This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Towards Better Vision-Inspired Vision-Language Models

Yun-Hao Cao!,
Tiajia LivZ,

Kaixiang Ji?,
Jian Wang?,

Ziyuan Huang?,
Jingdong Chen?,
! National Key Laboratory for Novel Software Technology, Nanjing University

Chuanyang Zheng?,
Ming Yang?*
2 Ant Group

caoyh@lamda.nju.edu.cn, {kaixiang.jkx, pishi.hzy, zhengchuanyang.zcy}@antgroup.com

{lekun.ljj, bobblair.wj, jingdongchen.cijd, m.yang}@antgroup.com

Abstract

Vision-language (VL) models have achieved unprece-
dented success recently, in which the connection module
is the key to bridge the modality gap. Nevertheless, the abun-
dant visual clues are not sufficiently exploited in most exist-
ing methods. On the vision side, most existing approaches
only use the last feature of the vision tower, without using the
low-level features. On the language side, most existing meth-
ods only introduce shallow vision-language interactions. In
this paper, we present a vision-inspired vision-language con-
nection module, dubbed as VIVL, which efficiently exploits
the vision cue for VL models. To take advantage of the lower-
level information from the vision tower, a feature pyramid
extractor (FPE) is introduced to combine features from differ-
ent intermediate layers, which enriches the visual cue with
negligible parameters and computation overhead. To en-
hance VL interactions, we propose deep vision-conditioned
prompts (DVCP) that allows deep interactions of vision and
language features efficiently. Our VIVL exceeds the previous
state-of-the-art method by 18.1 CIDEr when training from
scratch on the COCO caption task, which greatly improves
the data efficiency. When used as a plug-in module, VIVL
consistently improves the performance for various backbones
and VL frameworks, delivering new state-of-the-art results
on multiple benchmarks, e.g., NoCaps and VQAv2.

1. Introduction

Deep learning has greatly transformed computer vision
(CV) and natural language processing (NLP) and led to state-
of-the-art results on a series of tasks [3, 8,9, 15,49]. The
rapid progress in single-modality domains inspires soaring
interests in investigating how to join multiple modalities
in real-word applications like image captioning [7] and vi-
sual question answering [12]. Thus, vision-language (VL)
models emerge as the new frontline for both communities.

The current mainstream methods [23, 38, 40] use a con-
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Figure 1. Image captioning performance on COCO when pre-
trained using different dataset sizes. Our VIVL significantly ex-
ceeds the previous state-of-the-art results [1 1] on COCO caption
without using pre-training data, which is even comparable to the
methods that rely on a large amount of pre-training data [17,23,24],
which demonstrates the data efficiency of our method.

nection module to bridge a pre-trained image encoder and
a pre-trained large language model (LLM) since this is a
practical way to reuse both models with manageable training
overhead and deliver fairly good performance [2,23]. The
connection module bridges the modality gap which is the
key to exerting the capabilities of pre-trained unimodal vi-
sion and language models. Many efforts have been made to
design the connection module: BLIP-2 [23] designs a BERT-
based Q-Former, LLaVA [30] uses a simple fully connected
layer, and Flamingo [2] inserts cross-attention layers into
LLM. While, these connection modules have not fully take
the advantage of abundant visual features in terms of both
visual feature extraction and vision-language interaction.

On the image encoder side, previous works [2, 23, 30]
primarily use the output from a single layer of the image
encoder (e.g., the last layer), without utilizing the early low-
level features. In fact, many successful practices from object
detection [14,28] and semantic segmentation [5, 6] indicated
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Figure 2. Zero-shot test examples on the NoCaps [1] dataset. As highlighted in red, VIVL provides more fine-grained descriptions: including
counting capabilities ((b), (d), (g), (j)), colors ((a), (e), (h)), details ((a), (b), (e), (g), (1)), and background descriptions ((c), (i)), etc.

that using multi-scale features can enhance the understanding
of image details. Hence, we aim to explore multi-scale
features to enrich visual features for VL models.

On the side of LLM, most existing methods [23,30,40]
have explored shallow vision-language interactions. BLIP-
2 [23], LLaVA [30] and other works [38, 40] send visual
features as the prompt to the LLM’s input layer, which limits
the abundance of details in the responses due to its shallow
interaction [18]. In contrast, Flamingo [2] enables deep
interaction by inserting gated cross attention at each layer of
LLM, at the cost of a sharp increase of number of parameters
and floating-point operations (FLOPs). Hence, we aim to
enable LLM to interact with visual features deeply in a
parameter and computation efficient fashion.

