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Abstract

The landscape of deep learning research is moving to-
wards innovative strategies to harness the true potential of
data. Traditionally, emphasis has been on scaling model
architectures, resulting in large and complex neural net-
works, which can be difficult to train with limited compu-
tational resources. However, independently of the model
size, data quality (i.e. amount and variability) is still a ma-
jor factor that affects model generalization. In this work, we
propose a novel technique to exploit available data through
the use of automatic data augmentation for the tasks of im-
age classification and semantic segmentation. We intro-
duce the first Differentiable Augmentation Search method
(DAS) to generate variations of images that can be pro-
cessed as videos. Compared to previous approaches, DAS
is extremely fast and flexible, allowing the search on very
large search spaces in less than a GPU day. Our intuition
is that the increased receptive field in the temporal dimen-
sion provided by DAS could lead to benefits also to the spa-
tial receptive field. More specifically, we leverage DAS to
guide the reshaping of the spatial receptive field by selecting
task-dependant transformations. As a result, compared to
standard augmentation alternatives, we improve in terms of
accuracy on ImageNet, Cifar10, Cifar100, Tiny-ImageNet,
Pascal-VOC-2012 and CityScapes datasets when plugging-
in our DAS over different light-weight video backbones.

1. Introduction
Creating models with significantly increased capacity, in an
attempt to achieve incremental performance improvements,
has been the prevailing approach in designing Convolu-
tional Neural Network (CNN) classifiers. As a result, CNNs
with increased depth [16, 40, 45, 60], and Vision Trans-
formers (ViTs) [13] were proposed over the years. Specif-
ically, ViT has demonstrated promising results on a wide
variety of computer vision tasks including image classifi-

(a) Conceptual representation of the proposed approach. We reshape the
Receptive Field (RF) by applying affine transformations optimized through
our Differentiable Augmentation Search (DAS). On the top right you can
see how fusing with random transformation would not lead to benefits as,
when concatenating in time, the employed shift mechanism would fuse
features related to random parts. On the bottom, the augmentations guided
by DAS obtain specific shapes of the RF so that more context is kept.

rotate translate zoom found by DAS

(b) RF visualization (ResNet-50, with GSF fusion) when different single
or composed transformations are applied. The last column shows our DAS
selected operation for CIFAR-10 and CIFAR-100, which combines trans-
lation, rotation and zoom. More details in Tab. 4.

Figure 1. 1a overviews our approach and 1b shows a real exam-
ple of obtained receptive fields. The employed transformations are
fundamental to shape the receptive field, as shown in 1b. The aug-
mented images with DAS (Sec. 3.1) are concatenated in time, and
processed through a video network that partially shifts and fuses
the features (Sec. 3.2).

cation and semantic segmentation [13, 36, 48, 56]. How-
ever, while these techniques have demonstrated remarkable
success, it is noteworthy that these high-capacity models
necessitate increased computational resources for effective
training and inference, making them economically imprac-
tical for training and deployment within practical applica-
tion scenarios. Moreover, the over-parametrization of ViT
and Deep CNNs makes the networks prone to overfitting,
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thus requiring strong regularization to achieve ideal perfor-
mance. As a result, one alternative trend relies in exploiting
the power of data. In this work, we tackle this problem and
propose a novel way of augmenting data with the goal of
expanding the receptive field of CNNs.
Data augmentation techniques, usually employed to en-
hance the generalization capabilities of machine learning
models, rely on meticulous design, necessitating domain-
specific knowledge. To this aim, various auto data aug-
mentation methods, inspired by Neural Architecture Search
(NAS), have been extensively utilized in the field of super-
vised learning [11, 12, 27, 34] to search for accurate aug-
mentation strategies. However, many of these approaches,
either require much time [11, 17, 47], forcing the search to
be performed on a proxy task or do not propose an effec-
tive search strategy, but rather a well defined search space
as in [12]. The former, makes a strong assumption that
the proxy task provides a predictive indication of the larger
task [12]. The dramatic reduction in parameter space of
the latter, which allows simple grid search, implies a strong
knowledge in the search space definition. As a result, as we
empirically show, including “noisy” transformations would
imply much larger searching time to achieve the same
performance. By harnessing affine transformations opti-
mized through our new Differentiable Augmentation Search
(DAS) strategy, we generate a series of images that exhibit
motion within a specific region, treating them analogously
to video sequences. Inspired by transformation-based mod-
els [49] that, operating in the space of affine transforms, re-
phrase the frames prediction problem as modelling trans-
formation within frames, we introduce a novel methodol-
ogy to extend the Receptive Field (Fig. 1a). With the un-
derlying hypothesis that augmenting the temporal dimen-
sion’s receptive field (RF) could potentially yield advan-
tages for the spatial RF as well, we establish the viabil-
ity of this approach and empirically showcase its merits by
employing Video Networks for processing such image se-
quences. In this context, to alleviate the unnecessary in-
crease of computational overhead for image-classification
and semantic segmentation tasks, we exploit a feature shift
mechanism [42], which in the context of video action recog-
nition tasks demonstrates comparable performance to a 3D
CNN while keeping 2D CNN complexity. In summary, our
contributions are:

• We re-formulate the automatic data augmentation field in
a differentiable manner, and propose DAS. By defining
a continuous search space of image transformations and
exploiting a perturbation-based approach for the transfor-
mation selection, we provide a very general and easy-to-
deploy alternative to slower existing reinforcement learn-
ing methods, and to more search space definition sensitive
random ones.

• We propose a new way of handling 2D data by repeat-

edly transforming and concatenating images as frames in
a video, obtaining a new perspective to exploit the rich-
ness of data. To this aim, we address the question of how
the increase of the receptive field in a third dimension im-
pacts the original 2D spatial receptive field.

• We successfully expand, as a result, the receptive field
for image classification and segmentation tasks. This al-
lows obtaining ResNet-152 state-of-the-art results for Im-
ageNet while employing a ResNet-50 temporal expanded
network, having less than half-parameters, and surpassing
DeepLabv3 by 1.3 % on Pascal-VOC and ResNest mod-
els by 1.1% on CityScapes datasets.

2. Related Work
In our work, we are interested in image classification
and semantic image segmentation tasks. A large focus
of the computer vision community has been on engineer-
ing better network architectures to improve performance.
In earlier designs ImageNet progress was dominated by
CNNs [18, 21, 22, 40, 44, 46] and more prominently now
Vision Transformers [13, 30] have reached competitive re-
sults due to their wider receptive fields. Semantic segmen-
tation requires either global features or contextual interac-
tions to accurately classify, at the pixel level, objects at mul-
tiple scales. To this aim, atrous convolutions [3, 5], spatial
pyramid pooling modules [61], and networks with attention
modules [14, 54, 60] with almost 1 billion parameters were
proposed. While these methods enhance the receptive field,
achieving good results in terms of performance, they are ex-
tremely data hungry and often require strong regularization
techniques, such as data augmentation.

2.1. Automatic Data Augmentation

Traditionally, data augmentation requires manual design
and domain knowledge. Random cropping, image mir-
roring, and color distortion are common in natural im-
age datasets like CIFAR-10 and ImageNet. Elastic dis-
tortion and affine transformations such as translation and
rotation are more common in datasets like MNIST[23]
and SVHN [35]. Many methods have been influenced by
NAS [63] to find the best dataset-specifc set of augmen-
tation policies/strategies [11, 17, 24, 25, 47]. AutoAug-
ment (AA) [11], the first automatic augmentation method,
uses reinforcement learning to predict accurate problem-
dependant augmentation policies. Despite its success, the
approach has the main drawback of running the search on a
smaller version of the datasets due to the multi-level search
space and the repetitive training, making a strong assump-
tion that the proxy task provides a predictive indication of
the larger task. Methods like [12, 27, 34] drastically re-
duce the parameter space for data augmentation, which al-
lows the methods to be trained on the full dataset. In Ran-
dAugmnet (RA) [12] only two hyperparameters are used,
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Figure 2. Our method takes an input image and processes it through a DAS cell. The cell, as shown more in detail in Fig. 3, applies
all possible transformations defined in the search space and generates an input video. The video is processed through a video network
integrated by a temporal shift mechanism, with the goal of shifting the features of adjacent frames. As it can be observed in the pink box,
the features shifted and combined as if a kernel 3× 3× 3 was applied. As the content derives from transformations of the same image, the
result over the original 2D image is a reshaping of the RF. Finally, the predictions for the video input are combined so that the performance
for the original 2D task are given back as feedback to the DAS cell.

one controlling the number of augmentations to combine
for each image, and the other controlling the magnitude of
operations. The downside of RA is that it performs a grid
search over a set of augmentation operations incurring up to
×80 overhead over a single training [34]. UniformAugment
(UA) [27] and TrivialAugment (TA) [34], instead, propose
parameter-free algorithms where hyperparameters are sam-
pled uniformly in the augmentation space. Similarly to UA,
we define a continuous augmentations space. However, dif-
ferently from UA, RA and AA, we do not randomly sample
the ad-hoc hyperparameters or perform the search on a re-
duced dataset, but use a continuous search strategy which
makes our method fast without the need to reduce drasti-
cally the search space or to include user designer bias.

