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Abstract

Detecting objects in 3D under various (normal and ad-
verse) weather conditions is essential for safe autonomous
driving systems. Recent approaches have focused on em-
ploying weather-insensitive 4D radar sensors and lever-
aging them with other modalities, such as LiDAR. How-
ever, they fuse multi-modal information without considering
the sensor characteristics and weather conditions, and lose
some height information which could be useful for localiz-
ing 3D objects. In this paper, we propose a novel frame-
work for robust LiDAR and 4D radar-based 3D object de-
tection. Specifically, we propose a 3D-LRF module that
considers the distinct patterns they exhibit in 3D space (e.g.,
precise 3D mapping of LiDAR and wide-range, weather-
insensitive measurement of 4D radar) and extract fusion
features based on their 3D spatial relationship. Then,
our weather-conditional radar-flow gating network mod-
ulates the information flow of fusion features depending
on weather conditions, and obtains enhanced feature that
effectively incorporates the strength of two domains un-
der various weather conditions. The extensive experiments
demonstrate that our model achieves SoTA performance for
3D object detection under various weather conditions.

1. Introduction
Detecting 3D objects, which aims to classify the objects
and localize them in 3D coordinates, plays a crucial role in
various applications such as autonomous driving, robotic,
and drone systems [1, 8, 44]. Many attempts have been
made to utilize various sensors, such as camera, LiDAR,
and radar, for 3D object detection [9, 11, 16, 24, 31, 51, 53].
These methods are typically trained and tested in ideal au-
tonomous driving scenarios, demonstrating satisfactory per-
formance under normal conditions. Since real-world driv-
ing situations have diverse weather conditions, robust mod-
els operating in various conditions are needed.

*Code: https://github.com/yujeong-star/RL_3DOD.
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Figure 1. In adverse weather conditions, as depicted in (a), radar
exhibits the highest robustness, followed by LiDAR, while the im-
age is significantly degraded. Prior multi-modal 3D object detec-
tion research follows the fusion method in (b)-(d). They suffer
from inaccurate information from images or sub-optimal perfor-
mance due to the compression of critical 3D information from Li-
DAR and radar into BEV or pseudo-images for fusion. In con-
trast, our approach (e) effectively fuses LiDAR and 4D radar in
3D space, taking the strengths of each sensor through weather in-
formation, showing robust performance under adverse conditions.

Recently, several research has focused on addressing
these challenges by employing radar sensors capable of
handling various weather conditions [28], and has re-
leased datasets containing diverse weather environments
[4, 28, 35]. Moreover, research on a new novel sensor, 4D
radar, which includes height information, has been initiated
[22, 28, 38, 43]. Since the radar relies on radio waves, it
has the advantages of long-range detection and robustness
under adverse weather conditions. However, it does not pro-
vide precise distance or detailed 3D maps and struggles with
standalone deployment [12, 19, 43]. Therefore, ongoing
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research endeavors are currently leveraging various multi-
modal sensors to compensate for the limitations of radar
and mitigate the shortcomings of LiDAR or image sensors
in diverse weather conditions [6, 12, 14, 19, 25, 33]. While
these studies have proposed new fusion methods, they still
exhibit the following limitations.

The primary one is that, although each sensor shows ro-
bustness to specific weather conditions, prior works fuse
multi-modal information without considering weather con-
ditions and each sensor’s characteristics. For instance, radar
is mainly unaffected by various weather conditions, while
cameras experience severe corruption in almost all adverse
weather scenarios. LiDAR measurements become inaccu-
rate in snow or rain due to changes in the reflection of
laser signals, however, they are less impacted by overcast
or severe light conditions. An adaptive fusion of seman-
tic information of the camera and precise mapping capabil-
ities of LiDAR, tailored to the climatic strengths of each
sensor, would yield a more effective multi-modal 3D ob-
ject detection model. The second limitation is that, de-
spite the inherently 3D nature of the LiDAR and radar data,
multi-modal fusion is not conducted in the 3D domain. As
shown in Fig. 1, previous studies in adverse weather con-
ditions transform LiDAR features to range view, pseudo-
image and BEV features before fusing its information with
other modalities. It causes the loss of crucial height infor-
mation critical for effective 3D object detection. Besides,
4D radar aids in recognizing scene information in the 3D
domain in conjunction with LiDAR [43]. However, there is
currently a lack of research on fusing two domains for 3D
object detection in adverse weather.