Motivated by these, we propose a Vision-Inspired Vision-
Language connection module (VIVL) that enables efficient
interactions with richer vision features for LLM. To exploit
multi-scale features, we present a feature pyramid extractor
(FPE) that provides fine-grained visual cue for VL models,
where higher-level features interact with lower-level features
in a bottom-up way. To enhance VL interactions, we present
deep vision-conditioned prompts (DVCP) by conditioning
the prompts on both visual clues and previous outputs. Fur-
ther, DVCP reduces the number of parameters by sharing
weights and FLOPs by using a skip layer strategy. Last but
not least, the proposed VIVL is designed for flexible de-
ployment, which could be used as a stand-alone module or
readily combined with existing methods such as BLIP-2.

As a stand-alone vision-language bridge, our VIVL sig-
nificantly reduces the amount of data required for achieving
a strong performance. As shown in Fig. 1, VIVL exceeds

the previous state-of-the-art (SOTA) method [11] by 18.1
CIDEr when training the connection module from scratch on
the COCO caption task [7], which is even comparable to the
methods that rely on large-scale pre-training. When serving
as a plug-in module, VIVL improves BLIP-2 by 3.4% on
the VQAV2 task [12] and LLaVA by 0.6% on the Science
QA task [34]. Extensive experiments demonstrate that VIVL
brings consistent improvements across different backbones,
VL frameworks, and datasets and achieves SOTA results on
multiple benchmarks. Qualitative results in Fig. 2 also show
that VIVL provides more detailed image descriptions.

2. Related Works

Vision-Language Models. Vision-language pre-training
(VLP) aims to learn multimodal foundation models im-
proving the overall performance on a variety of vision-
and-language tasks, which has become the highlight of
CV research recently. One line of works [36, 41] train
both vision and language models from scratch in an end-
to-end fashion, which can incur a high computation cost
as the increase of model size. Recently, another line of
works [2,23,38,48] leverage off-the-shelf pre-trained mod-
els and keep them frozen during VLP. LiT [46] utilized a
frozen pre-trained image encoder to accelerate CLIP [36]
training. Frozen [38] fine-tuned an image encoder and trans-
forms its outputs into LLM’s soft prompts. Flamingo [2]
inserted new cross-attention layers into pre-trained LLM to
inject visual features. BLIP-2 [23] connected pre-trained
image encoders and LLMs with a Q-Former. Follow-up
works Mini-GPT4 [40] and LLaVA [30] used a linear layer
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Figure 3. Ilustration of our VIVL method, which is composed of FPE and DVCP. VIVL can be used independently (i.e., with no dependency
on other pre-trained connection modules), or it can be seamlessly embedded into different frameworks (e.g., BLIP-2 [23] and LLaVA [30]).

to bridge the two modalities, while using more powerful
LLMs and well-designed instruction fine-tuning. Our work
also falls to the second line of work. In contrast, we (1)
utilize the intermediate layer features of the visual encoder
to enrich image details; (2) and propose a DVCP method to
allow efficient visual-textual interaction at deep levels.

Prompt Tuning. Prompting [3 1] refers to prepending lan-
guage instruction to the input text so that a pre-trained LLM
can understand the task. With manually chosen prompts,
GPT-3 [3] shows strong generalization to downstream trans-
fer learning tasks even in the few-shot or zero-shot set-
tings. Follow-up works proposed to treat the prompts
as task-specific continuous vectors and directly optimize
them via gradients during fine-tuning, namely Prompt Tun-
ing [22,27,32]. Recently, prompting has also been applied
to VL models [19,36,44,51]. CoOp [52] applied prompt
tuning to CLIP [36]. CoCoOp [51] pointed out that CoOp
lacks in generalization to out-of-distribution data, and pro-
posed to alleviate the problem by conditioning the prompt
on image inputs. However, previous works mainly have
focused on classification tasks using the dual-encoder archi-
tectures like CLIP, while few works study generation tasks
using the encoder-decoder architectures like BLIP-2 [23].
Moreover, the prompts of previous works [18,27,51] did
not fully utilize visual clues and the information encoded in
the output of previous layers, as shown in Table 1. In this
paper, we focus on generative VL models and propose a deep
vision-conditioned prompt that can dynamically adapt based
on both the visual cue and previous output. Moreover, our
method is an efficient deep prompt method, where the num-
ber of parameters is largely reduced by sharing weights with
manageable computational overhead by skipping layers.

