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Abstract

Recently, the authors of Zero-1-to-3 demonstrated that a
latent diffusion model, pretrained with Internet-scale data,
can not only address the single-view 3D object reconstruc-
tion task but can even attain SOTA results in it. However,
when applied to the task of single-view 3D clothed human
reconstruction, Zero-1-to-3 (and related models) are unable
to compete with the corresponding SOTA methods in this
field despite being trained on clothed human data.

In this work, we aim to tailor Zero-1-to-3’s approach
to the single-view 3D clothed human reconstruction task
in a much more principled and structured manner. To this
end, we propose R-Cyclic Diffuser, a framework that adapts
Zero-1-to-3’s novel approach to clothed human data by fus-
ing it with a pixel-aligned implicit model.

R-Cyclic Diffuser offers a total of three new contribu-
tions. The first and primary contribution is R-Cyclic Dif-
fuser’s cyclical conditioning mechanism for novel view syn-
thesis. This mechanism directly addresses the view incon-
sistency problem faced by Zero-1-to-3 and related models.
Secondly, we further enhance this mechanism with two key
features - Lateral Inversion Constraint and Cyclic Noise Se-
lection. Both features are designed to regularize and re-
strict the randomness of outputs generated by a latent dif-
fusion model. Thirdly, we show how SMPL-X body priors
can be incorporated in a latent diffusion model such that
novel views of clothed human bodies can be generated much
more accurately. Our experiments show that R-Cyclic Dif-
fuser is able to outperform current SOTA methods in single-

(a) Groundtruth (b) Zero-1-to-3 (c) One-1-2-3-45 (d) IntegratedPIFu
Figure 1. Results of Zero-1-to-3 [7], One-2-3-45 [6], and Integrat-
edPIFu [2] when trained and tested on clothed human subjects.

view 3D clothed human reconstruction both qualitatively
and quantitatively. Our code is made publicly available at
https://github.com/kcyt/r-cyclic-diffuser.

1. Introduction
Recently, Zero-1-to-3 [7] demonstrated that a latent diffu-
sion model, which has been pre-trained on Internet-scale
image data, can be controlled to synthesize a novel view of
a subject of interest from any specified viewpoint. To do so,
the pretrained model has to be finetuned with an input RGB
view of a subject, a relative camera transformation, and a
transformed RGB view of the same subject. Once finetuned,
the model, when given an input view of a subject, will be
able to generate a large number of novel views of that sub-
ject. These novel views are then used to reconstruct a 3D
mesh of that subject using Score Jacobian Chaining (SJC)
[19]. Zero-1-to-3 showed that it is able to outperform SOTA
results in 3D object reconstruction. This is significant be-
cause Zero-1-to-3 shows how the massive internet image
data can be leveraged on to solve a 3D reconstruction task.

One-2-3-45 [6] builds on Zero-1-to-3 by estimating the
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Figure 2. Our R-Cyclic Diffuser compared with SOTA models when SMPL-X priors are unavailable.

(a) Given Input

(b) Prediction 

(a) Groundtruth (c) Ours w SMPL-X (h) Ours w SMPL-X(f) Input Image(b) ICON (uses SMPL-X)

In Red: Lack of details

Figure 3. Our R-Cyclic Diffuser compared with SOTA models when SMPL-X priors are available.

elevation angle of the input image and replacing the SJC
with SparseNeuS [8]. Compared to Zero-1-to-3, One-2-3-
45 showed that it can generate a more accurate 3D mesh in
a shorter amount of time. One-2-3-45, though, continues to
rely on the novel views generated by a frozen Zero-1-to-3.

This prompts the question of whether we can extend the
Zero-1-to-3 and One-2-3-45 models to tackle the single-
view 3D clothed human reconstruction task too. Experi-
mental results (see Fig. 1) show that while a direct ap-
plication of Zero-1-to-3 and One-2-3-45 to human data
will allow us to reconstruct 3D clothed human meshes,
their results fall significantly short of competing with the
current SOTA methods (e.g. IntegratedPIFu [2]) in this
field. Hence, we aim to tailor Zero-1-to-3 to this field in
a much more principled and structured manner. Specifi-
cally, we do so by fusing Zero-1-to-3’s novel approach with
a pixel-aligned implicit model, which is a class of methods
[2, 15, 16, 20] that has consistently achieved SOTA results
in the field. In doing so, we hope to leverage Internet-scale
data to compete with and even surpass SOTA methods.

