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Abstract

Coordinate based implicit neural representations have
gained rapid popularity in recent years as they have been
successfully used in image, geometry and scene modeling
tasks. In this work, we present a novel use case for such
implicit representations in the context of learning anatomi-
cally constrained face models. Actor specific anatomically
constrained face models are the state of the art in both facial
performance capture and performance retargeting. Despite
their practical success, these anatomical models are slow to
evaluate and often require extensive data capture to be built.
We propose the anatomical implicit face model; an ensem-
ble of implicit neural networks that jointly learn to model
the facial anatomy and the skin surface with high-fidelity,
and can readily be used as a drop in replacement to con-
ventional blendshape models. Given an arbitrary set of skin
surface meshes of an actor and only a neutral shape with
estimated skull and jaw bones, our method can recover a
dense anatomical substructure which constrains every point
on the facial surface. We demonstrate the usefulness of our
approach in several tasks ranging from shape fitting, shape
editing, and performance retargeting.

1. Introduction

Deformable face models are an important tool in the arse-
nal of visual effects artists dealing with facial animation.
As they are ubiquitously used both in high-end production
workflows and lightweight consumer applications, build-
ing expressive face models for various applications contin-
ues to remain an active area of research [17]. Face mod-
els today can range from simple linear global shape mod-
els [4, 27, 29] to highly complex local models that incorpo-
rate the underlying facial anatomy through physical simula-
tion [15, 44, 48] or through anatomical constraints [47].

In this work, we concern ourselves primarily with the
high-quality facial animation workflow where actor spe-
cific linear blendshape models [27] continue to remain
the most commonly used tool for creating facial anima-
tions [10, 33, 47]. We propose a new class of actor specific

shape models named the Anatomical Implicit face Model
(AIM) which provides several unique advantages over the
existing actor specific face models, and can be used as a
drop-in replacement for traditional blendshape models.

An actor specific blendshape model is a collection of
3D shapes of the given actor performing a number of fa-
cial expressions, usually created by face scanning [2] or by
an artist. While the user-friendliness of such actor specific
blendshape models contributes to their wide adoption, it is
a well known limitation that such models often require hun-
dreds of shapes to accurately model complex facial defor-
mation [27]. To address these shortcomings, local blend-
shape models [10, 42, 47] were proposed. By splitting the
face into regions, and allowing the individual regions to de-
form independently, local shape models are able to capture
complex deformations with a limited number of shapes.

While local models address the lack of expressivity in
global shape models, state-of-the-art methods in facial per-
formance capture [47] and retargeting [10] often incorpo-
rate anatomical constraints on the facial surface to plausibly
restrict the range of the skin deformations. The anatom-
ical constraints employed by these models [10, 47] pro-
vide a few hidden advantages that end up contributing to-
wards their practical success. For example, in the context
of facial performance capture, Wu et al. [47] demonstrated
that including anatomical constraints derived from the re-
lationship between the facial skin and underlying bones
(skull and mandible) helps to separate the rigid and non-
rigid components of facial deformation, leading to better
face performance capture. In the context of facial perfor-
mance retargeting, Chandran et al. [10] made use of such an
anatomically constrained local face model to restrict a retar-
geted shape to lie within the space of anatomically plausible
shapes of the target actor.

Despite their practical success, anatomical constraints
are often formulated in practice as regularization terms that
have to be satisfied as part of complex optimization prob-
lems involving several objectives. As a result, fitting these
anatomical face models to a target scan or an image for in-
stance, is a computationally intensive procedure taking sev-
eral minutes per frame on a CPU, or requires hand crafted
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GPU solvers [20]. Furthermore anatomy constraints are en-
forced only in sparse regions of the face, whereas in reality
the facial skin surface is more densely constrained by the
underlying anatomy, and simulating this dense interaction
between the anatomy and facial skin through physical simu-
lation can be even more computationally intensive [39, 48].

