation ↓ Specificity ↓

S3M [5] 2.92 6.23
Ours 2.44 5.03

Table 4. SSM evaluation. Our method substantially outperforms
the state-of-the-art w.r.t. generalisation and specificity.

6. Ablation study
In this section we conduct ablative experiments to analyse
individual components of our approach. To this end, we
consider only using the spectral loss Lspectral in Eq. (8) for
shape matching or use the feature similarity to obtain the fi-
nal point-wise correspondences instead of test-time adapta-
tion. For the experiment, we consider the challenging non-
isometric SMAL and DT4D-H dataset.
Results. Tab. 5 summarises the quantitative results. By
comparing the first and the second rows, we can conclude
that the spatial regularisation (i.e. Lspatial in Eq. (15)) plays
an important role in obtaining more accurate point-wise cor-
respondences. By comparing the second and the third rows,
we notice that the test-time adaptation can further boost the

matching performance. Together with both of them, our
method achieves the most accurate shape matching results.

Geo. error (×100) SMAL DT4D-H inter

Spectral only 3.9 4.1
w.o. Test-time adaptation 2.6 3.4
Ours 1.9 3.3

Table 5. Ablation study on the SMAL and DT4D-H datasets. The
best result in each column is highlighted.

7. Discussion and limitations

For the first time we combine spectral and spatial maps
to enable unsupervised learning for joint 3d shape match-
ing and interpolation and thereby set the new state of
the art in both tasks simultaneously. Yet, some limita-
tions still give rise to future investigations. Compared to
prior works [23, 24], our method captures pose and shape-
dominant deformations without any prior knowledge. On
the other hand, this separation between pose and shape is
not always perfect: in practice, the interpolation module
slightly alters the shape in some cases. In future work,
we plan to investigate whether a clearer separation can be
achieved by including additional assumptions about the in-
put shape classes [83]. Another interesting direction is to in-
tegrate end-to-end statistical shape analysis into our frame-
work for improved shape analysis and generation.

8. Conclusion

In this work we propose the first unsupervised learning
framework that harmonises spectral and spatial maps to en-
able joint 3D shape matching and interpolation. Our method
allows to compute accurate shape correspondences and real-
istic interpolation trajectories between different 3D shapes
without relying on any shape-specific prior knowledge. We
experimentally demonstrate that our method sets the new
state of the art in both shape matching and interpolation on
numerous benchmarks. Moreover, we showcase the appli-
cation of our method to real-world statistical shape models
of medical data. Overall, we believe that our method will
be a valuable contribution for bringing shape matching to
practical applications in challenging real-world settings.
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