Our proposed model, called R-Cyclic Diffuser, is a latent
diffusion model that first generates a sparse set of views in
a sequential manner. These views are then fused together
using a multi-view pixel aligned implicit model [15]. R-
Cyclic Diffuser offers a total of three new contributions.

The first and primary contribution is R-Cyclic Diffuser’s
cyclical conditioning mechanism for novel view synthesis.
This mechanism resolves the view inconsistency problem
(see later) that plagued Zero-1-to-3.

The second contribution of R-Cyclic Diffuser is the in-
troduction of Lateral Inversion Constraint and Cyclic Noise
Selection, which are key features designed to regularize and
restrict the randomness of outputs generated by our latent
diffusion model. This will be elaborated later.

Lastly, the third contribution of R-Cyclic Diffuser pro-
poses how SMPL-X body priors [10] can be incorporated
in a latent diffusion model such that that novel views of
clothed human bodies can be generated much more accu-
rately. This is important because Zero-1-to-3 and related
models are designed for 3D object reconstruction and do

not provide any design consideration for incorporating pri-
ors that are specific to clothed human reconstruction.

2. Related Work
2.1. Single-view Object Reconstruction

Recently, large-scale 2D diffusion models (e.g., DALL-E
[12], Imagen [14], and Stable Diffusion [13] ) have demon-
strated their ability to learn a wide range of visual concepts
from Internet-scale image datasets. This has led a growing
number of researchers to leverage on the models’ extensive
priors about our 3D world and utilize them in 3D genera-
tive tasks (e.g. DreamFusion [11], and Magic3D [5]). They
typically start with a 3D NeRF representation and optimize
it by first generating 2D images at different viewpoints us-
ing differentiable rendering. The images are then fed to a
pre-trained 2D diffusion model that would compute a loss
function that guides the 3D shape optimization.

A very recent work, Zero-1-to-3 [7], explores a new
approach to that by starting with the pre-trained diffusion
model instead. The pre-trained diffusion model is finetuned
such that it learns how to generate a novel view of an object
at a desired viewpoint, given only an input image of that
object and a specification of that desired viewpoint. Once
finetuned, the diffusion model is used to generate multiple
novel views of the object, and these views are used to op-
timize a 3D NeRF representation. With that, Zero-1-to-3
attained SOTA results on single-view 3D reconstruction.

Shortly after, the authors of One-2-3-45 [6] build on
Zero-1-to-3 by adding a module that estimates camera el-
evation and a SparseNeuS [8]. One-2-3-45 showed that it
outperformed Zero-1-to-3 in terms of speed and accuracy.
However, as we showed in Fig. 1, neither Zero-1-to-3 nor
One-2-3-45 are able to outperform the SOTA methods in
single-view clothed human reconstruction.

2.2. Single-view Human Reconstruction

In 3D reconstruction of clothed humans, a class of mod-
els that have consistently achieved the SOTA results is the
pixel-aligned implicit models. These models learn an im-
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Figure 4. Overview of R-Cyclic Diffuser.
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Figure 5. Specifics of our F . Use of SMPL-X Mesh is optional.

plicit function that represents the surface of a clothed hu-
man body. From the learned implicit function, a mesh of
a human body can be extracted using the Marching Cubes
algorithm [9]. Pixel-aligned implicit models include PIFu
[15], ICON [20], IntegratedPIFu [2], FSS [3] and more.

Unlike Zero-1-to-3 and One-2-3-45, pixel-aligned im-
plicit models have not fully explored the potential of lever-
aging a latent diffusion model pretrained with Internet-scale
image data to improve their own 3D reconstruction capabil-
ities. Thus, in order to address this research gap, our work
aims to fuse the novel approach coined by Zero-1-to-3 with
a pixel-aligned implicit model for the task of single-view
clothed human reconstruction.