Table 1. Comparisons between different prompt-tuning methods.
O(1) denotes that the number of additional parameters will not
increase with the number of network layers IV, i.e., remain constant.

Method Deep | Conditioned On | Additional

Prompt? | Vision? | Output? | Params

P-Tuning [27] X X X o)

CoCoOp [51] X v X o)
P-TuningV?2 [32] v X X O(N)
VPT-Deep [18] v X X O(N)
Flamingo [2] X v v O(N)
LLaMA-Adapter [48] v v X O(N)

DVCP (Ours) v v v o)

3. Method

We begin with the preliminaries in Sec. 3.1 and then
introduce our Feature Pyramid Extractor (FPE) in Sec. 3.2
and Deep Vision-Conditioned Prompt (DVCP) in Sec. 3.3.
The overall framework of our VIVL is illustrated in Fig. 3.

3.1. Preliminaries

Transformer. For an N-layer transformer [39], we denote
the token length as M and the latent dimension as d. Then,
we denote the collection of token embeddings, E;_1 €
RM>4 g inputs to the i-th Transformer layer L;. The whole
Transformer is formulated as:

E; :Li(Eifl)u i= 1727"'7N (D
where E denotes the input embeddings.
Notice that most existing VL models [23,30,40] send the

extracted vision features X" together with text embeddings
X' into the pre-trained LLM to obtain the final output:

EO: [XVaXt]7 (2)
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where [-, -] indicates concatenating along the sequence length
dimension. Our VIVL also follows Eq. (2) for the composi-
tion of Eq in the LLM, as shown in Fig. 3.
Prompt Tuning. According to the position where the prompt
is inserted, it can be divided into shallow prompt [27] and
deep prompt [32]. We only study deep prompt here due
to its promising performance [18,32]. Given a pre-trained
language model, we introduce a set of K continuous em-
beddings of dimension d, i.e., prompts, in the input space at
each layer. For the i-th layer L;, we denote the collection
of input learnable prompts as P; ; € RX*9, As shown in
Fig. 5 (a), the deep-prompted Transformer is formulated as:
(Zi, Ei] = Li([P; 1, Ei1]), i=1,---,N ()
where Z; € RX*9 denotes the output corresponding to
P;_; computed by the i-th layer and will be replaced by
the corresponding prompt of the next layer, E( denotes the
input embeddings. Recall that [-, -] indicates the concate-
nating operation and we have [P; 1, E; ;] € RUEFM)xd,
Learnable parameters are colored in red.

3.2. Feature Pyramid Visual Extractor

As mentioned before, previous works like BLIP-2 [23],
Flamingo [2] and LLaVA [30] only used the output of the
last layer (or the penultimate layer) of the visual encoder
(Fig. 4a), which have not exploited the fine-grained image
features. We denote X; as the feature from the /-th layer
of the visual encoder, and the extracted visual embeddings
X" are obtained from X y in these works. In this paper,
we propose to utilize features from the intermediate layers
to complement the representation for detailed image con-
tents. As shown in Fig. 4c, a naive solution is to concatenate
features from different layers together:

XY= (Xl e}, @)

where I denotes the collection of indices of the selected
layers and the right formula represents stacking all the el-
ements in I along the sequence length dimension. This
scheme may bring somewhat improvement, as shown in
Sec. 4.6.1. Nonetheless, the granularity difference in seman-
tics embedded in different layers is still not captured in this
straightforward implementation in Eq. (4). Moreover, the
increased sequence length of the concatenated features will
will result in substantial computational overhead.