In this paper, we propose the Anatomical Implicit face
Model; a framework that allows for a holistic representa-
tion of both the facial anatomy and the skin surface using
simple implicit neural networks and facilitates the learning
of a continuous anatomical structure that densely constrains
the skin surface. Our model formulation, inspired by the
anatomical local model (ALM) of Wu et al. [47], can fur-
ther disentangle deformation arising from rigid bone motion
(jaw motion) and non-rigid deformations created by muscle
activations. Our model also addresses the computational
bottleneck of the ALM model by explicitly deriving the
skin surface from the anatomy, instead of formulating it as a
constrained optimization problem. By ensuring that a point
on the skin surface is always reconstructed through the un-
derlying anatomy, our method provides several unique fea-
tures in comparison to existing implicit face models, such
as anatomy based face manipulation (see Section 5). Be-
fore describing the details of our anatomical formulation in
Section 3, we discuss related work in Section 2.

2. Related Work

3D Morphable Models Facial models used in animation
make up for an extremely well studied body of work with
the earliest works dating back to the late 1970s [18]. We
therefore refer to the survey of Egger et al. [17] for an
in-depth review of the state-of-the-art methods, and pro-
vide only a concise summary in this section. Facial blend-
shapes [18, 27] have been conventionally used as a standard
tool by artists to navigate the geometric space of human
faces. The seminal 3D linear morphable model proposed by
Blanz and Vetter [4] used principal component analysis to
describe the variation in facial geometry and texture, which
was later extended to multilinear models, jointly modeling
identity and expression by Vlasic et al. [43] and later by
Cao et al. [7]. Today a very commonly used morphable
face model is the FLAME model [29] which incorporates
identity, expression and corrective blendshapes in addition
to modeling bone motion with linear blend skinning. Due to
its flexible nature, the FLAME model is widely used by face
reconstruction algorithms today [19]. Finally Chai et al. [8]
recently created the HIFI3D++ morphable model which is
built from a union of scans from several previously pro-
posed models.

In the past few years, numerous face models leverag-
ing the power of deep neural networks to model the non-
linear deformation of the human face have also been pro-
posed. While the initial work in this area by Ranjan et

al. [38] focused on the use of specialized graph convo-
lutional networks to operate on shapes, several later ap-
proaches proposed further modifications to the network ar-
chitecture to improve the accuracy in shape representation
[5, 14, 22, 55]. To make these deep morphable models in-
tuitive to use, Chandran et al. [9] subsequently proposed
the Semantic Deep Face Model which treats a collection of
neural networks like a multilinear model to achieve identity-
expression disentanglement. Extensions of such a semanti-
cally controllable model to deal with topology changes [12]
and temporal sequences of geometry [11] have also been
proposed. Deep neural models that jointly model the facial
geometry and appearance with semantic controls have also
been proposed [28].
Implicit Face Models Owing to the success of coordinate
based neural networks in representing images [30, 40], 3D
shapes [35] and arbitrary scenes [31], today’s research on
parametric face models primarily focuses on implicit repre-
sentations. Yenamandra et al. [49] proposed i3DMM as an
initial exploration of using coordinate based networks for
modeling full head geometries. This was followed by IM-
Face [51] which disentangled facial geometry into separate
identity and expression embeddings with the help of indi-
vidual deformation fields. More recently, Neural Paramet-
ric Head Models (NPHM) [21] proposed a method which
improves the fidelity of neural implicit representations by
jointly training an ensemble of local neural fields centered
around anchor points. Implicit neural representations have
also successfully been employed in learning an animat-
able avatar of a human face from only monocular video
as demonstrated by IMAvatar [52] and Point Avatar [53].
Wang et al. [45] also proposed MoRF, which is a Neural Ra-
diance Field [31] conditioned on an identity code allowing
for photorealistic free viewpoint rendering of the full head
in a fixed expression. Recently Buhler et al. [6] also ex-
plored how such multi-identity radiance fields can be fit to
sparse images to recover a volumetric head model. Finally
coordinate based neural networks have also been success-
fully employed in creating animatable human body mod-
els [3, 16, 23, 34].
Anatomically Constrained Face Models The anatomi-
cal local model proposed in the context of monocular facial
performance capture by Wu et al. [47], first introduced the
coupling of the anatomical bone structure to the skin sur-
face and modeled the effect of skin patches sliding over the
bone through soft anatomical constraints. This formulation
was later adapted by Chandran et al. [10] for facial perfor-
mance retargeting. Qiu et al. proposed SCULPTOR [37],
a multi-identity joint morphable model of facial anatomy
and skin learned from a database of computed tomography
(CT) scans. Recently Choi et al. proposed Animatomy [15],
a muscle fiber based anatomical basis for animator friendly
face modeling applications. Lastly we recognize several
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physically based face models [39, 41, 44, 48] which inher-
ently have the ability to model anatomy constraints through
simulation.