3. Method
Our R-Cyclic Diffuser consists of two latent diffusion mod-
els (M and F ), as shown in Fig. 4. Both latent diffu-
sion models are pretrained with Internet-scale image data
(as done in Zero-1-to-3 [7]) and subsequently finetuned by
us. The first latent diffusion model (i.e. Transformative Dif-

Input Image I0

Image I2 Image I3Image I1

Image I0 Image I2 Image I3Image I1

Predicted Image I1

Predicted Image I2

Lack of direct relationship between I1 and I2 

Inconsistent right arm

Inconsistent leg poses

Figure 6. Novel views predicted by Zero-1-to-3 [7] using I0

fuser or M ) will take an image and a Gaussian noise sample
as inputs and transform that image into an ‘ideal’ image. An
‘ideal’ image is an image that appears to be captured under
ideal conditions such as perfect lighting, camera angle (el-
evation but not azimuth), focal length etc. The ideal image
(I0) serves as a strong and clear reference point for the sub-
sequent views that we are about to generate.

We will then apply the second latent diffusion model (i.e.
Sequential Diffuser or F ). F will first be given I0 and a
Gaussian noise sample as inputs. F will then output a novel
view I1, which is a θ degree azimuth rotation of the view-
point in I0. In our work, we set θ to be 90◦. The novel view
predicted by F will be an ‘ideal’ image as well.

Next, F will use I0, I1, and a Gaussian noise sample to
generate I2, which is a 90◦ azimuth rotation of I1. Like-
wise, I2 will be an ‘ideal’ image too. Lastly, I0, I1, I2, and
a Gaussian noise sample will be used by F to produce I3.
In total, we obtain 4 images (I0, I1, I2, and I3).

If we apply F on I1, I2, I3, and a Gaussian noise sample,
then F will return a predicted view that is at the same view-
point as I0. This is deliberate and is a hallmark of our cyclic
conditioning mechanism. What this creates is a geometric
relationship between the different views, and we will show
how we exploit this later.

Optionally, if a SMPL-X mesh [10] is available as an
input, we can also use it as an additional input to F (see
Fig. 5). This will be elaborated later.

Finally, I0, I1, I2, and I3 will be fed into a multi-
view pixel-aligned implicit model [15] that will output a
3D clothed human mesh (see bottom of Fig. 4). The spe-
cific design of the multi-view pixel-aligned implicit model
used by us is already established in existing works. Thus,
we will describe its exact implementation in our Supp. Mat.

Now, we will elaborate on the three contributions of R-
Cyclic Diffuser: 1. Cyclic Conditioning Mechanism, 2.
Lateral Inversion Constraint and Cyclic Noise Selection and
3. Incorporating SMPL-X Blendweight Priors.

3.1. Cyclic Conditioning Mechanism

View inconsistency is the problem where the predicted im-
ages do not reconcile with one another (e.g. a man has a
certain pose in image 1 but has a different pose in image
2.). This problem is clearly an issue for Zero-1-to-3 in Fig.
6, where Zero-1-to-3 assumes a certain leg pose in I1, but
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then it assumes another leg pose in I2, causing view incon-
sistency between I1 and I2.

Our Cyclical Conditioning Mechanism addresses the
view inconsistency problem by modifying the Zero-1-to-3’s
prediction function from Eqn. 1 to Eqn. 2.

It = F (I0, R, T ) (1)

where It is the predicted image, F is a latent diffusion
model, I0 is the input image, and (R, T ) is the relative cam-
era rotation and translation between I0 and It.

It = F (It−1, It−2, It−3), It, It−1, It−2, It−3 ∈ S (2)

where It, It−1, It−2, and It−3 are the predicted images
at time t, t − 1, t − 2, and t − 3 respectively. S is a set
of images captured in ‘ideal’ conditions (to be elaborated
later). Also, for the first prediction, I0 = It−1 while It−2

and It−3 are masked with zeros.
The first problem observed in Eqn. 1 is that Zero-1-

to-3 does not take previous predictions into account when
predicting It, contributing to the view inconsistency prob-
lem. To resolve this, our Eqn. 2 is designed such that every
prediction is conditioned on the previous predictions. This
allows It to reconcile with {It−1, It−2, It−3} and signifi-
cantly reduces the view inconsistency problem.

