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Figure 1. PEGASUS. Our method builds a personalized generative 3D face avatar from monocular video sources.

Abstract

We present PEGASUS, a method for constructing a per-
sonalized generative 3D face avatar from monocular video
sources. Our generative 3D avatar enables disentangled
controls to selectively alter the facial attributes (e.g., hair or
nose) while preserving the identity. Our approach consists of
two stages: synthetic database generation and constructing
a personalized generative avatar. We generate a synthetic
video collection of the target identity with varying facial at-
tributes, where the videos are synthesized by borrowing the
attributes from monocular videos of diverse identities. Then,
we build a person-specific generative 3D avatar that can
modify its attributes continuously while preserving its iden-
tity. Through extensive experiments, we demonstrate that our
method of generating a synthetic database and creating a 3D
generative avatar is the most effective in preserving identity
while achieving high realism. Subsequently, we introduce
a zero-shot approach to achieve the same goal of genera-
tive modeling more efficiently by leveraging a previously
constructed personalized generative model.

1. Introduction
Building a personalized 3D avatar for representing an in-

dividual in virtual spaces can bring significant advancements

in the field of AR/VR and applications within the metaverse.
Importantly, the method should be user-friendly to allow
novices to build their avatars without the need for complex
capture systems. It should also offer a high level of realism,
depicting the fine-grained details of the individual’s geom-
etry and appearance, and, importantly, the avatar should be
animatable to mirror the user’s facial expressions in the vir-
tual space. However, the 3D avatar does not need to maintain
an exact replica of the user’s single appearance, as users may
prefer to alter their avatars. This includes modifications of
changing hairstyles, adding accessories like hats, or even
altering facial parts to give the avatar a more aesthetically
pleasing look, such as adopting the appearance of celebrities.

Recent technologies make it possible to build high-quality
3D face avatars for general users from monocular video in-
puts only [2, 14, 16, 17, 46, 47]. By leveraging parametric
morphable face models [3, 29], these approaches produce
realistic animatable human avatars from sparse monocular
videos that capture naturally moving facial images, by fusing
observed cues into a canonical space. However, the previous
approaches mainly focus on creating the exact replica from
the input videos, without providing the functionality to alter
the subparts of the avatars, such as hairstyles or nose. As an
alternative direction, generative models in producing realis-
tic faces have been studied in the 2D field, by producing 2D
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human faces with diverse appearance changes and facial ex-
pression changes [37, 39, 49]. 3D-aware generative models
leveraging the pre-trained 2D generative models are also pre-
sented for generative face modeling in 3D [6, 7]. While this
approach shows realistic faces, they are not fully animatable,
lacking explicit mapping to the 3D morphable models, and,
thus, it is difficult to reenact the facial expressions from the
target or allow viewpoint changes while keeping the identity.

In this work, we present PEGASUS, a method to build a
personalized generative 3D avatar from monocular video in-
puts. In contrast to the previous work [46, 47], our 3D avatar
enables compositional controls of facial attributes, where
users can make alterations for desired facial attributes such
as hair, nose, or accessories, as shown in Fig. 1, while pre-
serving the identity of the target person. The control can be
performed by changing the disentangled latent codes defined
in a continuous latent space. Our personalized generative 3D
avatar is constructed from the monocular video of the target
individual. Importantly, to learn the possible variations of
each facial attribute, we leverage other available monocular
videos from arbitrary individuals, where our personalized
generative models can automatically learn continuous disen-
tangled latent spaces of facial attributes.

However, there exist significant challenges in consolidat-
ing the monocular videos from multiple individuals into a
personalized generative model construction for the target in-
dividual. Building a model with videos from many individu-
als often fails to preserve the fine-grained appearance details
of the target individual, and, more critically, changing the la-
tent space can lead to changes in the entire facial appearance,
rather than selectively altering the desired subpart. As a solu-
tion, we present an approach by synthesizing part-swapped
videos of the target individual by replacing a specific facial
part with the one from other individuals, as shown in Fig. 4.
Built with diverse part-swapped videos, our generative 3D
avatar, PEGASUS, can preserve high-quality details for the
target individuals, while equipped with the generative power
to selectively alter each facial part. While our generative 3D
avatar already shows satisfactory performance, it involves
the time-consuming process of constructing a set of part-
swapped videos. As a more rapid and efficient solution, we
further introduce an approach that achieves the same objec-
tives through zero-shot part transfer, leveraging previously
constructed personalized generative models. Through sev-
eral experiments, we demonstrate the superior performance
of our approach when compared to alternative methods.

