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Abstract

In this paper, we address web-scale visual entity recog-
nition, specifically the task of mapping a given query image
to one of the 6 million existing entities in Wikipedia. One
way of approaching a problem of such scale is using dual-
encoder models (e.g. CLIP), where all the entity names and
query images are embedded into a unified space, paving the
way for an approximate kNN search. Alternatively, it is also
possible to re-purpose a captioning model to directly gener-
ate the entity names for a given image. In contrast, we in-
troduce a novel Generative Entity Recognition (GER) frame-
work, which given an input image learns to auto-regressively
decode a semantic and discriminative “code” identifying
the target entity. Our experiments demonstrate the e�cacy
of this GER paradigm, showcasing state-of-the-art perfor-
mance on the challenging OVEN benchmark. GER surpasses
strong captioning, dual-encoder, visual matching and hier-
archical classification baselines, a�rming its advantage in
tackling the complexities of web-scale recognition.

1. Introduction
Generative vision-language models such as GPT-4 [30],
Flamingo [2] or PALI [5], are becoming increasingly pop-
ular for computer vision applications. They show an im-
pressive ability to generate free-form text for describing the
contents of an image (captioning), or answering questions
based on an image (visual-question answering). Neverthe-
less, their potential for recognition tasks [12], which usually
require a more concise, structured output, remains under-
explored. The focus of this paper is to explore their applica-
tion for the challenging task of web-scale entity recognition.
A recent benchmark, Open-domain Visual Entity recogni-
tioN (OVEN) [12], challenges models to associate an image
with a Wikipedia entity from a pool of over six million en-
tities. Models must establish a robust association between
images across millions of coarse-grained and fine-grained
entities, encompassing a wide spectrum of concepts such as
animals, buildings, locations, and a multitude of others [12].
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Figure 1. We introduce GER, a novel generative paradigm for web-
scale visual entity recognition. We create compact semantic codes
for each entity, and learn to auto-regressively generate them for a
given query image at inference.

Traditionally, the predominant methods employed to
address the challenge of visual entity recognition have
revolved around either classification or contrastive dual-
encoder paradigm like CLIP [32]. While classification of-
fers a straightforward approach, it grapples with limitations
when confronted with extensive label spaces such as that of
OVEN, resulting in substantial parameter counts and prac-
tical engineering complexities. The dual-encoder approach
on the other hand, learns a unified image-text feature space,
thereby facilitating e�cient nearest neighbor searches for
recognition. Nonetheless, this approach exhibits its own
drawbacks: (a) it does not directly optimize for the final
recognition task but instead relies on indirect optimization
through contrastive loss where a set of negative data has to
be subsampled at training time [11, 29, 32], (b) compressing
either the image or text into an embedding vector results in
loss of information, detrimentally a�ecting performance for
fine-grained recognition [15] and (c) the memory require-
ments for storing dense representations scale proportionally
with the size of the entity set.

These challenges of the dual-encoder paradigm have kin-
dled interest in alternative strategies. Notably, in Natu-
ral Language Processing (NLP) domain, recent works chal-
lenge the dual-encoder approach and use generative mod-
els instead for information retrieval [6, 25, 31, 33, 41, 42].
These works represent each element of the corpus by a com-
pact code of integers, and learn an auto-regressive genera-
tive model to decode the target code for a given query. This
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paradigm promises to overcome some drawbacks of dual-
encoders by simplifying the retrieval pipeline such that the
training and inference objectives are the same, and directly
encoding the corpus within the model’s parameters. Also
as an alternative to dual encoders, OVEN paper [12] show-
cases the feasibility of extending a generative image caption-
ing model [5] for visual entity recognition by matching the
generated caption to one of the Wikipedia entity texts [34].

Inspired by these recent explorations, we propose a
Generative Entity Recognition (GER) framework (illustrated
in Fig. 1) to facilitate end-to-end visual entity recognition by
leveraging generative auto-regressive models. Specifically,
we represent each Wikipedia entity with a code, i.e. a short
sequence of integers. Then, we train models to predict an en-
tity from an input image by auto-regressively generating the
code corresponding to the target entity. We find that creating
unAmbiguous, Language-based and Discriminative (ALD)
entity codes results in the best variant of our GER frame-
work, which we denote by GER-ALD. In fact, while we ob-
serve that unstructured “atomic” codes work well in some
scenarios, they fail when training data or model capacity are
limited or more importantly, when the entity set reaches the
million scale (see Sec. 4.4.1). Plus, they cannot general-
ize to new entities. In contrast, we find that semantically-
structured codes based on language improve upon atomic
codes by leveraging generic concepts shared across related
entities (see example in Fig. 1 with “Black colobus” and
“Black-and-white colobus” sharing common code tokens).
A simple way of creating codes based on language is to di-
rectly tokenize [20] the entity name, which is akin to image
captioning where the entity name is used as a caption [6, 12].
However, we find that such tokenized entity names contain
clutter and noisy information, all the more so when the en-
tity name is long (see Sec. 4.4.2). Our GER-ALD method im-
proves over this simple captioning baseline by decoding only
the most discriminative part of the tokenized entity name,
i.e. the part which makes the considered entity name the
most di�erent compared to all other entities.