To overcome these limitations, we propose a novel
method for a robust LiDAR- and 4D radar-based 3D ob-
ject detection framework that considers the weather condi-
tions and 3D domain fusion. Specifically, our framework
first takes LiDAR point cloud and 4D radar tensor as input,
and encodes voxel features for each modality to preserve
3D information. While extracting the features, our 3D Li-
DAR and 4D Radar Fusion (3D-LRF) module queries non-
empty LiDAR voxels, groups the neighbor 4D radar voxels,
and extracts the fusion feature at each layer. When there
are few radar voxel features around the location of a Li-
DAR voxel feature, our 3D-LRF module discerns the corre-
sponding LiDAR feature as imprecise, suppressing it. Con-
versely, when LiDAR has many neighbor radar features,
our 3D-LRF module effectively fuses features from both
domains. Moreover, to account for diverse weather con-
ditions and take the strengths of each sensor, we propose
weather-conditional radar-flow gating network (WRGNet).
The camera can be easily corrupted in adverse conditions
but has richer semantic information about the scene than
other modalities. Therefore, our WRGNet takes non-empty
LiDAR, neighbor 4D radar voxel features and a simple 1D

feature from the pre-trained lightweight weather classifica-
tion network trained on images. 1D weather-conditioned
image feature and 4D radar voxel feature are fed into the
gating layer to extract radar-flow gating feature. The radar-
flow gating feature is multiplied to the fusion feature of
3D-LRF module to effectively control the information flow
from 4D radar to LiDAR based on the weather conditions.
After going through two novel fusion modules, the BEV en-
coder and detection head are employed to produce final 3D
object detection results.

We evaluate the performance of the proposed framework
on K-Radar dataset [28], which includes 4D radar, LiDAR,
and images captured under various weather conditions. The
experimental results demonstrate that our method shows su-
perior performance in detecting “Sedan” compared to pre-
vious approaches, providing evidence of effective consider-
ation of sensor characteristics and weather information.

In summary, our main contributions are four-fold: (I)
We propose a pioneering approach that fuses LiDAR and
4D radar for 3D object detection in various weather con-
ditions. (II) We propose 3D-LRF module that effectively
fuses LiDAR and 4D radar features in the 3D domain, con-
sidering the characteristics of each sensor. (III) We propose
WRGNet, which modulates the flow of fusion features de-
pending on weather conditions. (IV) We conduct extensive
experiments on K-Radar dataset, showing our superior per-
formance and validating the effects of each component.

2. Related Works

2.1. Radar-based 3D Object Detection

3D Radar-based Methods. 3D radar is composed of power
measurements along azimuth (A), range (R), and Doppler
(D) dimensions. Since 3D radar lacks elevation informa-
tion, limited research has utilized it for 3D object detection.
[3] generates point-based region proposals and refines the
boxes with confidence score to predict 3D bounding boxes.
[31] applies 3D CNN on radar cube, [24] applies GNN on
radar tensor, [5] applies ConvLSTM to consider temporal
information multi-frame radars.
4D Radar-based Methods. 4D radar provides additional
elevation dimension information compared to 3D radar,
which is crucial for 3D object detection. Due to the re-
cent development of 4D radar sensors and the late release of
datasets, a limited amount of research has been conducted
so far. [32, 38] released new 4D radar-based 3D object de-
tection datasets and evaluated the performance of [16] on
their datasets. However, the algorithm does not consider
radar’s characteristics, and datasets do not include adverse
weather conditions where 4D radar could demonstrate its
advantages. [28, 29] encodes the 4D radar tensor using 3D
sparse convolution for object detection in K-Radar dataset,
which includes adverse weather conditions. [22] recently