Our contributions are summarized as follows: (1) the first
method to build personalized generative 3D avatars from
monocular video sources; (2) disentangled controllability
to selectively alter a subpart or multiple parts of the 3D
faces of the target individual; and (3) the 3D part transfer
approach to efficiently implement personalized generative
models without additional training.

2. Related Work
3D Facial Avatar Reconstruction. To deal with the inher-
ent diversity and dynamics of human faces, 3D paramet-
ric face models have been proposed to represent 3D facial
changes via a set of parameters that model variations of the
shapes, poses, and expressions of faces [3, 5, 29]. DECA [11]
proposes a method for regressing FLAME [29] parameters
from monocular images, which enables 3D facial avatar
reconstruction without a 3D scan setup. With the advance-
ments of neural rendering [32], several neural rendering-
based 3D facial avatar reconstruction approaches were pro-
posed to overcome the limited facial details of the parametric
model [1, 9, 11, 14, 16, 35, 40, 46, 47, 52]. IMAvatar [46]
introduces the dynamic 3D morphable face model as an im-
plicit representation with canonicalization of the head defor-
mation and facial expression based on SNARF [8]. PointA-
vatar [47] proposes a deformable point-based representation
to reconstruct high-frequency details from monocular video
with efficient rendering.
Face Editing in 2D/3D. GAN [15] has made significant
contributions to producing natural and high-quality face edit-
ing [6, 7, 25, 37, 39, 42, 44, 48–50]. For instance, Bar-
bershop [49] edits the hairstyle of the target face to match
the source appearance by manipulating the latent space
that represents the feature’s spatial location and appearance.
With the rise of the diffusion model [21, 38], methods for
editing faces or scenes based on diffusion have been pro-
posed [4, 19, 31]. For instance, Instruct-Pix2Pix [4] intro-
duces a method for editing an input image with text instruc-
tions by finetuning a pretrained diffusion model [34] using
a generated image editing dataset [19] through supervised
learning. Following the emergence of 2D diffusion models,
several approaches leverage the pretrained diffusion models
to edit 3D scenes from the text prompts [18, 36, 51]. For
instance, Instruct-NeRF2NeRF [18] proposes an iterative op-
timization process for editing a pretrained NeRF scene [32].
However, these approaches struggle to preserve the identity
of the scene and require additional optimization.
Compositional Modeling for 3D Face Avatar. Several
methods propose to edit implicit representations leverag-
ing learnable or pretrained latent spaces [20, 22, 24, 41].
However, due to the difficulty in editing, recent approaches
introduce decoupled representations for garments or at-
tributes [12, 13, 20, 26, 28]. MEGANE [28] attaches recon-
structed eyeglasses from 3D scans to volumetric primitive
3D avatars, optimizing deformation for avatar-specific adjust-
ments. SCARF and DELTA [12, 13] create 3D avatars using
a hybrid representation, enabling the transfer of garments
or hair without additional optimization. However, these ap-
proaches are limited to specific categories or attributes, such
as eyeglasses and bags, and the synthesized result avatars
are not natural. Furthermore, they lack the ability to change
or generate facial attributes continuously.
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Figure 2. Method Overview. Our approach consists of two main components: synthetic database (DB) generation and a personalized
generative 3D avatar model. Initially, we build a synthetic DB via face part swapping from the attribute DB videos. For the generation of
the synthetic DB, we propose the method through post-processing and attribute alignment leveraging FLAME parameters. Subsequently,
we train our model utilizing the synthetic DB that contains the same target identity with varying attributes. Our model infers the 3D point
locations in the deformed space xd, normal nd, shading sd, point segment cues χd, and the albedo ad for each queried canonical point xgc,
conditioned by the latent code z.