Finally, we also propose an entity-based pre-training
to condition the GER models to web-scale entity recogni-
tion. Inspired by recent advances in retrieval-based meth-
ods [15, 23], we retrieve a subset of images from a large-
scale image-text dataset typically used for captioning or
contrastive pre-training [5] and re-purpose it by replacing
the original text captions with related OVEN entity names.
Overall, our experiments demonstrate the e�cacy of the
proposed GER paradigm: GER-ALD outperforms previously
published numbers on OVEN benchmark [12] by +6.7 top-
1 accuracy, while using 42ù less parameters. In summary,
our contributions are as follows:

• a generative entity recognition framework (GER) to fa-
cilitate end-to-end visual entity recognition;

• an innovative strategy for encoding Wikipedia enti-

ties into unambiguous language-based discriminative
(ALD) codes that are highly e�ective for GER;

• an entity-based pre-training process without requiring
human intervention;

• state-of-the-art results in challenging web-scale OVEN
entity recognition and on-par performance to tradi-
tional classifiers in smaller-scale label-space scenarios.

2. Related work

Visual entity recognition aims to recognize classes, or en-
tities given visual inputs [35]. Granularity of visual en-
tity recognition tasks varies from every-day generic ob-
jects [8, 9], to fine-grained domains, such as birds [44],
dogs [17], cars [18], food [4], landmarks [47], faces [50]
and natural world species [43]. Some challenges for the
visual entity recognition tasks include imbalanced training
classes following a long-tailed distribution [24], or noisy
training labels [22]. Recent work [12] proposes a new, web-
scale dataset for open-domain entity recognition. This chal-
lenging benchmark contains 6M entity names derived from
Wikipedia page titles, including coarse-grained and fine-
grained entities, encompassing a wide spectrum of concepts
such as animals, buildings, organizations, landmarks, and
a multitude of other. The authors show that generative cap-
tioning models (i.e. PaLI [5]) outperform dual encoder mod-
els for large-scale entity recognition. In this paper, we build
upon this observation, and study generative models for ac-
curate and e�cient entity recognition.
Extreme classification tackles entity recognition specifi-
cally at a very large scale with a pure classification ap-
proach [1, 3, 26]. Typical approaches explore strategies for
scaling to the hundred of thousands scale and preliminary
results are even shown at million scale [1]. By leveraging
generative image-to-text models, we propose a fresh per-
spective beyond traditional classification methods typically
used in the context of large-scale visual entity recognition.
Generative auto-regressive retrieval methods are increas-
ingly popular in NLP [6, 25, 31, 33, 41, 42]. GENRE re-
trieves Wikipedia entities by generating their names in an
autoregressive fashion. Seminal work DSI [42] shows the
benefit of learning to decode compact codes (created either
randomly or with hierarchical k-means clustering) associ-
ated with each document. Neural Corpus Indexer [46] pro-
poses a specific decoding scheme for generative retrieval
and show the benefit of query augmentation by automat-
ically generating training queries for documents to be in-
dexed. TIGER [33] studies generative retrieval in the con-
text of recommender systems. Finally, [31] conducts a sys-
tematic study of generative retrieval systems when scaled to
millions of document passages. Only very few works ex-
plore this family of approaches in computer vision domain,
and only in very small-scale and uni-modal scenarios [49].
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Figure 2. Overview of GER-ALD method. (a) We utilize a text
tokenizer to create compact and semantic codes, which represents
each entity with short, but discriminative representations. (b) We
learn a generative auto-regressive model, which learns to decode
the correct code for given query image and text pair.

3. Method
Our goal is to explore how to adapt generative auto-
regressive models to the task of visual entity recognition
(GER). While previous works have shown preliminary sig-
nal that it is possible to repurpose autoregressive models for
entity recognition by directly decoding entity names [6, 12],
we propose a more e�ective strategy. An overview of our
framework is in Fig. 2.

3.1. Problem definition

Web-scale visual entity recognition. The Open-domain
Visual Entity recognitioN (OVEN) [12] task consists of
mapping input visual queries to one of the 6M English
Wikipedia entities. More specifically, for a given image
query xv and text query xt, the model needs to recognize
the corresponding entity e among the set E of all possible
entities. The purpose of the input text xt is to achieve unam-
biguous recognition. For example, when several entities are
represented in the query image xv, the text query indicates
which one needs to be recognized. Each entity e À E comes
with an entity name, denoted by te, which corresponds to the
title of the entity Wikipedia page.
Representing each entity with a code. In GER, we repre-
sent each entity e by a code denoted by ce = {ce1, ..., c

e
L} À

J1,V KL where L is the length of the code and V is the size
of the vocabulary of all integer values that each code to-
ken cei can take. This forms up to V L unique codes. Note
that vanilla image classification and captioning baselines
can both be cast into this code formulation. In fact, with
L = 1 and V = E, the codes are equivalent to the la-
bels used in standard multi-class classification. On the other
hand, if each code token value in J1,V K maps to a (sub-
)word in a pre-defined vocabulary [20], then the codes sim-
ply correspond to standard tokenized text used in captioning

models [19, 39, 45]. In the following paragraphs, we detail
GER-ALD, our most e�ective strategy for building codes C

to represent all 6M English Wikipedia entities.