15163



LiDAR

4D Radar

Image

Detection Head

Final Output

2D

3D

WRGNet

Pre-trained

BEV Encoder

3D

3D

2D

(a) 3D-LRF

𝐿𝐿𝑙𝑙 𝑖𝑖
𝑉𝑉𝑙𝑙 𝑖𝑖

𝐹𝐹𝑙𝑙 𝑖𝑖 �𝐿𝐿1
G

at
e

(b) WRGNet

𝐺𝐺𝑙𝑙

𝑉𝑉𝑙𝑙

𝐼𝐼𝑙𝑙

𝐼𝐼𝑤𝑤

𝑅𝑅1

𝐿𝐿1

3D

3D

3D-LRF
𝐹𝐹1

𝑅𝑅2

𝐿𝐿2

𝐼𝐼2 𝐼𝐼3

�𝐿𝐿2
𝐺𝐺1

𝐵𝐵1

WRGNet

3D

3D

𝐹𝐹2

𝐺𝐺2

𝑅𝑅3

𝐿𝐿3

𝐹𝐹3
3D-LRF �𝐿𝐿3𝐺𝐺3

Layer 𝑙𝑙 = 1 Layer 𝑙𝑙 = 2 Layer 𝑙𝑙 = 3

BEV EncoderBEV Encoder

�𝐵𝐵1

𝐵𝐵2
�𝐵𝐵2

𝐵𝐵3
�𝐵𝐵3

Figure 2. Overall scheme of our multi-modal 3D object detection framework in adverse weather. Our framework consists of a three-layer
multi-modal fusion network, BEV encoder and detection head. In each l-th multi-modal fusion layer, proposed 3D-LRF module extract
fusion feature Fl from LiDAR Ll and 4D radar feature Rl in 3D domain, considering the characteristics of each sensor. Our WRGNet
further extracts enhanced LiDAR feature L̂l by modulating the information flow of fusion features based on the weather conditions.

developed a method that encodes radar points with point
and pillar encoders. Currently, there is a lack of literature
on fusing 4D radar with other modalities while considering
adverse weather conditions.

2.2. Multi-modal 3D Object Detection

Without Radar. LiDAR and camera are the two main
sensors used for multi-modal 3D object detection. Two
domains are diversely fused through point-based fusion
[17, 41, 47, 48, 52], voxel-/pseudo-image-based fusion
[2, 30, 37, 46, 49], BEV-based fusion [23, 40] and compre-
hensive fusion incorporating these methods [18, 36]. These
models significantly degrade in adverse weather conditions.
With Radar. 3D object detection models with image and
radar typically encode radar similarly to LiDAR and focus
on multi-view fusion (range view of image and top view
of radar) [10, 12–14, 26]. LiDAR and radar domains are
fused with early fusion [27, 50] or self-/cross-attention be-
tween domains [19, 33, 43]. Besides, [26, 42, 50] focus on
enhancing detection accuracy by incorporating the veloc-
ity head. InterFusion [43] utilizes 4D radar for fusion with
LiDAR, however, the model is designed to encode both do-
mains with identical pseudo-image-based structures. It did
not effectively fuse the strength of each 3D domain and dis-
cern the advantages in adverse weather conditions.

2.3. 3D Object Detection in Adverse Weather

One line of research focuses on directly training the net-
work with data on adverse weather conditions. Using
only LiDAR, [20] suppresses the noisy LiDAR points un-
der snow. Several works adaptively fuse multi-modal fea-
tures through convolution layers [6, 12, 19, 33] or attention
[14, 25]. These studies do not take into account the climatic
strengths of individual sensors. Another line of research at-
tempts to enable the model trained under normal conditions,
to perform robustly in adverse weather. [7, 39, 45] pro-
pose unsupervised/semi-supervised domain adaptation and
knowledge distillation framework for LiDAR-based 3D ob-
ject detection, respectively. However, these works show
under-par performance compared to supervision-based re-
search. Unlike prior works, we propose a novel LiDAR- and
4D radar-based 3D object detection framework considering
weather and effectively fusing 3D features in supervision.