The second problem observed in Eqn. 1 is that Zero-1-
to-3, via the use of (R, T ), allows the predicted novel view
to be at almost any viewpoint. In other words, the output
space of F in Eqn. 1 is the teal sphere in Fig. 7a. Zero-1-
to-3 needs to do this because it requires images to be from
very diverse viewpoints when it optimizes its NeRF repre-
sentation. But as R-Cyclic Diffuser is using a pixel-aligned
implicit model, such a diverse set of viewpoints is excessive
and unnecessary. Hence, by setting (R, T ) to a constant and
introducing S in Eqn. 2, we drastically reduced the output
space of F from the teal sphere in Fig. 7a to the magenta
ring in Fig. 7b. Why this is so will be explained later. In the
end, our F has a simplified output space and is less suscep-
tible to prediction error. This mitigates any view inconsis-
tency that is caused by F not predicting images accurately.

Our Cyclic Conditioning Mechanism consists of two
parts: 1. Ideal Subset Transformation (deals with the sec-
ond problem) 2. Sequential Conditioning (deals with the
first problem).

3.1.1 Ideal Subset Transformation (IST)

In most applications, the input image that would be given
to Zero-1-to-3 (or related models) is often an in-the-wild
image. Thus, it is likely that the image is captured under
imperfect camera position, calibration, or lighting (see Fig.
9). As such, the image itself may contain ambiguous or ut-
terly limited information, forcing Zero-1-to-3 to guess what

(b) The space of all possible views in 
our R-Cyclic Diffuser (Magenta ring)

(a) The space of all possible views 
in Zero-1-to-3 (Teal sphere)

(Reduced)

Figure 7. A Zero-1-to-3’s output can be anywhere within the teal
sphere, but a R-Cyclic Diffuser’s output will be a point on the
magenta ring. Be informed that the input domain of R-Cyclic Dif-
fuser is restricted by S in Eqn. 2.

Latent Diffusion 
Model #1

Transformative 
Diffuser (M)

Transformative 
Diffuser (M)

Transformative 
Diffuser (M)

Transformative 
Diffuser (M)

(a)

(b)

(c)

(d)

“Camera Elevation 
adjusted”

“Feet are filled in”

“Super-resolution”

“Missing body 
is filled in”

Figure 8. Transforming ‘in-the-wild’ images into ‘ideal’ images.
Every image here has the same resolution of 512×512.

is really captured by the image. Zero-1-to-3 uses this in-
put image to generate other images, but this input image,
because of its ambiguity, serves as a poor reference point
for the generated images, resulting in view inconsistency
among the generated images. It would be more sensible
for the ambiguity in the input image to be cleared up, even
if it inevitably involves putting inaccurate information into
that input image, as our intention here is to create a strong
reference point for the generated images and avoid view in-
consistency issues.

Thus, we propose Ideal Subset Transformation (IST).
This transformation is carried out by M , which is a latent
diffusion model as illustrated in Fig. 4. As aforementioned,
M takes an image and a Gaussian noise sample as inputs
and transforms that image into an idealized version that re-
sembles an image captured under perfect lighting, camera
position, calibration etc. In Fig. 8, we show some of the
results produced by M . Graphically, we are transforming
the input image from a point on the teal sphere in Fig. 7a
to a point on the magenta ring in Fig. 7b. The magenta ring
represents an ideal subset of images that are captured under
perfect conditions. Any image in this ideal subset is defined
to have the following characteristics or conditions:
1. Camera must be at the same height as the center of the

human subject.
2. Weak perspective camera is used to prevent none of the

body distortion.
3. Even lighting that is neither too bright nor too dark.
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Figure 9. Effect of varying the different image parameters.

Figure 10. Weak-Perspective camera enables Lateral Inversion

4. All parts of the human subject are within camera frame.
We formally describe M in Eqn. 3:

I0 = M(I ′0), I0 ∈ S (3)

where I0 is the idealized version of initial input image I ′0,
and S is the ideal subset of images.

Our M is trained with paired images (non-ideal images
that are captured under random conditions and ideal images
captured under the ideal conditions we just defined). The
non-ideal image is used as a conditional prior by M , and
the corresponding ideal image is the target image that M
is asked to recover. Like Zero-1-to-3 [7], our M uses the
conditional priors via a combination of cross-attention and
channel-concatenation.

3.1.2 Sequential Conditioning (SC)

Sequential Conditioning is the second part of our Cyclic
Conditioning Mechanism.

As aforementioned, existing models like Zero-1- to-3 [7]
do not take previous image predictions into account when
generating subsequent images, resulting in view inconsis-
tency.