We draw inspiration from the three classes of facial mor-
phable models discussed above and propose the Anatomical
Implicit face Model: a blendshape based, implicit, anatom-
ically constrained face model targeted towards high-quality
actor specific face modeling. Our method can be seen as
general extension of local blendshape models [10] to a con-
tinuously evaluable implicit function, and represents a set
of actor blendshapes through a novel anatomical formu-
lation. Unlike traditional patch-based models, our frame-
work allows us to approximate complex shapes without re-
quiring the user to specify patch layouts and other hyper-
parameters. Our solution is based on simple coordinate
based MLPs enabling efficient training and inference, and
provides computational benefits over previous anatomically
formulated face models [47]. Finally to the best of our
knowledge, our method is the first to explore anatomical
constraints inside an implicit facial blendshape model.
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Figure 1. Our approach consists of a model learning stage (Sec-
tion 4.1) and a model fitting stage (Section 4.2). In the model
learning stage, a set of an actor’s blendshapes are memorized by an
ensemble of MLPs by our Anatomical Implicit face Model (AIM).
In the second model fitting stage, the memorized model can be
used as power shape prior to fit the actor model to target shapes.

3. Anatomical Model Formulation

The core idea of our approach is to formulate a learning
scheme for an implicit neural representation that can repro-
duce an actor blendshape model while automatically learn-
ing the underlying facial anatomy and constraining the skin
surface to this learned anatomy. Crucial to our learning
scheme is our anatomically constrained face model that ge-
ometrically couples the underlying facial anatomy to the en-
closing skin surface which we describe next.

We assume that we are given a set of N 3D scans
(S0, S1, S2, .., SN�1) of an actor represented as meshes.
Without loss of generality, let S0 be the shape with a neu-

learned anatomy neutral geometry skinned geometry residual deformations

}

Figure 2. We show the break down of how we anatomically build
up the facial skin surface. Starting from a learned anatomy surface
(left), and learned anatomical properties like the soft tissue thick-
ness, and anatomical surface normals, we reconstruct the neutral
skin geometry. The neutral anatomy is skinned, and non-rigidly
deformed with residual displacements to result in the final shape.

tral expression (or the rest pose). Each shape Si consists
of V vertices, and all shapes share the same vertex connec-
tivity. For simplicity we exclude the index of the vertex
in a shape in our notation and present our formulation as
operating on surface points s 2 R3. Let s0 2 R3 and
si 2 R3 be corresponding points on the skin surface for the
neutral expression and expression i respectively. In most
previous methods for learning neural face models, a skin
surface point s is learned as a displacement from a base
face surface [9, 12, 21] or simply as points lying in an arbi-
trary 3D space [45, 51, 52]. Contrary to such approaches,
we propose to learn the skin surface s using implicit neural
representations that arrives at the facial skin surface through
a formulation that combines anatomical constraints, linear
blend skinning (LBS), and expression blendshapes into a
single framework.