3. Methods

3.1. Framework Overview

The overall scheme of our framework is shown in Fig. 2.
Our framework takes LiDAR point cloud, 4D radar tensor
and image as input. Specifically, the LiDAR point cloud
is L ∈ RN0×3, the 4D radar tensor is R ∈ RM0×3, and
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the image is I ∈ RH×W×3, where N0, M0, H and W
are the number of LiDAR points and 4D radar points, the
height and width of image, respectively. The sparse 3D
convolution network is employed as the feature extraction
backbone of LiDAR and 4D radar to preserve their 3D in-
formation. L and R first pass through an input layer indi-
vidually, to map the input tensor to a higher dimension of
voxel features L0 ∈ RN0×C0 and R0 ∈ RM0×C0 . Then,
voxel features are fed to each three-layer sparse 3D convo-
lution network. Each layer extracts layer-wise voxel fea-
tures Ll ∈ RNl×Cl and Rl ∈ RMl×Cl , where l is the
layer index and l ∈ {1, 2, 3}. They are effectively fused
to obtain fusion feature Fl ∈ RNl×Cl with our 3D-LRF
module (see Sec. 3.2). The image is encoded separately
with a lightweight three-layer 2D convolutional network
pre-trained for weather classification. Utilizing 1D weather-
conditioned image feature Iw ∈ R1×Cl together with Ll

and Rl, our WRGNet controls the information flow from
4D radar to LiDAR modality through gating and gets en-
hanced LiDAR feature L̂l ∈ RNl×Cl (see Sec. 3.3). While
L̂l and Rl serve as input of the next layer, L̂l and Ll are
compressed through individual BEV encoders. The con-
catenation of all layers’ BEV features outputs 3D detection
results through the detection head (see Sec. 3.4).

3.2. 3D LiDAR and 4D Radar Fusion

In this section, we introduce our 3D LiDAR and 4D Radar
fusion method. Based on the fact that 3D information plays
a key role in 3D object detection, we fuse 3D LiDAR and
4D Radar in 3D space. Given LiDAR features Ll ∈ RNl×Cl

and radar features Rl ∈ RMl×Cl from l-th sparse 3D convo-
lution layer, our goal is to enhance the LiDAR feature with
the aid of the radar features. Specifically, for each LiDAR
voxel feature, we first find the Kl nearest neighbor radar
voxel features, Vl ∈ RNl×Kl×Cl , within the radius rl, to
allow the model to focus on areas of interest, considering
the 3D spatial relationship. As in Eq. (1), we use different
numbers of neighbors Kl and radius rl for each layer l to
consider the actual size of the detection target.

Kl = ⌊ 64

2l−1
⌋, rl = ⌊ 8

2l−1
⌋. (1)

Detailed explanations of design choices are in supplemen-
tary material. After obtaining the Kl nearest neighbor radar
voxel features Vl, the LiDAR feature Ll is fused with Vl

through the 3D-LRF module.
3D-LRF module. The 3D-LRF module aims to efficiently
integrate LiDAR and 4D radar domains, and to achieve this,
it is essential to first understand the characteristics of both
domains. LiDAR, utilizing laser reflections, provides pre-
cise 3D mapping of the environment under normal condi-
tions. However, it is susceptible to noise during adverse
weather, such as heavy snow or rain. On the other hand,
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Figure 3. Illustration of proposed 3D-LRF module. Non-empty
LiDAR voxel and neighbor radar voxel go through attention mech-
anism to enhance or suppress the LiDAR feature. Case (a) close to
white indicates suppression, while case (b) close to black signifies
activation.

radar employs waves for measurement, offering robustness
in inclement weather. Nevertheless, it falls short of pro-
viding accurate object positions. Therefore, by discerning
whether each position is an object in the scene or noise
caused by adverse weather through surrounding radar, ac-
tivating or suppressing the corresponding LiDAR accord-
ingly becomes possible.

Thus, we first get an attention map of non-empty LiDAR
voxel (Ll)i as a query and pair (Vl)i as a key to calculate
their activation relation.

attn((Ll)i, (Vl)i) = softmax((Ll)i(Vl)i
T
) (2)

where (·)i refers to the i-th value corresponding to the Li-
DAR voxel feature and softmax is a softmax function. As
shown in Fig. 3, if there are many non-empty radar voxels in
(Vl)i, such as case (b), the attention value will be set to en-
hance (Ll)i. Conversely, in the absence of neighbor radar
voxels, such as case (a), the attention value will be set to
suppress (Ll)i.