2.2. Enhancing the Receptive Field

In the context of CNNs, the general trend that led to very
deep networks is motivated by the seek for a receptive field
expansion. The concept of RF is indeed important for un-
derstanding and diagnosing how deep CNNs work as it de-
termines what information a single neuron has access to.
Over the years, many attempts were made to expand such a
field, either by increasing the factors determining its theo-
retical size, e.g. the depth of a neural network and the kernel
size, or by providing more context information.
Spatial Domain In the context of image classification
and semantic segmentation, using context information from
the whole image can significantly help improve the perfor-
mance. Mostajabi et al. [33] demonstrated that by using
the “zoom-out” features they can achieve impressive perfor-
mance for the semantic segmentation task. Liu et al. [29]
noticed that, although theoretically, the features from the
top layers of a neural network should have very large recep-
tive fields, in practice the empirical size is much smaller and
consequently not enough to capture the global context. To
this aim, they propose to use global averaging to pool the

context features from layers of the neural network, proving
empirically that such a method results in a larger empirical
RF. In [38], Richter et al. question the actual need for a very
deep network and propose a method for layer pruning based
on the analysis of the size of the RF.
Temporal Domain How to effectively expand the recep-
tive field in the temporal domain has been investigated in
video understanding research [26, 32, 41, 42, 51]. 3D CNNs
can capture three-dimensional features, however, they are
more computationally intensive than 2D CNNś video net-
works. In [26] the authors implement the Temporal Shift
Module (TSM) where a 2D CNN is used as a backbone
to extract spatial information. The temporal features are
integrated by shifting a fixed amount of channels forward
and backward along the temporal dimension. Subsequently,
Sudhakaran et al. [42] proposed the Gate-Shift-Fuse (GSF)
module, a spatiotemporal feature extraction that leverages
on a learnable shift of the channels on the temporal dimen-
sion as well as channel weighting to fuse the shifted fea-
tures. TSM and GSF are lightweight and therefore good
video network candidates for our image-to-video pipeline
in Fig. 2.

In contrast to prior methods that enhance the spatial re-
ceptive field by concatenating global or zoomed-out fea-
tures or that utilize deeper networks, our method extends
beyond by aggregating features derived from diverse trans-
formations and by processing them as a video. We employ
distinct transformations to generate variations of the input.
Given that data augmentation necessitates domain-specific
knowledge, we adopt automatic data augmentation.

3. Methods
In this section, we first introduce our new differentiable
transformation search process effectively responsible for
the reshape of the Receptive Field for image classification

5831



and image segmentation problems (Sec. 3.1). We highlight
the benefit of a continuous search space and motivate the
importance of a perturbation-based selection technique. We
then detail in Sec. 3.2 how we make use of DAS to exploit
the power of data, showing that with respect to traditional
methods expanding the RF, our effect results in a “reshap-
ing” rather than an expansion. The pipeline of the proposed
architecture is shown in Fig. 2.

3.1. Differentiable Augmentation Search

In order to extend images to video and to properly reshape
the RF (Fig. 1a), a set of optimal transformations needs to
be found. We propose a new general and differentiable ap-
proach, later deployed with a restricted search space for
our use case, searching for the transformations generating
the “best video” to process for a given video network and
downstream task. Inspired by Differentiable Neural Archi-
tecture Search [28, 53] we define a continuous search space
of transformations, which leads to a differentiable learning
objective for the joint optimization of the transformations
to be applied and the weights of the architecture. Follow-
ing [28, 64], we search for a computation cell as the initial
block that generates the input for the chosen video network.
A cell, depicted in Fig. 3, is a directed acyclic graph con-
sisting of an ordered sequence of N nodes. Each node x(i)

in the cell is the transformed image, and each directed edge
(i, j) is associated with a data augmentation technique. For
the deployment of our Differentiable Architecture Search,
we defined two search spaces. The first one, similarly to
AA and RA methods [11, 12], comprises as set of aug-
mentations Shear X/Y, Translate X/Y, Rotate, AutoCon-
trast, Invert, Equalize, Solarize, Posterize, Color, Bright-
ness, Sharpness, Cutout, and Identity that corresponds to
applying no transformation. The cell has two input nodes
and a single output node. The size of such a search space is
1314. The second search space, deployed for our purpose,
includes Translate X/Y, Scale, Rotate, and Identity. It em-
ploys a cell with one single input and output node, having
a size of 510. Given the set T of candidate transformations,
the categorical choice of applying a transformation is re-
laxed to a Softmax of all possible transformations t ∈ T .
For a given edge (i, j), the transformation to be applied to
the input x is expressed as:

t̄(i,j)(x) =
∑
t∈T

exp(τ
(i,j)
t )∑

t∈T exp(τ
(i,j)
t′ )