In R-Cyclic Diffuser, we resolve this by using Sequen-
tial Conditioning (SC). Under SC, our F will first use the
ideal image I0 produced by M to generate I1. Then, our
F will use both I0 and I1 to generate I2. After that, I0, I1,
and I2 will be used by F to generate I3. This is illustrated
in Fig. 4. This way, we give our F a means to ensure that
{I1, I2, . . . IV } will reconcile with one another. In our case,

we use V = 3. The effect of using and not using SC will be
shown in our ablation studies later.

Concretely, SC is formulated as Eqn. 2, and it is imple-
mented by adding It−1, It−2, and It−3 as conditional pri-
ors to our latent diffusion model F . The conditioning, like
Zero-1-to-3 [7], is done via a combination of cross-attention
and channel-concatenation.

In every training iteration, a sequence of 4 images
{I0, I1, I2, I3} that pertains to the same human subject is
randomly selected. The 4 images are all captured in ideal
conditions and differ from one another by a 90◦ azimuth ro-
tation of viewpoint. After training, F will learn to generate
an ideal image (It) that is a -90◦ azimuth rotation of It−1.

To sum up, IST transforms an image from any point
within the teal sphere in Fig. 7 to a point on the magenta
ring. SC then moves that point to other points on the ring.

3.2. Lateral Inversion Constraint and Cyclic Noise
Selection

Naturally, the use of Sequential Conditioning (SC) gives
rise to the likelihood of propagation errors. Since if I1 is in-
correctly predicted, possibly due to the randomly sampled
Gaussian noise input, then I2, and later I3, will likely be
incorrectly predicted as well. Thus, in order to address and
mitigate the propagation error, we introduce our Lateral In-
version Constraint and Cyclic Noise Selection.

3.2.1 Lateral Inversion Constraint (LIC)

Images that are in our ideal subset S have to be captured by
weak perspective projection. This is an important feature of
our ideal subset as it introduces geometric constraints be-
tween each pair of images that are 180◦ (in azimuth) apart.
Specifically, if we laterally flip an image out of the pair, then
the two images will be pixel-wise aligned (see Fig. 10). We
refer to this as a Lateral Inversion Constraint (LIC). With
LIC, once an image that is 180◦ apart from the target image
is given as a conditional prior to our F , then F will know
which pixels in its predicted target image need to be filled
and which ones need to be empty. This greatly reduces the
output space of F , thereby simplifying the task given to F .
Ultimately, LIC reduces the likelihood and magnitude of
prediction error in F , and this in turn mitigates the propa-
gation error for subsequent image predictions.

In terms of implementation, whenever F is given an
image that is 180◦ apart from the target image, we will
laterally flip that given image. Formally, instead of
F (It−1, It−2, It−3) = It, we use F (It−1, I

′′
t−2, It−3) = It,

where I ′′t−2 is the laterally flipped It−2. Concretely, to pre-
dict I2, we will use I ′′0 instead of I0. To predict I3, we use
I ′′1 instead of I1. An ablation study on LIC is shown later.
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Figure 11. Illustration of our Cyclic Noise Selection.

3.2.2 Cyclic Noise Selection

Besides LIC, Cyclic Noise Selection is another key feature
that is designed to mitigate propagation error. As we can
see in Fig. 4, each image generated by F is influenced by a
Gaussian noise. Since this noise is randomly sampled, this
adds unpredictability to the output of F , which sometimes
results in prediction and propagation errors. Thus, to ensure
that the predictions are always reasonable, we introduce our
Cyclic Noise Selection, which is used only during testing.
Cyclic Noise Selection capitalizes on the concept of cycle
consistency and works by first ‘completing the cycle’ in Fig.
4 i.e. we feed I1, I2, and I3 into F and ask it to generate
a predicted I0. We then compare this predicted I0 with the
initial I0 given by M using metrics such as MSE, PSNR,
and SSIM. The score of the metrics is an indication of how
reasonable the sequence of predictions {I1, I2, I3} is.

To use Cyclic Noise Selection in our set-up, we will first
generate multiple sequences (e.g. 3) of predictions as shown
in Fig. 11. While generating these images, it is important
to reduce the number of DDIM sampling steps [18] to a low
value (e.g. 40) in order to greatly reduce the time required
for F to generate each image. In our set-up, reducing DDIM
steps from 200 to 40 reduces prediction time by roughly 5
times. Each sequence of images is predicted using a differ-
ent set of Gaussian noises. Thus, our objective here is to
identify which set of Gaussian noises will give us the most
reasonable sequence of predictions {I1, I2, I3}.