The attention map is then multiplied to wv
l , a value func-

tion used to extract value features of radar features. We use
the attention mechanism to make the model further focus on
the relevant radar information and obtain fusion features for
a pair of (Ll)i and (Vl)i, (Fl)i. The equation can be written
as Eq. (3):

(Fl)i = attn((Ll)i, (Vl)i)w
v
l (Vl), (3)

The final fusion feature Fl is obtained by aggregating (Fl)i
using the indices of (Ll).

3.3. Weather-conditional Radar-flow Gating

The fusion features Fl obtained from the 3D-LRF mod-
ule contain important information about how much to en-
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Figure 4. Illustration of proposed WRGNet. Weather-conditioned
image feature and radar feature are gated to compute Gl, which
modulates the flow to Fl and outputs enhanced LiDAR features
L̂l.

hance or suppress LiDAR features. Therefore, fusing Fl to
the original LiDAR features Ll can enhance the Ll, hav-
ing the potential to improve the detection performance. The
straightforward fusing strategy to obtain the enhanced Li-
DAR features L̂l is as follows:

L̂l = Ll + Fl (4)

Then, L̂l is fed into the next convolution layer l + 1 of the
LiDAR stream. In the meantime, L̂l and Ll fed into the
separate BEV encoders to obtain the BEV features Bl and
B̂l, respectively. These BEV features are then used in the
detection head to make the predictions (Sec. 3.4).

While the straightforward fusing strategy can improve
the performance in certain weather conditions, for example,
the radar features in heavy snow conditions can enhance
the LiDAR features, we observed that this fusing strategy
causes a trade-off between performances in various weather
conditions. The direct fusion of radar into LiDAR may de-
grade the performance in normal weather conditions due to
the radar’s limited precision in localization. Therefore, we
propose to modulate the information flow of fusion features
Fl depending on the weather conditions, i.e. gating Fl con-
ditioned on the weather. To inject the weather conditions
into the gating process, we choose to use image features
Il pre-trained by the weather classification task. The basic
idea is that image is most affected by weather conditions,
so the quality of data for 3D detection is low, but it is very
advantageous for understanding weather conditions. The
image feature is then used in the weather-conditional radar-
flow gating network (WRGNet) to generate gating features
Gl, modulating the information flow Fl into Ll.
WRGNet. Given the pre-trained image feature Il, we first
concatenate it with Kl nearest neighbor voxel features Vl

by repeating Il. Then, a single gate layer wg
l is applied,

followed by a global average pooling (GAP) layer to obtain
the gating feature Gl as follows:

Gl = GAP (wg
l ([Vl, repeat(Il)])) (5)

where [·, ·] refers to a concatenation operation. The obtained
Gl is used to gate the fusion feature Fl before fusing it into
the LiDAR feature Ll as,

L̂l = Ll +Gl ⊗ Fl, (6)

where ⊗ denotes element-wise multiplication. The over-
all scheme of WRGNet is illustrated in Fig. 4. Through
the proposed gated fusion strategy, we can control the in-
formation flow from the 3D-LRF module depending on the
weather conditions, effectively alleviating the trade-off be-
tween performances in various weather conditions.

3.4. BEV Encoder and Detection Head

BEV encoder of each layer takes the LiDAR voxel fea-
ture Ll and enhanced LiDAR feature L̂l. In the BEV en-
coder, Ll and L̂l are encoded separately with one sparse 3D
convolution block, dense block, and transpose 2D convolu-
tion block to extract BEV features Bl and B̂l, respectively.
The transpose 2D convolution block is designed to ensure
that all layers’ BEV features have the same dimension size
RHd×Wd×D, where Hd, Wd, D are the height, width, chan-
nel of BEV feature, respectively. After the network extracts
BEV features from all layers, we concatenate all BEV fea-
tures to make the final BEV feature B ∈ RHd×Wd×6D, and
it is fed into the detection head.

The detection head is composed of the classification
head and regression head, and they extract the classifica-
tion and regression output of each grid, respectively, to es-
timate the center point, object size, and rotation [28, 34].
Each head consists of one convolution block. Focal loss
[21] is adopted to train the classification and smooth L1 loss
minimizes the regression error. The overall objective is the
straightforward sum of the Focal loss and smooth L1 loss.