3. Preliminaries: PointAvatar [47]
Our approach extends PointAvatar, which reconstructs

the 3D avatar of a single identity from a monocular video,
to a personalized generative avatar with controllable fa-
cial attributes. PointAvatar represents the target avatar via
the initial canonical learnable point representations Pc =
{xci}i={1···N}, where xci ∈ R3 represents i-th learnable
point defined in the canonical space (denoted as the su-
perscript c). By estimating the offset value Oc→fc

i from
a trained MLP, the canonical points are deformed into
the FLAME-canonical space (denoted as fc) as: xfc

i =

xc
i +Oc→fc

i . Subsequently, the points are deformed into the
posed space as leveraging FLAME model [29]:

xd− = xfc +BP (θ;P) +BE(ψ; E) (1)

xd = LBS(xd−,J(ψ), θ,W), (2)

where xd− denotes the point after applying the blendshapes
and before applying transformation via linear blend skinning
(LBS). ψ, θ, β are the expression, pose, and shape parame-
ters of the FLAME model, respectively, for animating the
avatar, and E ,P, and W are the expression blendshapes,
pose blendshapes, and LBS weights, respectively, which are
estimated by an MLP. The normal of each point nc is defined
as a signed distance field (SDF), which is the canonical net-
work’s output as follows: nc = ∇xcSDF(xc). The normal
of the deformation space nd is represented by a deformation
network which deforms the canonical point set Pc to the
deformed point set Pd = {xi

d}. The point deformation is

fully differentiable, so it can define the normal deformation
as follows:

nd = lnc

(
∂xd

∂xc

)−1

, (3)

where l denotes the normalizing factor, which ensures the
output of normal value should be the unit length. The RGB
of a point is represented by cd = sd ◦ a, the Hadamard
Product of the shading sd, and albedo a.

4. Method
4.1. Personalized Generative Avatar Model

Our generative avatar model takes a latent code z ∈
R(D+1)×d and FLAME parameters β, θ, and ψ as inputs.
The latent code is the concatenation of the D part-wise la-
tent codes {zj}j=0...D, where each part-wise latent code
zj ∈ Rd controls the identity of the humans or the subpart
such as hair and nose. We treat that z0 controls the overall
identity variations while changing other codes zj ̸=0 varies
only the subparts of the face, preserving the same identity
represented by z0. By changing FLAME parameters, we
can animate the avatars to have varying face poses and ex-
pressions. The shape parameter of FLAME β also affects
the overall coarse shape of the avatar, and we assume the
parameter is fixed for the same individual with the same
z0. By extending the PointAvatar [47], our avatar model is
represented by a set of generic (or person-agnostic) canon-
ical point P gc = {xgc

i }i={1,··· ,N}. To this end, our model,
Mϕ, infers the 3D point locations in the deformed space xd

i ,

1074



normal vector ni ∈ R3, and the albedo color ai ∈ R3 for
each queried canonical point as:

Mϕ(x
gc
i , z,β,θ,ψ) = {xd

i ,n
d,ai}, (4)

where xd
i represents the 3D point after applying identity and

appearance variations controlled by z, as well as the facial
pose and expression changes by FLAME parameters. Fig. 2
represents an overview of PEGASUS.

In contrast to the original PointAvatar, which represents a
single identity only, we train a single avatar model to repre-
sent multiple face appearances, where appearance can vary
by changing disentangled latent codes z. We tackle this chal-
lenging problem by introducing the generic canonical space,
which is person-agnostic. While our model ideally expresses
a range of identities, we observe that representing extremely
diverse individuals with a single implicit model often results
in blurry avatars, as demonstrated in our ablation studies.
Yet, we demonstrate that our model can successfully achieve
the goal of a personalized generative avatar model, allowing
face part variation while preserving the same identity. Impor-
tantly, in order to build the personalized generative avatar
model, we present a way to synthesize the dataset of the
target individual via part-swapping, described in Sec. 4.2.
Multi-stage Canonical Spaces and Point Deformation.
While the original PointAvatar considers two-staged defor-
mation (canonical, FLAME-canonical, and deformed space),
we consider one more stage, resulting in generic canon-
ical (gc), subject-specific canonical (sc), subject-specific
FLAME-canonical (fc), and deformed space (d). We em-
pirically find that introducing the generic canonical space
enables us to avoid bad local minima in training the model
with multiple face appearances, which is similar to PointA-
vatar, and to enhance identity preservation while varying the
attributes by randomly sampled latent code. See more details
in Supp. Mat.