3.2. GER-ALD: Creating ALD codes for GER

We design the code set C so that it has three properties
which we find are important for e�ective GER models: i) se-
mantically structured thanks to language, ii) discriminative
and compact, and iii) unambiguous. Our algorithm to cre-
ate such unambiguous, language-based and discriminative
codes, called ALD, is illustrated in Fig. 2 (a) and described
in pseudo-code in Algorithm 1 of the Appendix.
Semantic tokens based on language. We find that entity
codes C benefit from following a semantic structure, espe-
cially in scenarios where memorizing unstructured atomic
codes is di�cult. We show in Sec. 4.4.1 that using unstruc-
tured atomic codes fail when the amount of training data
or the model capacity are limited or, of particular interest,
when the entity set size increases to the million scale (see
Fig. 3). Intuitively, we want entities that are semantically
similar to have some overlapping code tokens. For exam-
ple, we wish that entities e = Q521977 with corresponding
name tQ521977 = “Black colobus” and e = Q358813 with cor-
responding name tQ358813 = “Black-and-white colobos” to
share some code tokens, given that these correspond to two
close species.

A simple yet e�ective way of having semantic codes is
to tokenize the entity names based on text tokenizers [6, 19,
20, 39]. If each of the sub-words in the entity names are
mapped to an integer representing this sub-word, then enti-
ties Q358813 and Q521977 naturally share code tokens: those
representing the phrase “colobus”. We denote by�(.) an o�-
the-shelf text tokenizer with a vocabulary of V� sub-words
such that �(te) = {ye1, ..., y

e
Le
} À J1,V�KLe where Le is the

length of the tokenized entity name �(te). In practice we
use the same language tokenizer as GIT [45] for �(.) and
have a vocabulary size of V = V� = 30522. We refer to the
baseline of using codes C created by simple tokenization of
the entity name as GER-CAPTION (i.e. we treat the entity
name as a caption) [6]. We show in the following paragraph
how GER-ALD codes di�er from such GER-CAPTION codes
by making them more compact and discriminative.
Discriminative and compact codes. Our goal is to build
short and highly discriminative codes because they are eas-
ier to learn for the model, as validated by our experi-
ments in Sec. 4.4.2. For example, the tokenized entity
name �(tQ358813) = �(“Black-and-white colobus”) counts
LQ358813 = 8 tokens, but clearly not all 8 tokens are impor-
tant to make this entity discriminative compared to all other
existing entities. Hence, we choose to represent each entity
with the bare minimum, removing all the clutter which is
not only non-discriminative but also adds noise. We achieve
this by selecting the most discriminative and rarest tokens
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within the tokenized entity name. Specifically, we compute
the frequency fv of each token value v À [1,V ] in the vo-
cabulary over the entire corpus of tokenized entity names
{�(te)}eÀE . We have fv = nv≥V

u=1 nu
where nv is the number

of times v appears in {�(te)}eÀE . We create an ALD code
ce for each entity by keeping only the (L * 1) tokens with
the lowest frequencies and discarding the other ones. For
example for entity Q358813, the 3 tokens with the lowest fre-
quencies are“col”, “ob” and “white”. Interestingly, these 3
most discriminative tokens appear at the end of the code for
GER-CAPTION. By contrast, they appear right at the begin-
ning of the code for GER-ALD and they constitute the only to-
kens to be decoded by the model, which intuitively explains
the improved performance of GER-ALD codes, as analyzed
later in Sec. 4.4.2 especially when entities have long names
(see Fig. 4). Finally an interesting by-product of using short
codes is that they are faster to decode (the complexity of de-
coding is O(L2)) and require less memory footprint to store.
Unambiguous codes. Note that several entities might share
the same least frequent (L * 1)th tokens. In this case their
code are exactly identical up to the (L * 1)th token. We use
the last Lth token to ensure that each entity has a unique
code: we greedily assign the last code token ceL to the next
least frequent word of the tokenized entity name until the
code ce is di�erent from all existing codes. If this still fails to
create a unique code, we assign ceL to a random token value
v® so that the resulting code is unique. With code length
L = 4, only 0.5% of the entities use a random token value.