4. Experiments
4.1. Experimental Setup

Dataset and Metrics. The K-Radar dataset is a large-
scale autonomous driving benchmark that contains 17,458
training and 17,536 testing scenes. It covers various time
conditions (day, night), weather conditions (e.g. normal,
rain, fog, snow, sleet), road structures (e.g. urban, high-
way, mountain) and sensor measurements (e.g. 4D radar, Li-
DAR, camera, GPS). The K-radar dataset is the only bench-
mark that provides 4D radar tensors in adverse weather
conditions. Following the protocol of the original paper,
we adopt two evaluation metrics for 3d object detection:
AP3D and APBEV of the class “Sedan” at IoU=0.3. For
a more in-depth analysis, we additionally report the results
at IoU=0.5.
Implementation Details. For the K-Radar dataset, we pre-
process the 4D radar tensor by selecting only the top 10%
of points with high power measurement as in [28]. We
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Table 1. Quantitative results of LiDAR and 4D radar-based 3D object detection methods on K-Radar dataset [28]. We present the modality
of each method (L: LiDAR, 4DR: 4D radar) and detailed performance for each weather condition. Best in bold, second in underline.

Methods Modality IoU Metric Total Normal Overcast Fog Rain Sleet Lightsnow Heavysnow

RTNH [28] 4DR
0.3 APBEV 41.1 41.0 44.6 45.4 32.9 50.6 81.5 56.3

AP3D 37.4 37.6 42.0 41.2 29.2 49.1 63.9 43.1

0.5 APBEV 36.0 35.8 41.9 44.8 30.2 34.5 63.9 55.1
AP3D 14.1 19.7 20.5 15.9 13.0 13.5 21.0 6.36

RTNH* L
0.3 APBEV 76.5 76.5 88.2 86.3 77.3 55.3 81.1 59.5

AP3D 72.7 73.1 76.5 84.8 64.5 53.4 80.3 52.9

0.5 APBEV 66.3 65.4 87.4 83.8 73.7 48.8 78.5 48.1
AP3D 37.8 39.8 46.3 59.8 28.2 31.4 50.7 24.6

PointPillars [16] L
0.3 APBEV 51.9 51.6 53.5 45.4 44.7 54.3 81.2 55.2

AP3D 47.3 46.7 51.9 44.8 42.4 45.5 59.2 55.2

0.5 APBEV 49.1 48.2 53.0 45.4 44.2 45.9 74.5 53.8
AP3D 22.4 21.8 28.0 28.2 27.2 22.6 23.2 12.9

InterFusion [43] 4DR+L
0.3 APBEV 57.5 57.2 60.8 81.2 52.8 27.5 72.6 57.2

AP3D 53.0 51.1 58.1 80.9 40.4 23.0 71.0 55.2

0.5 APBEV 52.9 50.0 59.0 80.3 50.0 22.7 72.2 53.3
AP3D 17.5 15.3 20.5 47.6 12.9 9.33 56.8 25.7

Ours 4DR+L
0.3 APBEV 84.0 83.7 89.2 95.4 78.3 60.7 88.9 74.9

AP3D 74.8 81.2 87.2 86.1 73.8 49.5 87.9 67.2

0.5 APBEV 73.6 72.3 88.4 86.6 76.6 47.5 79.6 64.1
AP3D 45.2 45.3 55.8 51.8 38.3 23.4 60.2 36.9

set the point cloud range as [0m, 72m] for the X axis, [-
6.4m, 6.4m] for the Y axis, and [-2m, 6m] for the Z axis
setting the same environment with [28]. The voxel size is
set to (0.4m, 0.4m, 0.4m). For the training strategy, we first
pre-train the image-based weather classification network for
43 epochs with cross-entropy loss. The classification ac-
curacy on seven weather conditions achieved 91%. Then,
our framework loads the pre-trained weight for initializa-
tion and trains the entire network with the loss in Sec. 3.4
for 11 epochs. We use batch size 4 and Adam optimizer [15]
with lr= 1e-3, β1 = 0.9, β2 = 0.999. More implementation
details are in the supplementary material.

4.2. Main Results

We compare our method with LiDAR only, 4D radar only,
and LiDAR-4D radar fusion-based 3D object detection
methods: PointPillars [16], RTNH [28] and InterFusion
[43]. The variant of RTNH*, which has same model struc-
ture with [28] and takes LiDAR as input, is additionally
adopted for comparison.