· t(x), (1)

where the weights of a transformation are parameterized by
a vector τ (i,j) of dimension |T |. The famous bi-level opti-
mization problem [10] of NAS is re-formularized as:

min
τ

Lval(τ ,w
∗(τ ))

s.t. w∗(τ ) = argmin
w

Ltrain(w, τ ),
(2)

where the model weights w and the transformations pa-
rameters τ are jointly optimized via gradient updates fol-
lowing standard DARTS procedure. We would like to stress
that, differently from the original DARTS, here there is no
real architecture optimization. The real CNN network that
processes the data is fixed and chosen a priori. What we are
looking for is a cell where only transformations are applied,
and we treat this cell as a sort of “stem” block, placed before
the backbone. At the end of the search phase, the best trans-
formations are not chosen by selecting the largest τ value,
as this was shown in [53] to be based on a wrong assump-
tion, i.e. the τ representing the strength of a transforma-
tion agrees with the discretization accuracy at convergence.
We rather deploy a perturbation-based approach, where the
transformation importance is evaluated in terms of its con-
tribution to the neural network performance. To this aim,
for each transformation on a given edge, we mask it while
preserving all other transformations, then re-evaluate the
cell+CNN. The operation resulting in the greatest reduction
in network validation accuracy is identified as the pivotal
operation on that edge. Let us indeed consider a cell from a
simplified search space composed of only two transforma-
tions:

I =

1 0 0
0 1 0
0 0 1

 T =

1 0 tx
0 1 ty
0 0 1

 (3)

where xI represents the output of I ·x, and xT the translated
output T · x. Assume m∗ to be the optimal feature map,
shared across all edges according to the unrolled estimation
view. The current estimation of m∗ can then be written as:

m(x) =
eτT

eτT + eτI
xT +

eτI

eτT + eτI
xI (4)

The optimal τ∗T and τ∗I minimizing the var(m(x) − m∗)
variance between the optimal feature map m∗ and the cur-
rent estimation m(x) are:

τ∗I ∝ var(xT −m∗) (5)
τ∗T ∝ var(xI −m∗) (6)

We refer to the Supplementary material for a detailed proof.
As in the original paper, also for the transformation search
space it holds that, from Eq. (5) and Eq. (6), we can see that
the relative magnitudes of τI and τT come down to which
one of xI or xT is closer to m∗ in variance. As xI comes
from the mixed output of a previous edge, and the goal of
every edge is to estimate m∗ (unrolled estimation) xI is also
directly estimating m∗. xT is the output of a single trans-
formation instead of the complete mixed output of edge e,
so even at convergence it will deviate from m∗. Therefore,
if we choose the largest τ as indicating the best transfor-
mation, the algorithm will naturally be led to choose iden-
tities. Therefore, as on one hand, including the identity in
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Figure 3. Cell structure in DAS. Multiple operations are defined on
each edge, collectively applied to the image, and optimized during
training: as the gradients are updated through multiple steps, the
τ values associated with each operation change. Fig. 3b depicts
one step of such process through thicker edges. In the end, the
cell is discretized through a perturbation-based approach, the final
operations are chosen and composed (black edges).

the search space is fundamental to remove the a-priori bias
that a transformation is always needed, on the other hand,
as we show in Sec. 4.2 a cell consisting of only identity
transformations leads to poor performance, motivating our
transformation selection choice.

3.2. Temporal Data Augmentation

Our goal is to expand and reshape the spatial receptive
field. To this aim, we generate videos by picking from a set
of transforms, summarized in our search space defined by
Translate X/Y, Scale, Rotate, and Identity. We included in
our search-space commonly used transformations to model
motion in videos [49]. We added scaling, motivated by the
general difficulty of segmenting objects at different scale,
and identity, to remove the bias that the image always ben-
efits from applying a transformation.
Each transformation is applied ×T times, a hyperparameter
that defines the length of the generated video. For exam-
ple, given an image I(x, y), a frame V (t, x, y) of a video
applying a vertical translation δy is obtained as:

V (t, x, y) = I(x, y − tδy) t = 1, . . . , T. (7)