For our model formulation, we take inspiration from the
anatomical constraints first proposed for non-neural face
models [1, 47], particularly that of Wu et al. [47]. They
establish a link between the skin surface and the anatomical
bones by modeling the thickness di 2 R of the soft tissue
between a bone point bi 2 R and the skin surface si. These
constraints are defined in sparse regions of the face where a
skin point can be trusted to have bone underneath. We draw
inspiration from their simple formulation and make some
important deviations that enable us to jointly learn both the
surface of the underlying skin anatomy and the enclosing
skin surface for every point on the skin through end-to-end
learning. Specifically, we arrive at a point on the skin sur-
face as follows

s0 = b0 + d0n0 (1)

where s0 is the position of a surface point corresponding
to si but on the neutral shape S0, b0, d0, and n0 are the
bone point, soft tissue thickness and the bone normal at s0.
While Eq. 1 allows us to reconstruct points on the neutral
face geometry, to adequately represent skin surfaces under
arbitrary facial expressions, we need to account for surface
deformation arising from the rigid motion of underlying
facial bones (skull and mandible), and the non-rigid skin
motion arising from muscle activations, skin sliding, and
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self collisions. To accommodate these additional degrees of
freedom in skin deformation, we incorporate standard lin-
ear blend skinning, and expression blendshapes similar to
the FLAME model [29]. Therefore given an anatomically
reconstructed point on the neutral skin surface s0, we can
now compute the position of the same point in an arbitrary
expression si as

si = LBS(s0, Tb, k) + ei (2)

where LBS refers to the standard linear blend skinning op-
erator that rigidly transforms the anatomically reconstructed
neutral surface point s0 with a transformation Tb and a skin-
ning weight k, ei 2 R3 is the corrective displacement that
is added on top of the skinned result to account for deforma-
tions that cannot be explained by skinning alone. A visual
overview of our approach to anatomically build up the facial
skin surface is shown in Fig. 2.

At this point we have established how to arrive at points
on the skin surface si for a shape in an arbitrary facial ex-
pression Si by starting from the underlying anatomy bi. It
is important to note that the anatomical constraints as de-
fined by Wu et al. [47] can only be computed on regions
with an underlying bone, and thus, regions like the cheeks
are not anatomically constrained in their approach. An es-
sential feature of our approach that distinguishes it from all
previous works is that we enforce anatomical constraints for
every point on the skin surface; even in regions where there
is no underlying biological bone structure. For this purpose
we redefine the anatomy in our work as a rigidly deforming
region underneath the skin surface that is not restricted to
only the manifold of the skull and mandible bones. Since
this structure does not exist in reality and is, therefore, not
available for supervised learning, we formulate a learning
framework where such rigidly deforming surface can be
learned only from the sparse set of anatomical constraints
computed between the skin and the underlying bones. As
we will see in Section 5, learning this anatomical surface
from data leads to several interesting applications in shape
manipulation and performance retargeting that were previ-
ously challenging to obtain without expensive physical sim-
ulation [48] or extensive volumetric data capture [37].

4. Anatomical Implicit Face Model

At a high level, our method is comprised of two stages: first,
a model learning stage (Section 4.1) and second, a model
fitting stage (4.2). In the model learning stage, we bake
a collection of expression blendshapes from an actor into
an implicit neural network that uses the anatomical model
formulation described in Section 3. Our model fitting stage
uses this learned Anatomical Implicit face Model (AIM) and
optimizes for coefficients that deform the model to match
test time constraints like 3D shapes, 2D landmarks and so
on. The overview of our approach is shown in Fig. 1.

...

a) b)

Figure 3. a) We assume we are given the neutral geometry of an
actor along with an rough estimate of the skull and jaw bone [56].
b) We additionally use a collection of N 3D shapes of the actor
performing expressions. Unlike Wu et al. [47], we do not require
the tracked anatomy (skull [1], jaw [57]) for the expression shapes.