Inspired by FPN [28] which built feature pyramids for
object detection [15], we propose a feature pyramid extractor
(FPE) to extract features from the intermediate layers for
vision-language models, as shown in Figure 4d. In FPE,
the lower-level features interact with higher-level features
via cross-attention and generate new features. We denote
q as the learnable queries for intermediate features and set
the sequence length of g to 32, which greatly lowers the
computational overhead compared to Eq. (4). As an example,

e
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Figure 4. (a) Recent Vision-Language models use only single-
layer features. (b) [48] uses an image pyramid and features are
computed on each of the image scales independently, which is not
computational efficient. (c) An alternative is to directly concatenate
the features from different layers. (d) Our proposed feature pyramid
extractor captures more image contents while runs as fast as (a).

consider FPE using two features from two layers (the [-th
layer and the last layer), and we have:

X7 =Attn(q, X, X)), 4)
XY =Attn( X} X v, X ), (6)

where Attn(Q, K, V') denotes a cross-attention layer and @,
K and V represent query, key and value for the attention,
respectively. Notice that we can also stack more attention
layers for Eq. (5) and Eq. (6). Results in Sec. 4.2 show
that one-layer cross-attention achieves the best accuracy-
efficiency trade-off. Moreover, we can use features from
more intermediate layers to construct the feature pyramid as
in Eq. (4), where the results in Sec. 4.6.1 show that using
more layers in FPE leads to further improvement.

3.3. Deep Vision-Conditioned Prompts

Unlike unimodal vision or language models, the perfor-
mance of VL models will be affected if the prompts lack
interaction with other modalities [51]. That is being said, if
we only learn prompts P; in LLM, this can play the role of
Adaptaters [16], even though the visual clue is missing in
the prompts. Hence, we propose to inject visual information
to assist in generating prompts. As Fig. 5d shows, a feasible
solution is to use cross-attention to introduce visual cue to
the prompts of each layer, which can be formulated as:

[Zi)Ei] = Ll ([‘11 (PiflavaXV)aEi—l]) ) (7)

where XV denotes the visual embeddings extracted from the
visual encoder and A; denotes the inserted cross-attention
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module at the ¢-th LLM layer (i.e., ‘Attn’). In this way,
we can make the prompts P; of each layer conditioned
on the visual clue to help the language model “see” better.
Nevertheless, Eq. (7) still has at least two problems: (1) The
number of additional parameters increases linearly with the
number of layers N, i.e., an additional attention module A;
and learnable parameters P; are required for each layer. (2)
The prompts are unaware of the output of the previous layer.
DVCP-Plain. In this paper, we propose DVCP-plain to
address the above two issues simultaneously. First, we share
the cross-attention module A; for all layers, which greatly
reduces the amount of extra parameters. Second, we propose
to replace P; with the corresponding output of the previous
layer. This benefits in two aspects: (1) the output of the
previous layer encodes more information than P;; (2) this
saves the number of parameters required for P;. Specifically,
DVCP-plain can be formulated as follows:

[Z1, E] = L1([Po, Ey)), (®)
(Zi, Ei] =L ([A(Z;—1, X", X"),E; 4]),1>2, (9

where A denotes the shared cross-attention layer across
different layers in the language model. Actually, Eq. (9) can
be seen as a deep prompt method [13] because the learnable
A allows the prompts to dynamically change and be updated
by gradient backpropagation in each layer. Compared with
Eq. (7), DVCP-plain reduces the number of extra parameters
by 96.7%. We will empirically show the advantages of
DVCP-plain over Eq. (7) in Section 4.6.

DVCP-Skip. By designing a shared cross-attention module,
the number of parameters is decreased significantly, while
the computation cost remains the same. Therefore, we pro-
pose DVCP-skip to further reduce the computation, where
we execute the module A every S layers and S is a hyper-
parameter. We set S = 5 in this paper and DVCP-skip
reduces extra FLOPs by 80% compared to DVCP-plain. The
first layer of DVCP-skip is the same as Eq. (8). For i > 2,
DVCP-skip can be formulated as:

(Zi,E;] = {Li([zi LEi]),
T (2o, XY XY) E

(i mod S) # 0

i—1]) , otherwise

Differences from other prompt-tuning methods. In Fig. 5
and Table 1, we compare DVCP with previous prompt meth-
ods in various dimensions. Compared with P-Tuning [27],
CoCoOp [51] and LLaMA-Adapter [48], etc., our prompts
are conditioned on both visual clues and previous outputs and
has a constant number of parameters that will not change as
the number of layers increases. Compared with Flamingo [2],
DVCP reduces the number of parameters and computation
from three aspects: (1) we share the weights of cross at-
tention across layers; (2) we only operate on the tokens
corresponding to the prompt P, while Flamingo processes
the whole tokens F; (3) we only need to calculate on a small
fraction of layers (%), attributed to our skip layer strategy.