The generic canonical space and the point locations de-
fined in this space P gc = {xgc

i }i=1...N are shared among
all identities. We first map the points xgc

i from the generic
canonical space into the subject-specific canonical space
P sc = {xsc

i }i=1...N by adding point offsets Ogc→sc
i that

are conditioned by latent code z. Subsequently, we map
the points in the subject-specific canonical space into the
FLAME-canonical space via another point offset Osc→fc

i ,
similar to the PointAvatars. That is,

xsc
i = xgc

i +Ogc→sc
i (5)

xfc
i = xsc

i +Osc→fc
i , (6)

where Ogc→sc
i and Osc→fc

i are inferred from the learned
deformation MLP model. Intuitively, our subject-specific
canonical space is equivalent to the “canonical space” of
PointAvatars, where we introduced one more prior stage to
handle multiple identities.

Figure 3. DB Avatar. We create deformable avatar models from
the attribute DB videos, which are monocular RGB inputs. We
show some examples of our collection of avatars from attribute DB
videos with the same FLAME parameters.

(a) Hair (b) Hat (c) Nose (d) Mouth (e) Eyes (f) Brows

Figure 4. Part-Swapped Videos of the Target Individual. Some
examples of the synthetic DB created through part-swapping. Our
synthetic DB includes a variety of hair, hats, eyes, noses, mouths,
and eyebrows.

As in PointAvatars, we use a coordinate-based MLP to
infer deformation offsets, blendshapes, and LBS weights:

MLP (z,xgc
i ) = {Ogc→sc

i ,Osc→fc
i , E ,P,W}. (7)

The deformed point is then computed as:

xd− = xfc +BS(β;S) +BP (θ;P) +BE(ψ; E) (8)

xd = LBS(xd−,J(ψ), θ,W). (9)

Different from PointAvatar, we leverage the shape blend-
shapes basis BS of the FLAME, allowing us to change the
coarse shape of the avatar by controlling the shape parameter
β of the FLAME, which is useful for building our synthetic
DB to enable better face alignments described in Sec. 4.2.
Canonical Representations. We utilize an MLP to infer the
SDF value σi ∈ R, albedo ai ∈ R3, shading si ∈ R3, point
segment cues χi ∈ [0, 1] for the i-th point at the subject
canonical space xsc

i :

MLP (z,xsc
i ) = {σi,ai, χi}. (10)

Note that we consider these cues on the subject canonical
space xsc

i , rather than the generic canonical space since we
empirically find inferring it in the generic canonical space
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suffers from local minima issue. Similar to PointAvatar, the
SDF cues are utilized to infer surface normal in the subject
canonical space nsc and the ones in the deformed space can
be computed as in Eq. (3). Note that, different from PointA-
vatar, the cues in the canonical space are also conditioned
by latent code z, allowing for varying by controlling latent
codes for part appearance changes. Furthermore, we addi-
tionally include the binary segmentation cues χi to estimate
a “synthesis” part in the current identity represented by z,
which is used in our Zero Shot Transfer approach in Sec. 5.
Comparison over PointAvatar. The major difference from
the PointAvatar is the use of latent codes z to enable the sin-
gle model can handle varying appearance changes. For this
purpose, we modify the model, including a generic canonical
stage and injecting the z into the submodules. We also made
several modifications, including (1) the beta controlling part
in Eq. (8), which is essential for fitting the subject and face
attribute when generating a synthetic database, (2) inferring
the segmentation mask for the usage in Zero Shot Transfer.