As Fig. 2 highlights, the video is given as input to a video
network that extracts the features and produces a prediction
for the original classification/segmentation task task. For
the image classification task, we average the predictions for
each frame, while for the semantic segmentation task we
first “undo” the transformation to preserve the locality con-
cept. Although a general video network can process the
video input, as we show in our experiments, to reduce the
complexity and keep efficiency in our tasks of interest, we
deploy a 2D backbone with a temporal-shift mechanism,
i.e. GSF, integrated. Such a technique is well-established in
the domain of video understanding, allowing to achieve the

performance of 3D CNN but maintaining 2D CNN’s com-
plexity. As the authors of [26, 42] claim, for each inserted
GSF, the temporal RF will be enlarged by 2 as if running
a convolution with the kernel size of 3 along the temporal
dimension. Therefore, part of the features among 3 adjacent
frames is mixed. Let us now focus on what the content of
those frames is. Fig. 4 gives a proof of concept of our claim
for the operations included in our search space. As the con-
tent in the adjacent frames is nothing but the same image
either translated, scaled, or rotated, the increase in size in
the temporal RF can be mapped in an augmentation in size
and reshape of the spatial RF. Let us consider the case of a
single-path network, for simplicity. The theoretical RF [1]
size can be expressed as depending only on the stride s and
kernel size k:

r0 =

L∑
l=1

((ki − 1)

l−1∏
j=1

sj) + 1 (8)

Let us now consider the situation where one GSF module
has been inserted after a 2D convolution with kernel 3× 3,
stride s = 1. Assuming we are considering the first convo-
lutional layer, the theoretical RF for each frame will have a
size of 3. Therefore rf01 = rf11 = rf21 = 3. As Fig. 4 shows,
the same region now covers different features, that depend
on the applied transformation. As these features are mixed
through the GSF mechanism, if we map back to the space
of frame f0, the spatial receptive field will have a size equal
to RF1 = 3× rf01 −

⋂2
i=0 A(rfi1 ), where

⋂2
i=0 A(rfi1 ) de-

notes the intersecting area among the receptive field of the
different frames. If we define as L = (x1, y1) the bottom
left corner, and R = (x2, y2) the top right corner, the inter-
section area, for the translation case, between two RFs can
be simply found as:

A = (min(x1, x1
′)−max(y1, y1

′))×
(min(x2, x2

′)−max(y2, y2
′))

(9)

where for the case of a translation of tx along the x-axis
and ty over the y-axis, xi

′ = x + tx, yi
′ = x + ty .

For a rotation of θ degrees counter clockwise, around the
point (0,0) (as depicted in 4) xi

′ = x cos(−θ)− y sin(−θ),
yi

′ = x sin(−θ) + y cos(−θ). The intersection area cal-
culation however cannot be generalized in this case, as
the shape of the intersection polygon depends on the ro-
tation angle. Finally, for the scaling operation the RF1 =
γ2 × (rf01 ) × γ2 × (rf01 ). Please, note that as some com-
ponents of the RFs overlap (particularly visible for the case
of scaling), what is happening is a reshape of the RF, rather
than a re-size, as some parts will contribute more than oth-
ers. Indeed, we need to recall that there is a difference be-
tween the theoretical RF and the Empirical Receptive Field
ERF, defined as ∂y(0,0,0)

∂x0(i,j,z) , i.e. how much y(0, 0, 0) changes
as x0(i, j, k) changes by a small amount. Here, (i, j, k) is
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Figure 4. RF reshape for translation (top-row) and rotation
(bottom-row). In our representation we are assuming that GSF
was inserted once, therefore the temporal RF is expanded by 2 and
three adjacent frames are considered. The first column shows the
features of original image (f0), while second and third columns
show the features of frames obtained applying the transformation.
The last column shows the effect of processing the input with a
temporal shift mechanism.