To do so, for each sequence, we will compute the error
between the I0 given by M and the I0 predicted by F using
the aforementioned score metrics. We will then pick the set
of Gaussian noises (e.g. G2) that gives the best score. We
then re-generate I1, I2, and I3 using G2 and with the origi-
nal number of DDIM sampling steps (e.g. 200). According
to the authors of DDIM [18], when the number of DDIM
steps is reduced, the high-level characteristics of the result-
ing image will remain unchanged when the same Gaussian

Figure 12. SMPL-X Blendweight Priors

noises are used. This is also verified by our Fig. 11.
Using Cyclic Noise Selection, we limit the randomness

of our predictions and restrict the prediction and propaga-
tion errors caused by bad Gaussian noise samples.

3.3. SMPL-X Blendweight Priors

In 3D clothed human reconstruction, additional priors like
a SMPL-X body mesh [10] might be available as an input,
but existing models like Zero-1-to-3 and One-2-3-45 did not
propose a way to incorporate such priors because they are
designed specifically for 3D object reconstruction. To fill
this gap, we propose SMPL-X Blendweight Priors, which
extract human body parts information from a given (or pre-
dicted) SMPL-X mesh and then feed this information into
F so that F can make more informed predictions.

Every SMPL-X mesh contains a fixed set of vertices V
and is associated with the same blendweight matrix B. For
each vertex v, matrix B contains a 55-length vector that
specifies how v would be displaced when the joints of the
SMPL-X body are rotated. This vector, which we refer to as
a blendweight vector, can also be interpreted as a vector that
determines how much a vertex is associated with every joint
in the SMPL-X body. In S-PIFu [1], the authors show that
a blendweight vector can be used as a soft human parsing
label for a vertex v, and these soft labels outperform discrete
ones. Thus, we aim to utilize these blendweight vectors.

We first identify the camera-facing vertices of the given
(or predicted) SMPL-X mesh. The camera’s position and
viewpoint is that of the target image (see Fig. 12). We then
retrieve the blendweight vectors of those identified vertices,
giving us a set of 2D feature maps (55×H×W) where each
pixel location contains a blendweight vector of a vertex.

Then, in order to reduce the number of channels, we ap-
ply random projection on the 2D feature maps. Concretely,
we apply S′ = RS where S are the 2D feature maps that
are reshaped to 55×HW, R is a randomly initialized but im-
mutable matrix with shape 3×55, and S′ is our blendweight
image that has a shape of 3×HW. A blendweight image is
interpretable (i.e. can be visualized using RGB channels, as
shown in Fig. 12). While a blendweight image reduces the
number of channels from 55 to 3, we observe in Fig. 12 that
within a blendweight image, there are body parts that are
labelled with very similar colors. In order to resolve this,
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we generate a total of k blendweight images using k differ-
ent R. The choice of k is a user-defined hyperparameter that
has a trade-off between accuracy and computational cost. In
our set-up, we set k=4, giving us 4 blendweight images. Fi-
nally, these blendweight images are concatenated together
to form our SMPL-X Blendweight Priors. These priors are
fed into F as input, as shown in Fig. 5.

By using SMPL-X Blendweight Priors, we provide our
F with a precise human parsing map that assigns a differ-
ent and yet meaningful label to every single location on a
human body. This map serves as a template of the target
image, showing where the different body parts (e.g. arms,
fingers, ears) will be in the target image. The task of F is to
predict the target image by filling up this template.

4. Experiments
4.1. Datasets

In our experiments, we use the THuman2.0 dataset [23] as
the training set for both our R-Cyclic Diffuser and the ex-
isting SOTA models. The THuman2.0 dataset contains 526
body scans (i.e. meshes) of real-life human subjects. We
use a 80-20 train-test split. Prior to training, Zero-1-to-3
[7], One-2-3-45 [6], and our R-Cyclic Diffuser are already
pre-trained with the same Internet-scale image datasets [17]
(>2 billion images) used by Stable Diffusion [13].