4.1. Model Learning

To learn our anatomical implicit face model, we assume we
are given a template shape C, a registered set of N shapes
(S0, S1, S2, .., SN�1) of a single actor in the same topology
of the canonical shape. Additionally we fit a template skull
and jaw only to the neutral shape using the method of Zoss
et al. [56]. The template shape C can either be the neutral
shape of the actor or a generic face shape, and the number
of shapes provided can be arbitrary. We use a collection
of 20 shapes in our work. A visual summary of our train-
ing data is shown in Fig. 3. Our objective in the learning
stage is to use a coordinate based neural network to memo-
rize the given shapes through the anatomical formulation in
Section 3. Given the high representation power of periodic
implicit neural networks [40], we use the SIREN coordi-
nate network; an MLP with sinusoidal activation functions,
as our base architecture. An ablation study on alternate net-
work choices is provided in our supplemental.

Given a point c 2 R3 on the template shape C, we use
three independent MLPs denoted by B, D, and N to pre-
dict the anatomy point eb0 2 R3, the soft tissue thickness
ed0 2 R, and the anatomy normal en0 2 R3. These predicted
anatomical properties are then used to reconstruct the posi-
tion of a point on the neutral skin surface es0 as

eb0 = B(c) (3)
ed0 = D(c) (4)
en0 = N(c) (5)

es0 = eb0 + ed0en0. (6)

As discussed in Section 3, to further account for the rigid
and non-rigid deformations of the skin surface, the anatom-
ically constructed neutral skin point es0 has to be skinned
and further displaced with residual expression deforma-
tions. We therefore employ two additional MLPs K and
E that predict the skinning weight ek 2 R and the corrective
displacements basis Be 2 R(N�1)⇥3 respectively. Note
here that, as an implementation detail, we predict the ex-
pression displacements for all N � 1 blendshapes (exclud-
ing the neutral) at once from E. The corrective expression
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displacement eei 2 R3 for shape i can be extracted from this
output by indexing Be appropriately.

ek = K(c) (7)
Be = E(c) (8)
eei = Be[i] (9)

esi = LBS
⇣
es0, eTb,ek

⌘
+ eei (10)

Here eTb 2 R9 is a 6-DOF jaw bone transformation opti-
mized along with the training of the MLPs to account for
rigid motion of the mandible. Here we parameterize the
jaw bone rotation eTb following the continuous 6D represen-
tation [54].

4.1.1 Training Objectives

We next describe the training objectives to learn actor ex-
pression blendshapes along with the underlying anatomy
structure for each skin surface point.

Skin Position Loss The skin position loss penalizes the dif-
ference between the estimated skin point esi and the ground
truth skin point si.

LS = �S||esi � si||22 (11)

We set �S = 1.0 for all our experiments.

Anatomy Regularizer Since we can roughly estimate the
skull and jaw geometry on the neutral shape using the
method of Zoss et al. [56], we compute sparse anatomical
constraints [47] and loosely regularize the learned anatomi-
cal properties to stay close to these estimates only in regions
where the constraints can be accurately computed (i.e. skin
regions with an underlying bone).

LA=�b||eb0�b0||22+�d||ed0�d0||22+�n||en0�ni||22 (12)

We set �b = �d = �n = 1.0 for all our experiments, and
observe that this constraint only regularizes 5-10% of all
the vertices generated by the model on average (see Supple-
mental).

Thickness Regularizer We regularize the soft tissue thick-
ness ed predicted by the model in unconstrained regions to
remain as small unless dictated otherwise by the skin posi-
tion loss.

LD = �Reg
D ||ed0||22 (13)

We set �Reg
D = 7.5e�4 for all our experiments.

Symmetry Regularizer To exploit the symmetry of the
face, we regularize the predictions of the anatomy MLP B
to be symmetric. We achieve this by requiring that reflect-
ing the input points c along the plane of symmetry provides
the same result as reflecting the predicted anatomy points ea.

LSym = �sym||B(R(c))�R(B(c))||22 (14)

where R is an operator that reflects a point along the plane
of symmetry. We set �sym = 1e�4 for all our experiments.
Note that we do not regularize symmetry on the predicted
thickness or anatomy normals thereby allowing the model
to still be able to represent asymmetric faces.