the voxel on a pth layer, y is the output and x0 is the input
layer. If we consider the previous example of a 2D convo-
lution with k = 3× 3, s = 1, tx = ty = 1, θ = 30◦, γ = 2:
the new receptive field size for the translation is RF1 = 19,
for the rotation is RF1 = 14, 19, and for the scaling is
RF1 = 144. As we show in Sec. 4.2, our method reshapes
the RF at the cost of a negligible increase # of parameters
with respect to standard 2D backbones processing images.
However, in terms of memory occupation a trade-off is nec-
essary. We empirically find that expanding the image ×5
times well balances accuracy and memory-occupation. To
sum up, we propose a method to expand the spatial recep-
tive field using data augmentation techniques to generate
videos. To this aim, we propose a new auto-augmentation
method, namely DAS, that, to the best of our knowledge,
is the first differentiable auto-augmentation approach pro-
posed in the field of image classification. The “fake videos”
are processed by a 2D backbone with an integrated tempo-
ral shift mechanism, achieving high performance in video-
understanding tasks while keeping 2D CNNs complexity.
We finally demonstrate that the increased temporal RF from
video processing corresponds to an augmented spatial RF,
with the extent determined by the specific transformation
used. As we will show in Sec. 4, such a procedure results
in lightweight models that reach state-of-the-art and allow
reducing the number of parameters typically increased to
expand the receptive field, such as kernel size and depth of
a network.

4. Experiments

In this section, we investigate the performance of our tem-
poral expansion approach and our automatic augmentation
approach for two visual tasks: image classification and se-
mantic segmentation. Best results are highlited in bold in
the tables. We also validate our approach through a series
of ablation studies. We refer to the Supplementary materials

Method # Params FLOPs Top-1 Acc.
ResNet-50 [16] 25.6 4.11G 76.30
SE-ResNet-50 [19] 28.1 - 76.90
Inception-v3 [45] 27.2 11.46G 77.12
BnInception [20] - - 77.41
Oct-ResNet-50 [6] 25.6 - 77.30
ResNeXT-50 (32×4d) [59] 25.0 8.52G 77.80
Res2Net-50 (14w×8s) [15] - - 78.10
ResNet-101 [16] 44.6 7.86G 77.40
ResNet-152 [16] 60.2 11.60G 78.30
SE-ResNet-152 [19] 67.2 - 78.40
ResNeXt-101 (32×4d) [59] 88.8 32.95G 78.80
AttentionNeXt-56 [50] 31.9 - 78.8
ViT-L-32 [13] 304 61.55G 79.66
FFC-ResNet-50 [9] 26.7 5.49G 77.80
FFC-ResNeXt-50 [9] 28.0 5.66G 78.00
FFC-ResNet-101 [9] 46.1 9.23G 78.80
FFC-ResNet-152 [9] 62.6 12.96G 78.90
(Ours) - BnInception - - 78.12
(Ours)- Inception-v3 27.3 11.51G 78.66
(Ours) - ResNet-50 25.7 4.2G 79.45
(Ours) - ResNet-101 44.4 7.96G 80.05
(Ours) - ResNet-152 60.4 11.66G 80.13

Table 1. Plugging our method into state-of-the-art networks on
ImageNet. The first two sets are top-1 accuracy scores obtained
by various state-of-the-art methods, which we transcribe from the
corresponding papers. Deeper models are listed in the second set.
The third set reports the performances of plugging [9], and last set
shows the effect of employing DAS+2D backbone+GSF.

152 101 50 18
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Ours, FFC, Baseline

Figure 5. ImageNet results for different Resnet depths.

Method FLOPs mIOU
Adelaide VeryDeep FCN VOC [57] - 79.10
DeepLabv2-CRF [4] - 79.70
CentraleSupelec Deep G-CRF [2] - 80.20
HikSeg COCO [43] - 81.40
SegModel [39] - 81.80
TuSimple [52] - 83.10
Large Kernel Matters [37] 3.7G 83.60
ResNet-38 MS COCO [58] 12.11G 84.90
PSPNet [61] 16.55G 85.40
DeepLabv3 [3] 49.68G 85.70
(Ours) - ResNet-38 MS COCO 12.25G 85.70
(Ours) - PSPNet 16.67 G 86.10
(Ours) - DeepLabv3 49.89G 87.00

Table 2. Model comparison with SOTA in PASCAL-VOC-2012.

for all the implementation details, more qualitative results,
and for additional experiments on the robustness of DAS.