4. Experimental Results

First, we introduce the implementation details in Sec. 4.1.
Next, we use our VIVL independently and investigate the
data efficiency in Sec. 4.2. After that, we combine our
VIVL with the LLaVA framework and experiment on Sci-
ence QA [34] in Sec. 4.3. Then, we apply VIVL to another
framework BLIP-2 and experiment on COCO captioning [7]
in Sec. 4.4 and VQAV2 [12] in Sec. 4.5. Then, we also study
the transfer performance on NoCaps [ |]. Finally, we study
the effects of different components and hyper-parameters in
our VIVL in Sec. 4.6. All experiments were conducted using
PyTorch with 8 A100 GPUs.

4.1. Experimental Details

Backbones. We use CLIP ViT-g/14 [36] from EVA-
CLIP [10] as the image encoder. For the frozen language
model, we explore the unsupervised-trained OPT model fam-
ily [49] for decoder-based LLMs and the instruction-trained
FlanT5 model family [&] for encoder-decoder-based LLMs.
Training details. We use the AdamW [33] optimizer with a
weight decay of 0.05 to train for 5 epochs. We use a cosine
learning rate decay with an initial learning rate of le-5.

4.2. Data Efficiency of Our Method

As shown in Fig. 6a, current mainstream methods fine-
tune downstream tasks based on pre-trained connection mod-
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Table 2. Comparisons on COCO Caption when training connec-
tion modules from scratch. The original BLIP and BLIP-2 require
pre-training (PT) on COCO Caption [7], Visual Genome [20], Con-
ceptual Captions [4] and LAION [37], while ClipCap, LLaMA-
Adapter V2, and ours only fine-tune (FT) the model on COCO.

Models Data Scale | COCO Caption
PT FT |BLEU@4 CIDEr
BLIP [24] 14M 0.6M| 38.6 129.7
BLIP [24] 129M 0.6M| 404 136.7
BLIP-2 [23] 129M 0 40.8 136.5
BLIP-2 [23] 129M 0.6M| 43.7 145.8
ClipCap [35] 33.5 113.1
LLaMA-Adapter V2 [11] 36.2 122.2
BLIP-2 [23] 0 06M 374 127.1
VIVL (Ours) 41.2 140.3
BLIP-2 [23] 39.8 1354
VIVL (Ours) M O0MI s 1431

\ . Image 9
EﬂCUder _> EnCOder _>

(a) Fine-tune from pre-trained bridge

(b) Train from scratch

Figure 6. [llustration of our train from scratch paradigm.

ules (e.g., Q-Former in BLIP-2 [23]), which require large-
scale pre-training to achieve image-text alignment. Notice
that it is very time-consuming to pre-train different connec-
tion modules for different combinations of visual encoder
and LLM. Moreover, using large-scale data for pre-training
also forbids us from fast model iteration (e.g., update a model
in 10 minutes). Hence, in this section, we study the scenario
where we train from scratch on downstream tasks with a
randomly initialized connection module, as shown in Fig. 6b.
To demonstrate the effectiveness of our VIVL, we only tune
VIVL modules while keeping other parameters frozen in this
section. As seen from Table 2, VIVL surpasses BLIP [24],
even without pre-training on large-scale image-text data, and
is comparable to the pre-trained BLIP-2. Moreover, VIVL
has achieved /8.1 CIDEr gains when compared to the latest
method LLaMA-Adapter V2 [11]. The results demonstrate
the data efficiency of our VIVL, attributed to our effective
utilization of visual cue. It also shows that this train-from-
scratch paradigm has a great potential.

Within this paradigm, we only use downstream data to
train the bridge modules, so we can study the impact of
different bridge designs comprehensively. For fair compar-
isons, we use the same visual encoder (ViT-g) and LLM
(OPT 2.7B) for all methods in Table 3. We can draw the

Table 3. Comparisons of different bridge designs when training
from scratch. A-k denotes a k-layer cross attention in (5) and (6).