3.3. Training

In this section, we describe the model used to decode en-
tity codes from an input image-text pair. Importantly, we
also introduce our entity-based pre-training to condition the
generative model to the task of entity recognition.
Auto-regressive generative models. We build upon
GIT [45], an auto-regressive image-to-text generative
model. The query image-text pair (xv, xt) is transformed
into a set of d-dimensional embeddings using a visual en-
coder for xv and the text tokenizer �(.) for xt. The resulting
output is represented by Xv À RNvùd (resp. Xt À RNtùd)
for image (resp. text) tokens. We then input Xv and Xt to a
decoder network g(.) whose task is to decode the next code
token cei , conditioned on the previous tokens cej<i. Each code
token value v in J1,V K maps to a learnable d-dimensional
vector Yv (gathered in the embedding matrix Y À R(V +1)ùd

where Y0 corresponds to the “beginning of code” token).
We train with a language modeling loss:

L
e = 1

L

L…
i=1

l(cei , g([Xv;Xt;Y0;Yce0<j<i
]))

where [; ] corresponds to the concatenation operation in the
first dimension and l is the softmax cross-entropy loss with
label-smoothing [27]. We average Le over a mini-batch and

learn the weights of the visual encoder, decoder g(.) and em-
bedding matrix Y through back-propagation. When decod-
ing, we use beam search to obtain the best predicted entity
coded. We find that we do not need to constrain the beam
search to existing codes since more than 99% of the top-1
predictions are valid codes for converged GER models.
Entity-based pre-training. Common auto-regressive mod-
els such as GIT [45] or PaLI [5] are pre-trained for descrip-
tive captioning. As shown in Tab. 5 and Fig 9 of the Ap-
pendix, they generalize poorly to entity recognition. This
is because of the task discrepancy between predicting a de-
scriptive caption and predicting an entity name. In order to
condition our models better for entity recognition, we pro-
pose to collect a significant number of entity-based pretrain-
ing images, each associated with a Wikipedia entity instead
of a generic caption. However, such an entity-based pre-
training dataset does not exist. We create it in an automatic
way, without any human supervision.

To do so, we leverage existing large-scale image-caption
datasets [37, 38]: unless specified otherwise we use We-
bLI [5]. For each Wikipedia entity, we retrieve in WebLI
the image-caption pairs that best represent this entity and
replace their original captions by this entity name [15, 23].
Specifically, we embed the 6M entity names of OVEN with
a semantic text encoder [32] and find the top-k most simi-
lar captions in WebLI. We retrieve their corresponding im-
ages and replace their original captions by the considered
entity name. We ensure that no image is assigned to multi-
ple entities to avoid instability during training. We vary the
number of retrieved images k per entity from 2 to 100 to pro-
duce pre-training datasets of di�erent sizes: from 11M up to
55M images (see Fig. 6). We denote by Entity-WebLI (resp.
Entity-LAION) the resulting dataset used for entity-based
pretraining, built from WebLI (resp. LAION [38]). This
way of creating pre-training data is akin to the query gener-
ation techniques used for generative retrieval in NLP [46].
However, rather than generating a synthetic input, we simply
retrieve input images from a large-scale dataset.

3.4. Baselines

We compare our method to the following di�erent baselines.
Hierarchical classification. Solving million-scale entity
recognition with classification is unpractical due to the very
large number of classes. A workaround is to use hierarchi-
cal classifiers. As OVEN does not come with hierarchical
labels we obtain a 3-level hierarchy through k-means of the
6M entity names encoded with sentence-T5 [28]. We train
a multi-class classifier for each parent node in the hierarchy.
To avoid training a huge number of di�erent classification
matrices, we learn a generic classifier matrix per level which
is modified by learnable small modifiers depending on the
path in the hierarchy.
Dual encoders. Another typical workaround to classifica-
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tion is to rely on deep metric learning approaches [36] such
as Noise Contrastive Estimation [11] and its InfoNCE vari-
ant [29] as used in popular dual encoder approaches [16,
32]. Dual encoders learn a unified image-text feature space
with separate encoders, thereby facilitating e�cient nearest
neighbor searches for recognition. We use CLIP-L/14 [32].
Visual matching. We also experiment with pure visual
matching baselines. We use o�-the-shelf CLIP-L/14 visual
encoder and Entity-WebLI (55M) dataset as the memory.
We use k = 500 for nearest neighbor search with majority
voting as it obtains the best results on OVEN val set.
Captioning. We compare to Git-Large [45] or PaLI [5]
image-to-text auto-regressive captioning models.
GER-baselines: alternative code creation strategies. We
compare GER-ALD, i.e. the best variant of GER, with sev-
eral alternatives. First, GER-ATOMIC refers to using atomic,
completely unstructured codes, i.e. each code token cei is
randomly drawn from J1,V KL [42] . Second, we consider
two alternatives using semantically structured codes: (i)
GER-HKC where we embed the entity names with a pre-
trained text encoder before applying hierarchical k-means
clustering on the resulting embeddings [42] and (ii) GER-
CAPTION where we create a code by tokenizing the entity
name with �(.) [6, 12]. Details on the baselines are in Ap-
pendix Sec. 6.4.

4. Experiments
In this section, we detail our experimental setup, compare
our method with state of the art and baselines, and finally
present thorough analyses on code creation and pretraining.