For each training mesh, we render RGB images at 10
degree intervals (azimuth rotation), with random elevation
angles, lighting conditions, and focal lengths using a per-
spective camera. We do the same to generate images in the
ideal subset S except that optimal elevation, lighting condi-
tion, and a weak-perspective camera is used.

We also use BUFF dataset [24] to evaluate the models.
No model is trained using the BUFF dataset. We followed
IntegratedPIFu [2] and carried out systematic sampling (us-
ing the sequence number) on the dataset, giving us 101 hu-
man meshes to be used for our evaluation. Performing sys-
tematic sampling allowed us to avoid meshes that have both
the same human subject and the same pose.

4.2. Comparison with State-of-the-art

We trained two versions of R-Cyclic Diffuser. The first ver-
sion assumes that SMPL-X priors are not available and does
not use our SMPL-X Blendweight Priors. The second ver-
sion assumes that SMPL-X priors are available and uses the
SMPL-X Blendweight Priors. We compare our two mod-
els against existing SOTA models on single-view clothed
human reconstruction. The existing models include Zero-
1-to-3 [7], One-2-3-45 [6], IntegratedPIFu [2], ICON [20],
ECON [21], and D-IF [22]. We use Zero-1-to-3 because it
is the pioneer in this new approach to single-view 3D recon-
struction. But as shown in Fig. 1, Zero-1-to-3 is designed
for object reconstruction and does not work well in human

Figure 13. SOTA vs Ours (SMPL-X meshes are not given). See
Supp. Mat. for a higher resolution version of this figure.

Figure 14. SOTA vs Ours (SMPL-X meshes are available). See
Supp. Mat. for a higher resolution version of this figure.

Figure 15. Results on Internet Photos from Shutterstock. See
Supp. Mat. for a higher resolution version of this figure.

reconstruction. To improve their performance, we made
a slight change to it by using a multi-view pixel-aligned
implicit model, rather than their Score Jacobian Chaining
[19], to reconstruct 3D meshes from the generated images.
This multi-view pixel-aligned implicit model is the same
one used in our R-Cyclic Diffuser. Also, any model that
uses SMPL-X prior is given the groundtruth SMPL-X prior.

To evaluate 3D clothed human meshes, we followed
[2, 4, 15] and used Chamfer Distance (CD) and Point-to-
Surface (P2S) as metrics. To evaluate 2D novel views, we
followed [7] and used PSNR, SSIM, and LPIPS as metrics.

Qualitative Evaluation We evaluate the models qualita-
tively in Figs. 2-3 and Figs. 13-14. The figures show that
our models, unlike existing methods, can construct meshes
with fine details (e.g. clothes wrinkles, nose, ears, hair) in
not just front but side and back views as well. Moreover,
unlike existing models, our method does not produce arte-
facts or empty gaps in the reconstructed meshes. We also
show our results on real Internet photos in Fig. 15. See our
Supp. Mat. for more results, including qualitative compar-
isons with ECON [21] and D-IF [22].
Quantitative Evaluation Our quantitative results can be
seen in Tab. 1, and it shows that our models (both with
and without SMPL-X) are able to outperform the existing
models in all metrics for both datasets.
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Table 1. Quantitative Evaluation with SOTA on 3D Reconstruction
THuman2.0 BUFF

Methods CD (10-4) P2S (10-4) CD (103) P2S (103)
IntegratedPIFu 5.925 5.777 2.171 2.092
Zero-1-to-3 w Pixel-aligned 6.560 5.093 2.562 2.327
One-2-3-45 8.613 7.556 3.905 4.228
Ours (w/o SMPL-X) 5.410 4.879 2.040 1.852
ICON (uses SMPL-X) 0.9934 0.9008 0.8668 0.7912
ECON (uses SMPL-X) 1.108 0.9053 0.9073 0.9774
D-IF (uses SMPL-X) 1.025 0.9149 0.9116 0.7696
Ours (w SMPL-X) 0.9409 0.8806 0.7119 0.6091

(a) w/o 
transformation to 
Ideal Subset 
(i.e. the original 
Zero-1-to-3)

(b) w 
transformation to 
Ideal Subset 
(i.e. Zero-1-to-3 
that uses IST)

Input Output 1 Output 2 Output 3 Output 4 Groundtruth

Wrong arm 
pointing up Wrong hair

Wrong 
sleeve 
color

Left fist is not 
above head

3 arms and 3 legs

Input Output 1 Output 2 Output 3 Output 4 Groundtruth

Figure 16. Ablation on our Ideal Subset Transformation (IST).