4.1. Comparison with SOTAs

Image Classification We use ImageNet, Cifar10, Ci-
far100 and TinyImageNET for the image classification ex-
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periments. Tab. 1 shows the comparison of our approach
with other state-of-the art models in ImageNet. The pro-
vided results, in the lower part of the table, are obtained
running the searching procedure to find the optimal trans-
formation for each independent backbone, i.e. BNInception,
Inception-v3, ResNet-50-101-152. The best found transfor-
mations are given in the Supplementary materials. We em-
ployed for this set of experiments video-backbones trained
from scratch, where we incorporate the best temporal fusion
method we found with our ablation studies. We observe
an improvement with our approach for every employed 2D
backbone using roughly the same parameters, having the
strongest boost of 3.15 % in terms of accuracy-wise met-
ric for ResNet-50 architectures. Compared to ViT-L-32 that
achieves 79.66 %, we use 1/5 of the parameters and FLOPs.
In general, we observe stronger benefits for ResNet-like ar-
chitectures than Inception-like ones. Moreover, as Fig. 5
highlights, the accuracy of such architectures, with and
without our method, when reducing the depth experiences a
less steep performance drop. This is reasonable and desired,
given the proof of concept provided in Fig. 4. With equal
depths, we improve by a fair margin also over FFC [9], a
popular method that achieves the expansion of the RF by
employing fast fourier convolutions. Similar behaviours are
experienced when we compare DAS+temporal expansion
with other methods expanding the RF for Cifar10, Cifar100,
Tiny and ImageNet datasets, in Tab 4. Of particular notice
should be the drop in performance when a bigger kernel is
used, probably attributable to a stronger overfitting, and the
comparison with the popular dilated convolution (third col-
umn), well known for expanding the RF. We improve with
respect such a method by a fair margin over each dataset.
We attribute this result to the effective reshaping, rather than
enlargement of the RF.

Image Semantic Segmentation In Tab. 2 and 3 we show
the performance of our method applied on Pascal-VOC-
2012 and Cityscapes datasets for the image segmentation
task. We compare our approach with popular methods em-
ployed in semantic segmentation, and observe a consider-
able gain especially for DAS combined with DeepLab (with
a Resnet-101 backbone) when compared with the 2D coun-
terpart. Indeed an improvement of 1.3 % in the mIOU is
experienced. The best set of transformations was searched
for every different backbone and dataset. We indeed empir-
ically show in Sec. 4.2 how applying not optimized trans-
formations impacts the performance. For Cityscapes, the
best results where achieved for ResNeSt backbone, with
a 85.1 % mIOU, confirming also a general trend we ob-
served for other datasets. Indeed we experience a much
higher improvement when dealing with ResNet architec-
tures than Incpetion-like modules. This is probably due to
the nature of the fusion mechanism we employ, that, when

Method Backbone FLOPs mIOU
FCN [31] ResNet-101 - 77.02
SETR [62] ViT-Large - 78.10
Maskformer [7] ResNet-101 73G 78.50
NonLocal [55] ResNet-101 - 79.40
PSPNet [61] ResNet-101 63G 79.77
Mask2former [8] ResNet-101 - 80.10
DeepLab-v3 [3] ResNet-101 92.65G 81.30
DeepLab-v3 [3] Xception-65 - 82.10
DeepLab-v3 [3] ResNeSt 101 - 82.90
DeepLab-v3 [3] ResNeSt 200 285G 83.30
(Ours) PSPNet ResNet-50 32G 81.21
(Ours) ResNeSt Xception-65 - 82.40
(Ours) DeepLab-v3 ResNet-101 93G 82.60
(Ours) ResNeSt ResNet-200 286G 85.10

Table 3. Modal comparison with SOTA in CityScapes.

placed on the skip connections allows better preserving the
spatial information. Fig. 6 shows some qualitative results
on CityScapes. One can observe a better reconstruction in
details when comparing 6c and 6d. This is particularly visi-
ble for the reconstruction of people, (see first and third row)
and of street lamps. We noticed an over segmentation for
PASCAL-VOC-2012 dataset in some cases when applying
our methodology. However our method still outperforms all
compared state-of-the-art alternatives. We refer the reader
to the Supplementary material for some qualitative results
on PASCAL dataset and for additional on Cityscapes.

Dataset Model Baseline Dilated (5× 5) Ours
R-18 94.12 94.31 92.16 95.12

Cifar10 R-50 95.66 96.23 95.51 95.74
WR-28 96.33 - - 96.40
R-18 71.20 72.18 70.08 73.10

Cifar100 R-50 74.82 76.12 75.60 76.71
WR-28 81.40 - - 83.06
R-18 61.00 62.10 61.03 62.87

Tiny R-50 63.16 64.11 61.12 65.91
R-101 64.21 65.30 63.60 67.51
R-50 76.30 77.28 76.10 79.45

ImageNET R-101 77.40 78.15 76.11 80.05
R-152 78.30 79.22 78.00 80.13

Table 4. Comparison in terms of accuracy with other methods
expanding the RF. “WR” stands for WideResnet.