4.1. Experimental setting

OVEN dataset consists of 6,063,945 di�erent entities [12].
We evaluate the models on the validation and test splits,
by reporting the harmonic mean (HM) of top-1 accuracy
scores between “seen” and “unseen” entities. Seen are en-
tities present in the OVEN training set. Unseen entities are
a subset of entities among the ones not present in the train-
ing set. The models are evaluated on a total of 3192 entities
(1721 for seen and 1471 for unseen) for validation and 15888
entities (8355 for seen and 7533 for unseen) for test. We call
the entities that the model is evaluated on by “positive” en-
tities (i.e. the union of the 3192 validation and 15888 test
entities) and all other entities by “negative” entities.
Pretraining and finetuning. Unless specified otherwise,
we pretrain our models on the entity-WebLI dataset, which
we create considering all 6M entity names as described in
Sec. 3.3. After this entity-based pretraining, the models are
finetuned on OVEN training set which consists only of the
“seen” entities. All implementation details are in Sec. 6 in
Appendix and code is released in the SCENIC library [7].
Preventing data leakage. We remove pretraining images
from Entity-WebLI and Entity-LAION with a cosine simi-

Pretraining OVEN test

Method #par.(B) dataset #imgs HM seen unseen

Dual encoder approaches
CLIPViT-L14 0.42 OpenAI 400M 5.2 5.6 4.9
CLIPfusionViT-L14 0.88 OpenAI 400M 8.4 33.6 4.8
CLIP2CLIPViT-L14 0.86 OpenAI 400M 11.5 12.6 10.5

Captioning approaches
GiT-Large 0.40 WebLI 100M 7.0 17.6 4.3
PaLI-3B 3 WebLI 1B 9.1 19.1 6.0
PaLI-17B 17 WebLI 1B 16.0 28.3 11.2

Generative entity recognition
GER-ALD‡ (Ours) 0.40 Entity-LAION 41M 20.9 29.1 16.3
GER-ALD (Ours) 0.40 Entity-WebLI 55M 22.7 31.5 17.7

Table 1. Comparison with state-of-the-art approaches on OVEN
entity test split. We report the harmonic mean (HM) of the seen
and unseen splits (top-1 accuracy) after finetuning on OVEN train-
ing set. Numbers are taken from [12] except methods based on
GiT-Large which are run by us. We indicate the total number of
parameters of each model (“# par.”) in billion and the pretraining
dataset details. ‡: use only publicly available data.

larity (with CLIP-L/14 visual features) above 0.95 with any
of the OVEN test or val images. We chose a 0.95 conserva-
tive threshold by looking at some examples: similarity 0.95
corresponds to conceptually similar images but clearly not
duplicates (see Fig. 8 in Appendix).

4.2. Comparison with the state of the art

In Tab. 1, we compare the performance of GER-ALD, our best
GER variant, on the OVEN entity benchmark with previously
published numbers after finetuning on the OVEN training
set. We see that our method outperforms previously pro-
posed approaches by significant margins. Notably, GER-ALD
improves over the captioning model PALI-17B by +6.8 top-
1 HM test accuracy (a relative improvement of 43%) while
using 42ù less parameters.

4.3. Comparison with baselines

In Tab. 2, we compare GER-ALD with the di�erent baselines
described in Sec. 3.4. All baselines use exactly the same
pretraining dataset entity-based WebLI (55M) and model
architectures of comparable sizes.
Comparing GER to di�erent paradigms. We see in Tab. 2
that GER outperforms strong captioning, dual-encoder, vi-
sual matching and hierarchical classification baselines, af-
firming its advantage in tackling web-scale visual entity
recognition. Our superior performance compared to dual
encoders aligns with previous works observing that CLIP
struggles for fine-grained recognition [12, 15]. Due to
query image and entity name similarities being captured
only through a vector dot product, potentially fine-grained
interactions are missed. Also, GER o�ers significant advan-
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Entity-based pretraining + finetuning on seen

Method HM seen unseen HM seen unseen

Dual encoders 9.2 8.9 9.4 16.3 24.3 12.3
Visual matching 16.2 15.5 17.1 16.4 15.7 17.2
Captioning 13.2 13.1 13.3 16.8 25.9 12.5
Hierarchic. classif. 14.7 14.8 14.6 21.8 29.6 17.2

Generative entity recognition
GER-ATOMIC 15.9 15.3 16.7 20.1 26.2 16.3
GER-CAPTION 14.3 16.5 12.6 20.7 26.8 16.9
GER-HKC 15.8 15.5 16.0 21.0 25.2 17.9
GER-ALD 17.7 18.3 17.2 22.7 31.5 17.7

Table 2. Baseline comparisons. All baselines use exactly the
same pretraining dataset Entity-WebLI (55M) and architectures of
comparable number of parameters (Ì 400M). All numbers are ob-
tained with finetuning on seen split after entity-based pretraining.
We report the Harmonic Mean of top-1 accuracy on OVEN test.

tages over dual encoders: its computational complexity is
not a function of entity set size and it does not require to
store entity dense embeddings.
Di�erent GER variants. In Tab. 2, we compare di�erent
variants of GER: one variant using unstructured codes (GER-
ATOMIC) and three variants using semantically-structured
codes: GER-CAPTION, GER-HKC and GER-ALD. We ob-
serve that GER-ALD is the best performing variant, both after
entity-based pretraining and after finetuning on the OVEN
seen entities. Compared to GER-CAPTION, GER-ALD use
codes that are more discriminative and compact, which im-
proves the performance particularly for entities with long
names (see Sec. 4.4.2). Compared to GER-ATOMIC, GER-
ALD codes yield a semantic structure which is crucial for
million-scale label-space as shown in Sec. 4.4.1. GER-HKC
model also gets strong performance but relies on an o�-the-
shelf semantic text encoder which makes the approach more
complex and costly compared to GER-ALD. GER-HKC is a
first step towards learning codes and we hope future works
will propose original and better code creation strategies [41].