4.2. Synthetic DB Generation via Part Swapping
We aim to build our personalized generative model to

preserve the target human identity, while allowing changing
facial attributes, such as hair, nose, or wearing a hat. To learn
such a model, we need the videos of the target human with all
such variations, which is not available in practice. We present
a solution to synthesize such variations from other video
sources by swapping a face subpart of the target identity per-
son with others. Examples are shown in Fig. 4. We collect a
set of monocular videos, denoted as V db = {Vi, pi}i=1···K
from various individuals to model various types of facial at-
tribute variations. For each video Vi, we determine the target
facial attribute pi ∈ P which we want to use for the swap-
ping, where P = {hair, nose, hat, eyes, eyebrows, mouth}.

For each monocular video Vi from the facial attribute
DB, we build a personalized avatar Mdb

i using our modi-
fied avatar generation module which removes the subject-
canonical space with only the single video identity as shown
in Fig. 3. Here we set the identity latent code z0 as learnable
while setting other parts accordingly. Once built, the avatar
is animatable following the FLAME parameters.
Face Part Swapping. We denote the input video of the tar-
get person as V tp. The goal of our face part swapping is to
replace the facial attributes V tp with the one using the per-
son appeared in by i-th attribute video Vi. Since both videos
have different poses, viewpoints, and facial expressions of
different individuals, such replacement is non-trivial in 2D
video space. Our idea is to leverage the animatable avatar
model Mdb

i constructed from Vi to render the facial attribute
aligned into the target identity’s videos, V tp. This can be
performed by inputting the FLAME parameters and camera
parameters obtained from V tp into Mdb

i and by rendering
only the necessary attribute region with blending. To choose

Figure 5. Zero Shot Transfer. PEGASUS generates high-quality
and natural appearances through zero-shot transfer.

the selected attribute regions specified by the corresponding
attribute pi ∈ P, we use an off-the-shelf face part segmen-
tation model [43] to obtain the mask of the desired target
attribute pi.

Then, we can synthesize the attribute part into the target
human videos V tp as follows:

Ii-th attributes = R(Mdb
i (θtp,βtp,ψtp))

Itarget-swapped = 1tp · Itp + 1i-th attributes · B(Ii-th attributes),

where R denotes the rendering function from the avatar Mdb
i

with the FLAME parameters obtained from V tp. 1tp is the
segmentation mask to select the target subject regions ex-
cluding the attribute parts, and 1i-th attributes is segmentation
for the attributed part of from Mdb

i ’s rendering, respectively.
Note that we use the shape parameter of the target human
βsubject on Mdb

i as an input to make better alignment into
the target identity, which was the motivation for introducing
the shape parameter β in building our avatar, different from
the original PointAvatar model. B denotes the blending func-
tion, where we use Poisson Blending [33] to reduce artifacts.
We further perform post-processing to enhance the quality
of part-swapped images using OpenCV’s dilate and erode
function to remove holes. As a special preprocessing for
hair-swapping, it is empirically advantageous to synthesize
the target person’s hair into a bald head before the blending,
where we leverage Stable Diffusion [34] with auto-generated
mask images. See Supp. Mat. for details.

We denote V̂ tp
i as the part-swapped videos by i-th at-

tribute DB identity. Examples are shown in Fig. 4. Note that
the resulting videos contain the same target identity with
varying attributes via synthesis, which we use to build our
personalized generative models.

4.3. Learning for Personalized Generative Model
Latent Code Setting. We train our model by using V tp and
synthesized videos {V̂ tp

i }i=1···K . For each video, we set
the latent code z = {zp}p=0,··· ,D according to the attribute
types. Specifically, we use the same shared learnable identity
latent code z0 for all videos, given that the videos are for the
same identity. If a video is about the variation of p-th attribute
category, where p ∈ P, we assign a separate learnable latent
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code for that part zp, by keeping other latent code parts
shared. With this setup, we allow the model can have the
latent codes in a disentangled manner so that each attribute
code part can represent the corresponding facial subparts.
Loss Function. We follow the PointAvatar [47] to define
loss functions. The total loss is as follows:

L = λrgbLrgb + λmaskLmask + λFLAMELFLAME + λvggLvgg

+ λnormalLnormal + λsegLseg + λz regLz reg,

where Lrgb, Lmask, LFLAME penalize RGB, mask, FLAME
parameter differences respectively. Lvgg is based on the VGG
feature to enhance the rendered image quality. Different from
previous work [46, 47], we also include three more losses,
Lnormal, Lseg and Lz reg. We adopt the normal loss as follows:
Lnormal = ∥n− nd∥, and we empirically find its advantage
in producing better-quality avatars. We generate the pseudo
ground truth normal n from the V tp and the avatar trained
with a single identity of each V db. We also include segmen-
tation loss to predict facial attribute categories χi per each
point. See more details in Supp. Mat.
Training Strategy. We train PEGASUS in a coarse-to-fine
manner. First, following PointAvatar, we upsample the num-
ber of points and reduce the radii of the points during the
training with the constant period of epochs. Second, we
train our model in the two-step strategy. Initially, we train
our model using the target individual V tp, which is no part
swapped on the face, with the latent codes z until the be-
ginning of the training. Subsequently, we use all of the part-
swapped videos V̂ tp

i until the end of training. Check the
details in Supp. Mat.

5. Generative Avatar via Zero-Shot Transfer
We present an alternative method to efficiently achieve

the goal of a personalized generative avatar without produc-
ing part-swapped synthesized videos. Our core idea is based
on the assumption that we already have the previously con-
structed personalized avatar model for an identity (denoted
as the source human), Mϕ, with the functionally to control
the face attribute variations. Given the new identity’s video
(denoted as the target human), we first train our generative
avatar architecture with the single video of the target human,
resulting in Mth. Then, we aim to achieve the same goal
of the personalized avatar for the target human, by fusing
the controlled attributed part of Mϕ and the remaining part
Mth, which we call a “zero-shot model”. Especially, given
the FLAME parameters and input latent codes inputs, we
can drive both models as:

Mϕ(x
gc, z,β,θ,ψ) = {xd

ϕ,n
d
ϕ,aϕ, χϕ}, (11)

Mth(x
gc, z,β,θ,ψ) = {xd

th,n
d
th,ath, χth}. (12)

The final version of the avatar is constructed by combin-
ing the subsets of point clouds from both avatars, using the
estimated segmentation masks, χϕ and χth:
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Figure 6. Single Part-Swap Avatar on Hair. Our synthesis method
creates a photo-realistic avatar with a hairstyle that is accurately
transferred.

Pnaive = {xd,i
ϕ }χi

ϕ=1 ∪ {xd,i
th }χi

th=0, (13)

where χi
ϕ and χi

th are the segmentation masks of the face
attribute we currently try to control via z. Intuitively, we
replace the points of the desired facial attribute of the novel
target human with those of the pretrained generative avatar.
While we find this naive composition is already compelling,
we observe that there exists a gap between the fused parts.
To enhance the quality, we further perform an additional opti-
mization processing to better alignment, with color blending.
See Supp. Mat. for the post-processing. Examples of our
zero-shot modeling are shown in Fig. 5.

6. Experiments
Datasets. As the attribute database, we collect publicly avail-
able 109 videos from the Internet, and build their individual
DB avatar model Mdb as shown in Fig. 3. For the target
person V tp used of the personalized generative avatar, we
select the publicly available videos from NerFACE [14], and
the individuals are shown in Fig. 4 and Fig. 6. To reenact
the reconstructed avatar into unseen facial poses and expres-
sions, we extract FLAME parameters using DECA [11] from
our own monocular video with diverse facial orientations
and expressions.

6.1. Part-Swapping Comparison with Baselines
Given that we are the first to build a personalized genera-

tive model, there is no direct competitor to compare the full
generative functionality. Thus, we consider a sub-problem of
building an animatable 3D avatar by transferring a facial atti-
tude from another video source. While the resulting output is
not a generative model due to its limitation of producing un-
seen attributes, one can use this strategy to alter parts of the

1077



face, assuming a large number of attribute source videos are
available. In this evaluation, we only consider hairstyles as
our attribute and consider 5 videos with different hairstyles.
Examples are shown in Fig. 6.
Baselines. We consider possible alternative approaches to
building the 3D avatar of the target individual with the hair
from another video.