Bridee Token | Extra [ COCO Caption
g Length | Params | BLEU@4 CIDEr

Linear [30] 256 3.6M| 279 97.9

Q-Former [23] | 32 [107.1M| 374 127.1

MLP (2 layers)| 32 | 3.6M| 340 119.6
A-1 32 | 34M| 39.1 1338
A2 32 | 68M| 387 1326
A6 32 | 200M| 367 1264
A-1 64 | 3.4M| 398 1345
A-14FPE 64 | 67M| 41.0 139.8

following conclusions: (1) Cross-attention can extract visual
features more effectively than MLP, although the number
of parameters is comparable. (2) Increasing the number of
parameters alone will not result in performance boost for
sure due to the increased risk of overfitting. In fact, one
layer of cross-attention achieves the best accuracy-efficiency
trade-off. (3) Our FPE can capture more image contents so
achieving +6.0 CIDEr gains. Note that the introduction of
FPE will increase the token length (from 32 to 64), so for
fair comparisons, we also set the token length to 64 for the
baseline A-1 (the penultimate line). We can see that simply
increasing the token length will not simply lead to significant
performance improvements, indicating that the gain brought
by FPE is beyond using more number of tokens.

4.3. Science QA

Our VIVL can be used independently as in Sec. 4.2, or in
combination with other methods, such as LLaVA [30]. We
insert FPE before the pre-trained linear layer and introduce
DVCP to the LLM. In Table 4, we study the Science QA [34]
dataset, which contains 21k multimodal multiple choice
questions with rich domain diversity across 3 subjects, 26
topics, 127 categories, and 379 skills. We consider represen-
tative methods including LLaMA-Adapter [48], multimodal
chain-of-thoughts (MM-CoT) [50], as well as LLaVA [30],
which is the current SOTA method on this dataset. We con-
duct experiments upon LLaVA and train the model for 12
epochs. As shown in Table 4, our VIVL achieves 91.51%
accuracy and yields a 1.24% absolute gain compared with
LLaVA for image contexts. The results show that our VIVL
can utilize visual information more effectively, and it is also
applicable when migrating to other VL frameworks.

4.4. Image Captioning

Now we apply our VIVL to another framework BLIP-
2 [23], where we insert FPE before the pre-trained Q-Former
and introduce DVCP to the LLM. We fine-tune our mod-
els for the image captioning task, which asks the model
to generate a text description for the image’s visual con-
tent. Following BLIP-2, we keep the LLM frozen during
fine-tuning and update the parameters of the Q-Former, our
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Table 4. Results (accuracy (%)) on the Science QA dataset. Question classes: NAT = natural science, SOC = social science, LAN = language
science, TXT = text context, IMG = image context, NO = no context, G1-6 = grades 1-6, G7-12 = grades 7-12.

Subject

Context Modality Grade

Method NAT SOC LAN | TXT IMG NO | Gl-6 G7-12 | Average
Human 7] 0023 8497 8748 | 89.60 8750 88.10 | 9159 8242 | 8840
GPT-3.5 [34] 7464 6974 7600 | 7444 6728 7742 | 7680 68.89 | 73.97
GPT-3.5w/CoT [34] | 7544 7087 78.09 | 74.68 6743 7993 | 7823 69.68 | 7517
GPT-4 [30] 8406 7345 8736 | 8187 7075 90.73 | 8469 79.10 | 82.69
LLaMA-Adapter [48] | 8437 8830 84.36 | 83.72 80.32 8690 | 8583 84.05 | 85.19
MM-CoTgase [50] 87.52 77.17 8582 | 87.88 8290 86.83 | 84.65 8537 | 84.91
LLaVA [30] 9036 9595 88.00 | 89.49 88.00 90.66 | 90.93 90.90 | 90.92
LLaVA+VIVL (Ours) | 9143 9539 88.55 | 90.76 8924 90.87 | 91.81 9097 | 9151

Table 5. Comparison with the state-of-the-art image captioning
methods on NoCaps and COCO Caption. For BLIP-2 we use ViT-g
and FlanT5x;. as the backbone.