4.4. Analysis and ablation study

In this section, unless specified otherwise, we report the ac-
curacy on the OVEN validation set [12] evaluated after pre-
training on Entity-WebLI (27M), i.e. no OVEN finetuning.

4.4.1 Semantic versus atomic codes
In Fig. 3 (and Appendix Tab. 6), we report the relative
improvement of semantically-structured codes (GER-ALD)
compared to unstructured codes (GER-ATOMIC). We vary
pretraining data size, model capacity and label-space size. A
relative improvement of 100% means that the performance
of GER-ALD doubles compared to GER-ATOMIC.
Limited pretraining data. In Fig. 3 (left), we see that se-
mantic codes outperform atomic codes when the amount of
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Figure 3. Semantic vs atomic codes. We report the relative im-
provement in % of GER-ALD compared to GER-ATOMIC in 3 sce-
narios: (i) limited pretraining data, (ii) limited model capacity and
(iii) massive-scale label-space. Plots share a common experiment
shown by õ which uses a pretraining dataset size of 27M , Large
model and 6M entity set. The setting reported in Tab. 2 is8.

data available for pretraining diminishes. In fact, the re-
sults reported in Tab. 2 corresponds to the most favorable
scenario for GER-ATOMIC with 55M pretraining datapoints
(represented by 8 in Fig. 3). The relative improvement in
this case is still of 14% while it grows to more than 1000%
when the amount of data is reduced by 5ù.
Limited model capacity. In Fig. 3 (middle), we see that
the model struggles to learn unstructured codes when its ca-
pacity is reduced. When considering the small version of
our model (114M parameters), the performance with atomic
codes is very poor: 0.7 top-1 accuracy.
Web-scale label-space. In Fig. 3 (right), we vary the num-
ber of entities for pretraining. The “positive” entities (see
Sec. 4.1) are always included in the pretraining set and the
amount of “negative” entities is increased, e�ectively acting
as distractors. First, we see in Fig. 3 (right) that for rela-
tively small-scale label-space (f 100k), the benefit of hav-
ing semantic codes versus atomic is small. In this regime we
find that the model can memorize all the entities without the
need for semantic structure between them. This aligns with
the findings of DSI [42]. We evaluate GER further in small
label-spaces in Sec. 4.5. However, we see that in million-
scale label-space regime, semantic structure becomes im-
portant and significantly improves the performance com-
pared to atomic codes: +26% relative improvement.

Overall, we find that GER-ATOMIC fail to learn unstruc-
tured codes when the amount of pretraining data or architec-
ture capacity are reduced, or when the label-space increases
to million-scale. Unlike GER-ATOMIC, GER-ALD succeed in
these scenarios thanks to the semantic structure easing the
learning. Next, we analyze how GER-ALD improves over an-
other type of semantic codes: GER-CAPTION codes.

4.4.2 ALD versus captioning codes
We analyze why unambiguous, language-based and dis-
criminative codes (GER-ALD) are more e�ective for entity
recognition than directly decoding the entity name (GER-
CAPTION). In Fig. 5 (left), we report the performance of
GER-ALD and GER-CAPTION when varying the length L of

17318



� 	 
 � �� �� �	
� $�$&� ������ �$�




��

��

�	

��

�!
"�
��
��
�%
#�
�&

�������
����
������

Tokenized	Entity	name	(10	tokens):
[second][temple][of][her][a][(][pa][est][um][)]

GER-CAPTION	predictions:
1.	Jan	Hus	Memorial

Code = [jan][hu][s][memorial]
2.	Prague	Castle

Code = [prague][castle]
3.	Statue

Code = [statue]
GER-ALD	 predictions:

1.	Statue	of	John	of	Nepomuk,	Charles	Bridge
Code = [statue][mu][po]

2.	Statue	of	Saint	George,	Prague	Castle
Code = [prague][statue][castle]

3.	Charles	Bridge
Code = [bridge][Charles]

Tokenized	Entity	name	(11	tokens):
[statue][of][john][of][ne][po][mu][k][,][Charles][bridge]

GER-CAPTION	predictions:
1.	Paestum	Airfield
Code = [pa][est][um][airfield]
2.	Paestum
Code = [pa][est][um]
3.	Temple
Code = [temple]

GER-ALD	 predictions:
1.	Second	Temple	of	Hera	(Paestum)
Code = [second][est][temple]
2.	Temple	of	Athena	(Paestum)
Code = [athena][est][temple]
3.	The	Temples	of	Paestum
Code = [temples][est][pa]

Entity:	Q453634
Name:	Second	Temple	
of	Hera	(Paestum)