DELTA [13]: DELTA achieves the transfer of hairstyles
from a source to a target by employing a hybrid approach
that combines both explicit and implicit representations. The
major goal of DELTA is aligned with this sub-problem test,
while it does not have generative functionality.

E4S [30] + PointAvatar (E4S+PA): E4S employs GAN
inversion for the face swapping. As a way of building a 3D
avatar, we first replace the hair of the target individual in
2D spaces on all image frames via E4S. Then, we apply the
original version of PointAvatar to make it into a 3D avatar
model. Note that the GAN-based method does not guarantee
the view consistency on the synthesized images, resulting in
blurry 3D avatar construction.

Custom Diffusion [27] + PointAvatar (CD+PA): Similar
to the E4S+PA, we can apply the Custom Diffusion model
as a tool to produce hair-changed 2D images for the target in-
dividual, conditioned by the hair-style of other video source.
Then, we apply the original PointAvatar.

Oursswap + PointAvatar (Oursswap + PA): We also include
a simplified version of ours as a baseline, where we produce
the part-swapped 2D videos (described in Sec. 4.2) for each
hairstyle transfer and apply PointAvatar.

Oursperson-gen and Ourszero-shot : We show the performance
of our generative models using the latent codes correspond-
ing to the target hairstyles. Note our models can produce not
just various hairs, but all other attribute styles.
Metrics. After we build 3D avatars of the target individual
by transferring the hairstyle from video sources, we apply
unseen facial expressions and head orientation to visualize
the avatar in diverse novel poses and render them into images.
For the comparison, we consider both the naturalness or the
3D avatar and identity preservation of the target individual.
We use two metrics, Fréchet Inception Distance (FID) and
Kernel Inception Distance (KID), to evaluate the naturalness
of the rendering of the produced 3D avatar. In computing FID
and KID, we compare the distributions of rendered outputs
of the 3D avatars with the background matted FFHQ [23]. To
quantify whether the output 3D avatars preserve the original
identity of the target human, we include ArcFace [10] metric.
Here, we compare the rendering of the edited version with
the rendering of the non-edit PointAvatar with the same
unseen face pose.
Results. We show the quantitative comparison in Tab. 1 and
example results in Fig. 6. As shown in the table, the 3D
avatar produced by our face-swap Oursswap+PA achieves the
best metrics at FID and ArcFace, showing better naturalness

Method
Naturalness Identity

FID↓ KID↓ ArcFace↑

CD + PA 181.60 0.1367 0.6691
E4S + PA 176.64 0.1416 0.5701
DELTA 198.40 0.1797 0.6732
Oursswap+PA 169.54 0.1406 0.7179

Oursperson-gen 190.10 0.1696 0.6883
Ourszero shot 191.47 0.1881 0.7792

Table 1. Quantitative Comparison. The synthesis method (upper
rows) and full model of hair category (lower rows).

Method
Naturalness Identity

FID↓ KID↓ ArcFace↑

Oursno synthesis, latent swap 231.62 0.2630 0.6285
Oursno synthesis, latent interp. 240.17 0.2482 0.4722
Ourssynthesis, latent interp. 206.87 0.1839 0.8127

Table 2. Evaluating Generative Performance. Quantitative com-
parison by producing appearance via latent code interpolation.

while keeping the identity of the target individual. Although
the custom diffusion-based output CD+PA shows the better
result in the KID metric, it changes the identity significantly,
resulting in low performance in the ArcFace metric. Our
full generative model Oursperson-gen also shows convincing
performance even though the model is much more generic
and trained to express diverse variations. It outperforms all
other baseline methods in preserving identity while showing
comparable naturalness. Our zero-shot generative model
Ourszero-shot shows the best identity-preserving performance
because its face part is identical to the non-edited PA while
transferring the hair part from Oursperson-gen.