Table 1 shows the quantitative comparison results. Our
method outperforms single- and multi-modal 3D object de-
tection models under all metrics. Specifically, ours sur-
passes the second best model, RTNH*, by around 19% in-
crease in AP3D with IoU threshold 0.5. This result demon-
strates that the proposed 3D-LRF module effectively fuses
LiDAR and 4D radar in the 3D domain. Moreover, our
method shows favorable performance in all weather con-
ditions, confirming the validity of the proposed WRGNet.
Under heavy snow, our model demonstrates performance

improvements ranging from 10% to 43% compared to the
second-best scores across various metrics. Under sleet and
fog, RTNH* shows slightly higher results for several met-
rics than ours. This might be because our model heavily
relies on radar under sleet and fog (the inefficiency of Li-
DAR in sleet conditions is evident from its inability to cap-
ture even the ground surface as shown in Fig. 5), leading to
a greater impact on false positives than incorporating less
scene information using LiDAR. Our method shows the
least degradation in performance when increasing the IoU
threshold from 0.3 to 0.5. This indicates that our model ex-
cels at accurately placing 3D bounding boxes in locations
with objects compared to other models.

The visual comparison is shown in Fig. 5. Our method
predicts the most accurate 3D bounding boxes under various
weather conditions, while LiDAR-based methods encounter
true negatives influenced by adverse weather and 4D radar-
based methods suffer from false positives (especially under
sleet) due to the characteristics of the sensor. Interfusion
[43] shows better results than single modality-based models
in normal scenes. However, in adverse conditions, it fails to
outperform them as it struggles to effectively fuse features
from both modalities.

4.3. Model Analysis

We analyze our model to validate the effects of each com-
ponent and visualize the objectness score map calculated
from the classification head for in-depth analysis. We also
discuss the effect of using LiDAR/4D radar modality and
compare our method with various fusion methods.
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Figure 5. Visual results of 3D object detection in range view and bird-eye-view. The results in the range view show the image and projected
LiDAR with red GT boxes and yellow predicted boxes. The results in bird-eye view show top-view LiDAR and 4D radar heatmap with red
GT boxes and black predicted boxes. Each row means weather conditions: normal, sleet, and heavy snow (from left to right). Each column
means the 3D object detection model: (a) RTNH [28], (b) RTNH*, (c) PointPillar [16], (d) InterFusion [43], (e) ours. More results with all
weather conditions are in supplementary material. Best viewed when zoomed in with colors.

Effect of Each Modality. Table 2 shows the effect of us-
ing LiDAR and 4D radar domains. As the baseline of our
model is RTNH [28], the performance of RTNH is reported
in (a), RTNH* in (b), and ours in (e). While radar mea-
surements exhibit robustness in adverse weather, the ability
to precisely determine the exact location of objects is su-
perior with LiDAR. Hence, currently, utilizing LiDAR for
3D object detection yields better performance. In cases like
heavy snow, radar leverages its strengths and achieves per-
formance comparable to LiDAR (see Table 1). Our model
effectively takes advantage of both 4D radar and LiDAR in
the 3D domain based on weather information, leading to
optimal performance.

Component Analysis. The rows in (c), (d), and (e) of Ta-
ble 2 illustrate the impact of each component of our model.
When WRGNet is added, APBEV significantly improves
across all IoU thresholds compared to the results using
only single modalities. This demonstrates that WRGNet
effectively regulates the radar flow and fuses information
from both modalities by incorporating weather information.

On the other hand, since (c) concatenates the BEV fea-
tures of each modality without effective fusion in the 3D
domain, AP3D shows a slight increase or decrease com-
pared to (b). In (d), we observe an overall enhancement
across all metrics. This demonstrates the effective fusion
of both domains in 3D, leveraging the characteristics of Li-
DAR with precise information and radar sensors capable of
detecting approximate object positions in adverse weather
conditions. Notably, it achieved a substantial performance
boost even without utilizing weather information and out-
performed other fusion methods, including concatenation
and attention-based results in Table 3. (e) is our final model
with two previously validated components, and shows the
optimal performance resulting from the effective integration
of the two proposed ideas.