Entity:	Q17119873
Name:	Statue	of	John	
of	Nepomuk,	Charles	
Bridge

GER-CAPTION	predictions:
1.	Siamang

Code = [siam][ang]
2.	Guenon

Code = [gu][eno][n]
3.	Diospyros	siamang

Code = [di][os][py][ros][siam][ang]
GER-ALD	 predictions:

1.	Black-and-white	colobus
Code = [col][ob][white]
2.	Black	colobus

Code = [col][ob][black]
3.	Lomami	red	colobus

Code = [col][ob][red]
Tokenized	Entity	name	(8	tokens):
[black][-][and][-][white][col][ob][us]

Entity:	Q358813
Name:	Black-and-
white	colobus

Figure 4. Accuracy per entity name length for GER-ALD versus GER-CAPTION codes. (left): Accuracy averaged per entity name length.
(right): Qualitative examples of predictions for long entity names. Code tokens are symbolized between brackets.
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Figure 5. ALD versus captioning codes. (left): E�ect of di�er-
ent code lengths for GER-ALD and GER-CAPTION codes. (right):
Cumulative distribution function (CDF) of (in green) the position
of the least frequent token in the tokenized entity name and of (in
pink) the length of tokenized entity name.

the codes. Fixing a code length L to a caption corresponds
to keeping only the first Lth tokens of the entity name. In
Fig. 5 (right), we report the cumulative distribution func-
tions (CDF) of (i) the position within the tokenized entity
name of the least frequent token among the entire corpus (as
described in Sec. 3.2) and (ii) the total number of tokens in
the tokenized entity name (Le in the notations of Sec. 3.2)).
Discriminative tokens versus number of tokens. We ob-
serve in Fig. 5 (left) that the performance of GER-CAPTION
increases drastically fromL = 2 toL = 4. At the same time,
we see in Fig. 5 (right) that for L = 4, less than half of the
entity names are considered in full while more than 80% of
the GER-CAPTION codes contain the least frequent token of
the entire tokenized name. This hints that what is important
for language-based codes is not to describe the full entity
name but to include its most discriminative part. We also
observe that the performance of captioning increases only
moderately from L = 4 to L = 8 even though the num-
ber of entities considered in full increases drastically from
46.6% to 100%. This confirms our intuition that decoding all
the entity name tokens does not have a major impact on the
performance as long as the most discriminative tokens are
decoded. Overall, these observations motivate the ALD de-
sign of keeping only the most discriminative tokens, which
is shown in Fig. 5 to lead to improved performance com-
pared to decoding the full tokenized entity name.
E�ect of code length for GER-ALD. We see in Fig. 5 (left)
that the performance of GER-ALD is the best for L = 4. With
smaller code lengths, we need to resort to random tokens a
lot to achieve unique codes (see Sec. 3.2), which deters the

Selection strategy HM

Least frequent tokens 14.4
Most frequent tokens 12.3
First tokens 12.0
Random tokens 11.3

Tokens order HM

Least frequent first 14.4
Syntax order 14.4
Random order 13.0
Least frequent last 12.7

Table 3. Ablation study of GER-ALD codes. (left) Word tokens
selection. (right) Tokens order. All variants use L = 4. Default is
in top rows. Non language-based GER-ATOMIC gets 11.4 top-1.

performance. For example at L = 2, more than 10% of the
entities use a random code token while this percentage de-
creases to 0.5% at L = 4. We also see that the performance
of GER-ALD decreases for code length above L = 4, which
hints that only the few most discriminative tokens are impor-
tant while additional ones clutter the entity code. Interest-
ingly we also observe in Fig. 5 (left) that when considering
all the tokens,GER-ALD performance is slightly below that of
GER-CAPTION. This might seem surprising since the same
amount of information is present in both cases. However we
find that when considering all the tokens, it is more di�cult
for the model to decode tokens ordered by frequencies than
tokens ordered syntactically.
Entities with long entity names. In Fig. 4 (left), we report
the accuracy per entity name length for both GER-ALD and
GER-CAPTION finetuned models. We see that the longer the
entity name, the more GER-ALD improves over captioning.
Longer entities tend to have more noise with key information
further into the code. We also show in Fig. 4 qualitative
examples of entities with long entity names (more in Fig. 12
in Appendix). In the left example, we see that GER-ALD use
the token combination [col][ob] to represent the semantic
concept of colobus monkey species. The last token is used
to e�ciently di�erentiate between sub-species of colobus.
This compact and discriminative way of encoding the entity
allows GER-ALD to successfully predict this entity whereas
GER-CAPTION fails to generate the entity tokenized name.