(i) Predictions
w/o Sequential 
Conditioning

(ii) Predictions
w Sequential 
Conditioning

(i) Predictions
w/o Sequential 
Conditioning

(ii) Predictions
w Sequential 
Conditioning

(i) Predictions
w/o Sequential 
Conditioning

(ii) Predictions
w Sequential 
Conditioning

(a) Input Image

(a) Input Image

(b) Input Image

Wrong arm 
position

Wrong arm 
position

Wrong arm 
position

Wrong arm 
position

Wrong arm 
positionWrong arm 

position

Figure 17. Ablation on using our Sequential Conditioning.

4.3. Ablation Studies

Evaluation of Ideal Subset Transformation (IST) We
compare a Zero-1-to-3 that does not use our Ideal Subset
Transformation (IST) with a Zero-1-to-3 that does. Using
the same input image, we ask both models to produce an
output repeatedly and show the results in Fig. 16. We find
that without IST, the outputs (views) are clearly less con-
sistent with one another (higher variance) and have a much
higher degree of inaccuracy as well.

A quantitative evaluation is shown in Tab. 2, where we
compare the predicted images with the groundtruth images.
The results show that IST improves prediction accuracy.

Evaluation of Sequential Conditioning (SC) To evalu-
ate the usefulness of using SC, we compare a version of our
R-Cyclic Diffuser that does not use SC (i.e. only use the in-
put image as prior) with a version that uses it. The results in
Fig. 17 and Tab. 3 show that SC reduces view inconsistency
between images and improves accuracy of outputs.

Evaluation of Lateral Inversion Constraint (LIC) We
evaluate LIC by comparing a R-Cyclic Diffuser that uses

Table 2. Ablation on Ideal Subset Transformation (IST)
THuman2.0

Methods LPIPS ↓ PSNR ↑ SSIM ↑
w/o IST 0.1134 14.59 0.8539
w IST 0.0860 19.74 0.8722

Table 3. Ablation on Sequential Conditioning (SC)
THuman2.0

Methods LPIPS ↓ PSNR ↑ SSIM ↑
w/o SC 0.0860 19.74 0.8722
w SC 0.0783 20.05 0.8736

Table 4. Ablation on Lateral Inversion Constraint (LIC)
THuman2.0

Methods LPIPS ↓ PSNR ↑ SSIM ↑
w/o LIC 0.0783 20.05 0.8736
w LIC 0.0632 21.24 0.8933

(i) Given Input (ii) Prediction 

(a)
w/o Lateral
Inversion
Constraint

(b)
w Lateral
Inversion
Constraint

(iii) Groundtruth

Not aligned pixel-wise

aligned pixel-wise
(i) Given Input (ii) Prediction (iii) Groundtruth

Figure 18. Ablation on our LIC. The “(ii) Prediction” refers to a
predicted image that is 180◦ (in azimuth) from the given input.

LIC with one that does not. The results in Fig. 18 and Tab. 4
show that LIC improves results by ensuring our predictions
are pixel-aligned with image priors that are 180◦ away.

Evaluation of SMPL-X Blendweight Priors To evaluate
our SMPL-X Blendweight Priors, we compare a R-Cyclic
Diffuser that uses SMPL-X Blendweight Priors against one
that does not. Qualitatively, we can compare Fig. 14c
against Fig. 14d. Quantitatively, we can compare the
4th and 8th rows in Tab. 1. We observe that SMPL-
X Blendweight Priors markedly improve results because
it aligns the pose of the reconstructed 3D mesh with the
groundtruth SMPL-X pose. More results in our Supp. Mat.

5. Conclusion
We have proposed R-Cyclic Diffuser, a framework that
adapts Zero-1-to-3’s novel approach to clothed human data
by fusing it with a multi-view pixel-aligned implicit model.
R-Cyclic Diffuser introduced a cyclical conditioning mech-
anism that is enhanced by two key features - Lateral In-
version Constraint and Cyclic Noise Selection. Moreover,
R-Cyclic Diffuser proposed SMPL-X Blendweights Priors,
which incorporates a SMPL-X into a latent diffusion model.
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