Fusion Comparison. We validate that our 3D-LRF mod-
ule is not a mere outcome of combining two domains.
Two fusion strategies, concatenation and cross-attention,
are adopted for the comparison and their results are shown
in Table 3. The results with cross-attention show better per-
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Table 2. Effect of each modality and component of our model. Best in bold, second in underline.

Methods Modality Components IoU=0.3 IoU=0.5
R L WRG 3D-LRF AP3D (↑) APBEV (↑) AP3D (↑) APBEV (↑)

(a) Radar only ✓ 37.4 41.1 14.1 36.0
(b) LiDAR only ✓ 72.7 76.5 37.8 66.3
(c) Ours without 3D-LRF ✓ ✓ ✓ 73.9 (+0.8) 82.8 (+6.3) 35.9 (-1.9) 70.9 (+4.6)
(d) Ours without WRG ✓ ✓ ✓ 74.7 (+2.0) 84.6 (+8.1) 38.6 (+0.8) 72.7 (+6.4)
(e) Ours ✓ ✓ ✓ ✓ 74.8 (+2.1) 84.0 (+7.5) 45.2 (+7.4) 73.6 (+7.3)

Table 3. Comparison with various multi-modal feature fusion
methods. Best in bold, second in underline.

Fusion IoU=0.3 IoU=0.5
AP3D (↑) APBEV (↑) AP3D (↑) APBEV (↑)

Concat. 73.5 82.0 34.9 69.9
Attn. 74.3 (+0.8) 83.1 (+1.1) 35.1 (+0.2) 70.3 (+0.4)
Ours 74.8 (+1.3) 84.0 (+2.0) 45.2 (+10.3) 73.6 (+3.7)

formance than those with concatenation. However, despite
utilizing both domains, it can be observed that the results at
AP3D with IoU threshold 0.5 are not superior to using Li-
DAR alone. In contrast, with the help of 3D-LRF module,
the proposed method effectively fuses LiDAR and 4D radar
features, showing a substantial performance improvement
compared to other fusion methods.
Objectness Score Map Visualization. We visualize the
objectness score from the classification head to investigate
which part of the input the model primarily focuses on.
Fig. 6 introduces two scenes, one categorized as day, heavy
snow (I) and the other as night, normal (II). In the case of
(I), (b) with only LiDAR fails to recognize the vehicles be-
hind, while (c) with only radar successfully focuses on both
vehicles under adverse weather conditions. Concatenation
(d) or attention (e) still activates non-vehicle areas. In (f),
due to adverse weather conditions, it is evident that radar
information is more prominently incorporated. In (g), the
model enriches the locations that LiDAR and radar both fo-
cus on and suppresses the locations where radar does not
focus. In (h), only locations with sedans are distinctly ac-
tivated. In the case of (II), in (f), a substantial amount of
LiDAR information is incorporated as the scene is under
normal conditions. In (g), despite the distinct areas of acti-
vation in each modality, it is evident that the features have
been enriched to activate only in regions where vehicles are
present. In (h), clear activation is observed where objects
are present. These two examples validate that the proposed
method aligns with its intended design and demonstrates its
effectiveness compared to other methods.

5. Conclusion
We introduce an accurate and robust LiDAR and 4D radar-
based 3D object detection framework under various weather
conditions. Our method effectively fuses LiDAR and 4D

(a) (c)(b) (d) (e) (f) (g) (h)

(a) (c)(b) (d) (e) (f) (g) (h)

I -

II -

Figure 6. Visualized objectness score map of (b) RTNH*, (c)
RTNH [28], (d) concatenation-based variant, (e) attention-based
variant, (f) ours without 3D-LRF, (g) ours without WRGNet and
(h) ours. (I: day scene under heavy snow, II: night normal scene)

radar with the 3D-LRF module, considering the advantages
of each sensor in 3D domain. Moreover, WRGNet is pro-
posed to control the flow from 4D radar to LiDAR ac-
cording to the weather information. Extensive experiments
demonstrate the validity of two novel ideas, and our model
achieves remarkable improvement over the state-of-the-art
LiDAR and 4D radar-based models in K-Radar dataset.
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