Models COCO Karpathy test | NoCaps Zero-shot
BLEU@4| CIDEr |(SPICE| CIDEr
OSCAR [26] 37.4 127.8 11.3 80.9
VinVL [47] 38.2 129.3 13.5 95.5
BLIP [24] 404 136.7 14.8 1132
OFA [41] 43.9 145.3 - -
Flamingo [2] - 138.1 - -
SimVLM [43] 40.6 143.3 - 112.2
BLIP-2 [23] 424 144.5 15.8 121.6
BLIP-2+VIVL| 427 |145.6 (+1.1)| 15.8 |122.7 (+1.1)

VIVL, together with the image encoder. We fine-tune on
COCO [29] train set and evaluate on COCO test set and
also zero-shot transfer to the NoCaps [1] validation set in
Table 5. Take FlanT5x;, as an example, our VIVL achieves
+1.1 gains in terms of CIDEr on COCO caption compared
with the baseline counterpart BLIP-2. More importantly, we
further demonstrate that this is not overfitting on the current
source dataset, as our VIVL also shows a consistent improve-
ment when transferring the trained model to another dataset,
i.e., NoCaps. We also achieve the state-of-the-art results on
NoCaps, to the best of our knowledge.

4.5. Visual Question Answering

We continue to experiment based on BLIP-2 and switch
to Visual Question Answering (VQA) tasks. Given anno-
tated VQA data, we keep the LLM frozen while fine-tuning
other parameters as done in Sec. 4.4. Table 6 demonstrates
the SOTA results of our VIVL among open-ended generation
models and our VIVL even surpasses previous SOTA re-
sults of close-ended classification method, i.e., BEiT-3 [42].
When comparing the improvement over the baseline, we can
see that our VIVL has a greater improvement in VQA than
in caption in Table 5. There are two possible reasons for this.
One is that richer text prompts (e.g., questions) can more
fully utilize the capabilities of our method. The second is
that the VQA task has more training data (2.1M vs. 0.6M),
allowing our randomly initialized modules to converge better.

Table 6. Comparison with the state-of-the-art models fine-tuned for
visual question answering.

Models iTramable VQAV2 val
arams
Close-ended classification models
VinVL [47] 345M 76.52
SimVLM [43] ~1.4B 80.03
CoCa [45] 2.1B 82.30
BEiT-3 [42] 1.9B 84.19
Open-ended generation models
ALBEF [25] 314M 75.84
BLIP [24] 385M 78.25
OFA [41] 930M 82.00
Flamingo80B [2] 10.6B 82.00
BLIP-2 ViT-g FlanT5x. [23] 1.2B 81.55
BLIP-2 ViT-g OPT, 78 [23] 1.2B 81.59
BLIP-2 ViT-g OPTs.78 [23] 1.2B 82.19
BLIP-2+VIVL ViT-g FlanT5x. 1.2B 84.84 (+3.29)
BLIP-2+VIVL ViT-g OPT,7;s  1.2B 85.00 (+3.41)

Hence, we believe that our VIVL can achieve better results
under the condition of large-scale data pre-training.

4.6. Ablation Studies

In this section, we first study the different components
in our VIVL, i.e., FPE, and DVCP, as shown in Table 7.
We keep the same settings as in Sec. 4.4. In addition to
training and testing on the source dataset, we also transfer
the model trained on the source dataset to a different dataset
for zero-shot testing. We can draw the following conclusions:
(1) Using FPE or DVCP alone brings improvements, and
the combination of the two modules boost the performance
contiguously. (2) The improvement brought by VIVL is
also consistent when being transferred to other datasets, and
shows a good generalization ability.

Then, in Sec. 4.6.1 and Sec. 4.6.2, we present ablation
studies about FPE and DVCP on COCO caption and use
BLIP-2 ViT-g OPT), 7 as the backbone. In order to study the
effect of our connection module VIVL rigorously, in these
following two subsections we only update the parameters
of the connection module (i.e., freeze the parameters of the
image encoder and LLM), as done in Sec. 4.2. Hence, we
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Table 7. Ablation Studies on caption datasets based on BLIP-2. We
reproduce BLIP-2 on COCO caption for fair comparisons.

COCO Caption |Nocaps Zero-shot

Backbone|FPE\DVCP 1 £15@4|CIDEr [BLEU@4|CIDEr

X | x 28 [1456| 473 | 1200
OPT V| ox 428 |1458| 470 |1206
2| | 426 |1455| 475 |121.1
v 06 |1456| 477 |121.3

< | x 4272 | 1445] 480 [121.0

FlanTse | ¥ | % 425 |1446| 487 |1220
amloxe | o | 423 |1448| 485 |123.0
v 427 |145.6| 488 |122.7

can see that the metrics for the baseline BLIP-2 in Table 8
and Table 9 are lower than those in Table 7, in which the
parameters of the image encoder are also tuned.