4.4.3 Creating codes with ALD

Least frequent tokens. In Tab. 3 (left), we validate our
choice of selecting the least frequent tokens by evaluating
3 alternatives: random choice, most frequent tokens and
first-appearing tokens in tokenized entity name. We see
that these alternative strategies hurt the performance signifi-
cantly. Qualitative examples in Appendix Fig. 11 show that
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Dataset Codes HM

WebLI WebLI caption 1.8
Entity-WebLI (55M)WebLI caption12.9 (+11.1)

Entity-WebLI (55M) Entity name 14.8 (+1.9)

Entity-WebLI (55M) ALD 17.5 (+2.7)

Original	caption:
Discover 
muskellunge facts 
about the state fish of 
Wisconsin.
Entity	name:
Muskellunge
Original	caption:
School zones have a 
speed limit of 20 mph 
which is in effect during 
school days from […]
Entity	name:
School zone

Figure 6. Entity-based pretraining ablation. (left): Validation
OVEN accuracy. (right): Examples of original WebLI captions
versus corresponding OVEN entity names.
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Figure 7. Pretraining.
We vary the size of the
pretraining dataset by
changing the amount of
retrieved examples from
WebLI for each OVEN
entity (see Sec. 3.3).

the kept tokens are less semantic and discriminative com-
pared to GER-ALD strategy of keeping the least frequent to-
kens. Note that all these variants are at least as good as GER-
ATOMIC (11.4 top-1) which is not based on language at all.
Decoding order. In Tab. 3 (right), we vary the order of the
first L * 1 tokens in GER-ALD codes. Instead of decoding
tokens from least to most frequent, we evaluate most to least
frequent, syntax order and random order. Note that the se-
lected tokens are the same in all variants, only their order
changes. We see that both “least frequent first” and “syn-
tax” orders achieve the best of performance.

4.4.4 Entity-based pretraining

Entity-based pretraining. In Fig. 6, we analyze why our
entity-based pretraining improves over the standard caption-
ing pretraining of PaLI or GiT models. First, we see that our
method of selecting WebLI data relevant to OVEN entities
drastically improves the performance (+11.1 in Fig. 6 (left)).
This is because, by design, we select image-text pairs from
WebLI that have captions similar to OVEN entity names.
Hence, this data is directly relevant for the OVEN entity
recognition benchmark. Second, we see that replacing the
original WebLI caption with its corresponding entity name
from OVEN leads to superior performance (+1.9). We see
in the qualitative examples of Fig. 6 (right) that original cap-
tions contain a lot of descriptive information not directly rel-
evant to the entity. Lastly, we confirm that using GER-ALD
codes is better (+2.7) than tokenized entity name.
Dataset size. In Fig. 7, we evaluate the e�ect of the pre-
training dataset size for GER models. We control the dataset
size by varying the amount of retrieved examples from We-
bLI for each of the OVEN entities (see Sec. 3.3). We see in
Fig. 7 that GER-ALD, GER-CAPTION and GER-ATOMIC bene-
fit greatly from more data and do not seem to have reached
saturation yet. As analyzed in Sec. 4.4.1, GER-ATOMIC fails
when the amount of pretraining data decreases.

Method ImageNet-LT WebVision

Classif. MLP 74.3 80.9
GER-ATOMIC L = 2 80.8 84.7
GER-ALD L = 2 80.9 84.8
GER-ATOMIC L = 1 (Ì Classif. MAP) 81.0 84.8

Previously published numbers
NCR [13] – 76.8
CurrNet [10] – 79.3
PEL [40] 78.3 –
MAM [14]† 82.3 83.6

Table 4. Evaluation of classification models and GER on small-
scale label-spaces. † indicates the use of additional data.

4.5. Link with classification

A typical way of tackling visual entity recognition is by
training a classifier into the number of entities [35]. This is
not a viable solution for web-scale problems such as OVEN
where a single fully-connected layer for a 6M classes has an
enormous parameter count of 4.6B. In this section, we eval-
uate GER in cases where learning a classification model is a
feasible choice (smaller number of classes). Classification
can be cast in our GER framework simply by setting L = 1
and V = E = number of classes (see Sec. 3.1), making it a
special case of atomic codes with L = 1. Since the decoder
decodes a single token, it is equivalent to a multi-layer Mul-
tihead Attention Pooling (MAP) head [21, 48]. In Tab. 4, we
consider two challenging classification datasets: long-tailed
ImageNet-LT [24] and noisy Webvision [22]. We evalu-
ate GER-{ALD, ATOMIC} and a classification baseline using
multi-layer perceptron (MLP) on averaged-pooled patch to-
kens. Implementation details are in Sec 6.3 in Appendix.

We see in Tab. 4 that using GER-ATOMIC instead of stan-
dard MLP improves significantly the performance of the
classification model (74.3 versus 81.0 for ImageNet-LT). We
also observe that GER-ATOMIC and GER-ALD have compara-
ble performance in this relatively small label-space regime
(1k classes). As a matter of fact, this achieves state-of-the-
art accuracy for both datasets (when no additional external
data is used). This shows that GER framework not only ex-
cels for large-scale scenarios, but also works well in datasets
with smaller number of visual entities, making GER a gen-
eral framework for visual entity recognition.

5. Conclusion
In this work, we propose a novel generative framework
for web-scale visual entity recognition. We represent each
entity by a compact, discriminative and semantic code
that a generative auto-regressive model learns to decode.
In future work, we will explore ways of creating better
entity codes by leveraging additional information: either
from the Wikipedia page such as the description of the
entity and its attached image or also by using external tools.
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