4.2. Ablation

In this section, we present and discuss ablation studieson
Cifar10 and Pascal-VOC-2012. First, we study the effect
of each component on the original task accuracy (Tab. 5).
We find that the improved accuracy is not a simple mat-
ter of augmentation techniques, nor a mere contribution of
the fusion mechanism. Indeed, both elements are needed
as the simple stack of the same image (third column) does
not imply an expansion of the RF, but actually determines a
drop of performance probably due to much higher overfit-
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Baseline Augment Replica Ours
Pascal-VOC 85.40 85.51 83.40 86.10
Cifar-10 94.12 94.23 90.11 95.12

Table 5. Ablation on different model components. Augment indi-
cates the usage of additional augmentation derived from our search
space without temporal fusion. Replica stands for the stack of im-
age copies, that is, video produced with identity transforms and
temporal fusion.

TSM 3D GSF
85.86 % 77.00 % 86.10 %

Pascal-VOC 51.32 M 107 M 51.43 M
16.55 G 26.78 G 16.67 G
94.77 % 92.10 % 95.12 %

Cifar-10 11.18 M 33.17 M 11.20 M
37.12 M 49 M 37.24 M

Table 6. Ablation on the temporal fusion method given PSPNet
backbone for Pascal-VOC and Resnet-18 for Cifar10.

AA RA DAS
Pascal-VOC 82.15 84.00 87.00
Cifar-10 94.35 92.98 95.12

Table 7. Ablation on the auto-augmentation technique given the
same searching budget time.

Random 1 Random 2 DAS
Pascal-VOC 77.25 82.11 86.10
Cifar-10 93.14 94.15 95.12

Table 8. Ablation on the effectiveness of looking for the best trans-
formation. Random 1 is the best transformation found for City-
Scapes, Random 2 for Cifar100.

ting. Next, in Tab. 6 we ablate on the best temporal fusion
mechanism. As expected, we see that TSM and GSF have
comparable performance, and number of parameters, with
GSF being slightly better. Surprisingly, 3D CNNs perform
poorly, maybe because of the small amount of data com-
pared to the needs of 3D CNNs.Next in Tab. 7 we study the
impact of the auto-augmentation with our search space. We
found that DAS performs best, given a fixed budget search-
ing time of 24 hours decided a priori. We see compara-
ble performance of the three methods for Cifar10 dataset,
but we attribute such a behaviour to the relative simplic-
ity of the task itself. Indeed, in Pascal-VOC we experi-
ence a much higher difference. Finally, in Tab. 8 we ablate
the specificity of the found genotypes for a given dataset,
providing quantitative results for the proof of concept pro-
vided in Fig. 1a, i.e. the effect of random transformation.
We check the performance on PASCAL-VOC and Cifar-10
when the genotype to generate the video derives from the
search phase for CityScapes (Random1) and for Cifar-100
(Random 2). Interestingly, we see a huge drop in perfor-
mance when employing a “random genotype”, confirming
the need of a carefully designed search procedure.

(a) Image (b) Ground Truth (c) DeepLab-v3 (d) Ours
Figure 6. Zoom in of the qualitative results for Cityscapes. The
fourth colum depicts our results with DAS and DeepLab-v3 inte-
grated with the temporal shift mechanism.

5. Conclusions

We proposed a differentiable auto-augmentation method
for the tasks of image classification and semantic segmen-
tation, i.e. DAS. We defined a very flexible continuous
search space, and employed a perturbation-based selec-
tion method to over-coming the limitations of previous ap-
proaches [11, 12]. We showed that by applying the optimal
transformations found by DAS to generate variations of im-
ages, we can effectively reshape the RF. This is achieved by
processing the new input as videos with a CNN integrated
with a temporal shift mechanism that performs feature mix-
ing in time. Our method proposes a new way of handling
2D data to exploit their richness, and investigates how the
increase of the receptive field in the temporal dimension im-
pacts the original spatial receptive field. We observed an
improvement in terms of accuracy with respect to standard
augmentation techniques, for both image classification and
segmentation tasks, using different backbones on different
datasets. We also successfully reshaped the receptive field,
as shown in Fig. 1b, which in terms of qualitative results
turned out into more detailed segmentation masks.

Limitations and future work Our method is compact,
fast and accurate, but currently limited by its memory foot-
print. Memory requirement in training grows with number
of generated frames, which restricted us to search transfor-
mations for 8-frame videos in our experiment. DAS with
longer videos might provide further performance boosts.
Possible future work include experimenting with other
backbone families, such as transformers. Other venue of
research could be the adaptation of DAS to video-to-video
data augmentation, which would require a proper definition
of the search space of transformations. Another interesting
direction could be Deep-DAS, where optimal feature map
transforms are searched at multiple network layers.
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