4.6.1 Competitors of FPE

In this subsection, we will try to answer the following two
questions: which layers to choose from the vision encoder,
and how to aggregate the features from these selected layers.
In Table 8, we investigate different combinations of selected
layers in FPE and compare FPE with three baseline methods
and we can reach the following conclusions:

e Intermediate layer features are useful. We can see that both
the feature ensemble and our FPE outperform the baseline
BLIP-2 (the first row) which only uses single-layer features.

e Our proposed FPE is more effective than the feature en-
semble baseline (Fig. 4c). When I = [25, 38], our method
outperforms it by 0.8 points (142.7 vs. 141.9).

e The selected layers should not be too close or too far apart.
When using two layers of features in FPE, I = [25, 3§]
outperforms both I = [15,38] and I = [37, 38]. When the
selected layers are far away, the large semantic gap will
affect performance. When the selected layers are very close
(I = [37, 38] selects the last two layers), the improvement
will be limited due to the lack of diversity.

e Using more layers of features in FPE further improves the
results (the last row). Note that we choose I = [25, 38] by
default in our paper for better accuracy-efficiency trade-off.
It also indicates that we may improve further with more
carefully tuned /. In any case, utilizing intermediate layers
has a better effect than not using them.

4.6.2 Competitors of DVCP

In Table 9, we compare DVCP with different prompting

methods previously mentioned in Fig. 5 and Table 1. For

fair comparisons, we set the length of the prompts to 32 for

all these methods except for Flamingo-style [2], which does

not involve prompts. From Table 9, we can observe:

e Simply increasing the number of parameters will not boost
performance. For example, using P-tuning or P-tuning v2

Table 8. Ablation study of FPE. I denotes the collection of the
indices of the selected layers, as in Eq. (4). ‘Baseline’ denotes
BLIP-2 with frozen visual backbone during fine-tuning.

Layer Index| COCO Caption

Method Set/ |BLEU@4 CIDEr
Baseline [23] [38] 41.1 141.2
Feature Ensemble (Eq. (4))| [25, 38] 41.3 141.9
Attentional Pooling [21] [25, 38] 41.9 142.0
[15, 38] 41.6 142.1
[25, 38] 42.1 142.7

FPE (Ours) [35.38] | 418 1424

(37, 38] 412 1416
[15,25,38]| 423 143.1

Table 9. Comparisons of prompting methods. ‘Baseline’ denotes
BLIP-2 with frozen visual backbone during fine-tuning.

Extra COCO Caption
Method Params | BLEU@4 CIDEr
Baseline [23] 0 41.1 141.2
P-Tuning [27] 0.1M 41.1 139.8
P-Tuning v2 [32] 2.5M 40.8 139.0
CoCoOp-style [51] 3. 7M 409 141.6

LLaMA-Adapter-style [48] | 3.6M 41.5 141.7
Deep-CoCoOp (Eq. (7)) 5.9M 41.5 141.9
Flamingo-style [2] 103.8M 41.8 142.2
DVCP-Plain (Ours) 3.4M 415 1424
DVCP-Skip (Ours) 3.4M 41.9 142.9

in BLIP-2 even mess the results slightly. This also indicates
that making prompts conditioned on modality inputs is very
important for vision-language models.

e DVCP outperforms other methods (e.g., CoCoOp, LLaMA-
Adapter) that are unaware of previous outputs, proving the
importance of our informative adaptation design.

e DVCP-Skip outperforms DVCP-Plain despite using fewer
FLOPs (3.3 GFLOPs vs. 16.9 GFLOPs), which shows the
effectiveness of our skip layer strategy.

5. Conclusions and Limitations

In this paper, we proposed VIVL for better vision-inspired
vision-language models. On the vision side, we proposed a
Feature Pyramid Extractor (FPE) to utilize vision features
from different intermediate layers effectively. On the lan-
guage side, we proposed Deep Vision-Conditioned Prompts
(DVCP) to allow deep interaction of vision and language
features efficiently. Our VIVL can be used independently or
seamlessly embedded into other VL frameworks. Experimen-
tal results demonstrate the effectiveness of our method and
we achieve state-of-the-art results on popular benchmarks in-
cluding VQAv2 and NoCaps. Moreover, our VIVL only uses
downstream data for training and may achieve better results
if large-scale data is used for pre-training. However, due to
our resource constraints, we cannot do these experiments at
the moment and we will take this as future work.
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