6.2. Evaluating Generative Performance
We also compare the generative performance of our mod-

els. As the baseline, we consider the scenario of using entire
videos, including target individual V tp and face attribute
videos V db into the generative model without our facial part-
swap approach. Once trained, we check the unseen appear-
ances by interpolating the latent codes of two seen samples
during training. However, we consider two ways of inter-
polation: (1) naive interpolation between the latent codes
(zA, zB) of two original videos (latent interpolation), (2)
via latent code swapping by keeping the target individual’s
latent code {zp}p ̸=i and other sources’ attribute latent code
{zq}q=i (latent swapping), z = {zp, zq}p ̸=i,q=i,i∈[0,n(P)].
For quantitative evaluation, we use the same metric as
Sec. 6.1 to measure the naturalness and identity preserv-
ing. The quantitative result is shown in Tab. 2, and example
qualitative results are shown in Fig. 7. The outputs of our
model show compelling performance in producing realistic
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Ogc Osc PSNR↑ SSIM↑ LPIPS↓

× × 20.92 0.9059 0.1351
× ✓ 21.55 0.9033 0.1292
✓ ✓ 21.75 0.9059 0.1291

Table 3. Ablation Study: offsets. Note that the offsets represent the
output of the deformation network. Multi-staged canonical spaces
produce better image quality.
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Eyebrows Interp. Eyes Interp. Hair Interp. Hat Interp. Nose Interp.

Eyebrows Swap Eyes Swap Hair Swap Hat Swap Nose Swap

Figure 7. Qualitative Comparison. We compare the generative
performance of PEGASUS. Our latent code configuration and syn-
thetic DB generation show compelling generative performance in
latent interpolation and swapping compared to other baselines.

face part variations while keeping the identity. As expected,
both interpolation strategies of the baseline models struggle
to generate realistic avatars for the interpolated latent codes.

6.3. Ablation Studies and More Results
Multi-Stage Canonical Space. We compare our multi-stage
canonical space framework with the alternative framework
with one- or two-stage by PointAvatar frameworks. For quan-
titative comparison on multi-stage canonical space, we use
PSNR, SSIM, and LPIPS [45] metrics. We evaluate them
on unseen test sequences with novel head poses and facial
expressions from all synthesized videos as shown in Fig. 4.
In Tab. 3, our multi-stage canonical space and point deforma-
tion outperforms the others stage deformation of all metrics.
More Qualitative Results. We further demonstrate the per-
formance of our methods by showing the ability to control
multiple parts as shown in Fig. 8, and also by showing more
interpolation results as shown in Fig. 9 and our Supp. Video.

7. Discussion
We present a method for constructing personalized gen-

erative 3D face avatars from monocular video sources. Our
compositional generative model enables disentangled con-
trols to selectively alter the facial attributes of the target
individual while preserving the identity. Notably, our person-
alized generative model is built exclusively from monocular
videos, without relying on complex multi-view system se-

(a) No Edit (b) Hair, Nose (c) Hat, Mouth (d) Eyes, Nose

Figure 8. Multiple Composition. PEGASUS generates the avatar
with multiple face attributes.
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Figure 9. Person-specific Interpolation. We interpolate the at-
tribute latent code zp, p ∈ {hair, nose} between two avatars.

tups. To achieve this goal, we present a method to construct a
person-specific generative 3D avatar by building a synthetic
video collection of the target identity with varying facial at-
tributes, where the videos are synthesized by borrowing parts
from diverse individuals from other monocular videos. We
also show a zero-shot approach to achieve the same genera-
tive modeling more efficiently. For future research, building
a more generative model to include multiple identities in a
single model can be another exciting extension of our model.
Limitation. As a limitation, the quality of our personalized
avatar still does not reach the photo-realistic quality, show-
ing noticeable artifacts. Also, due to the reliance on non-
physical-based methods for generating the synthetic DB, our
approach exhibits limitations in achieving physical accuracy.
We show the failure cases and limitations of the synthetic
DB generation in Supp. Mat.
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