Optional Skinning Weight Regularizer Finally inspired
by [52], we use an optional loss that encourages the esti-
mated skinning weights ek in regions like the forehead that
are guaranteed to not be affected by the rigid deformation
of the jaw bone to be zero.

LK = �k||K(c⇤)||22 (15)

here c⇤ refers to a small region on the canonical shape C
which includes the forehead. We set �K = 1e2 for all our
experiments.

Our final model energy LModel is a summation of the
above losses and is minimized using gradient decent [26]
to train our ensemble of coordinate MLPs end-to-end.

LModel = LS + LA + LD + LSym + LK (16)

4.2. Model Fitting

While the aforementioned model can recover interesting
anatomical properties of the face with only sparse supervi-
sion, it is not very useful unless it can be deformed to match
user constraints and serve as a shape prior for an actor facial
geometry.

After training our anatomical implicit face model on a
collection of N shapes, the coefficients that are required to
deform it include a jaw bone transformation Tb

⇤ 2 R9,
coefficients w⇤ 2 RN�1 that can be used to blend the cor-
rective expression displacements Be 2 R(N�1)⇥3, and an
optional global head transformation Tg

⇤ 2 R9. Following
Equation (10), we can therefore evaluate our anatomical im-
plicit face model as

s⇤ = Tg
⇤

 
LBS

⇣
es0,Tb

⇤,ek
⌘
+
X

N�1

w⇤Be

!
(17)

where Tg
⇤, Tb

⇤ and w⇤ are the only unknowns, and the
rest can be queried from a pre-trained AIM. We consider
two scenarios for model fitting which include i) fitting our
model to a sequence of 3D scans e.g. from a facial perfor-
mance, and ii) fitting our model to 2D landmarks detected
on a video [13, 46].

For both scenarios, inspired by the state-of-the-art find-
ings of Kim et al. [50], we employ neural reparameterized
optimization [25] and solve for the weights of a simple MLP
that predicts the unknown parameters instead of directly op-
timizing for them. Specifically when given a sequence of J
frames with 3D/2D constraints, we optimize for J frame
codes zj 2 Rf which, when fed as input to a simple 4-layer
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MLP FT with GeLU [24] activations, predicts the head Tg
j

and jaw Tb
j poses for each frame. Additionally as the co-

efficients wj are local and spatially varying depending on
the template query point c, we use a separate 4-layer MLP
FW which predicts the coefficients wj by taking both the
frame code zj and the query point c as input.

[Tg
j ,Tb

j ] = FT (zj) (18)
wj = FW (zj, c) (19)

Unlike the method of Kim et al. [50] where the reparam-
eterized optimization was used mainly for improved per-
formance, this neural optimization is even necessary in our
case to restrict the number of optimized variables as the
number of spatially varying coefficients w⇤ used to evaluate
our anatomical implicit face model can vary drastically de-
pending on the number of constraint points (see Section 5).

4.2.1 Fitting Objectives

3D Position Constraint For fitting our trained model to 3D
constraints coming from a facial performance of an actor,
we minimize the euclidean distance between the estimated
skin point s⇤ and the ground truth skin point sGT . However
by constraining only the final skin surface, expression dis-
placements could overcompensate for the skinned geome-
try. To prevent this from happening, we additionally require
the skinned shape without corrective displacements s⇤lbs to
be as close as possible to the ground truth skin point.

L3D
Pos = �3D

�
||s⇤ � sGT ||22 + ||s⇤lbs � sGT ||22

�
(20)

2D Position Constraint For fitting our model to 2D con-
straints such as facial landmarks estimated by a pre-trained
landmark detector [13, 46], we project the estimated skin
point s⇤ to screen space using known camera intrinsics
 and calculate the euclidean distance in 2D between the
project point  (s⇤) and the corresponding landmark.

L2D
Pos = �2D

�
|| (s⇤)� p||22 + || (s⇤lbs)� p||22

�
(21)

p 2 R2 is a detected landmark corresponding to point s⇤.

Coefficient Regularizer As the complexity of our implicit
anatomical face model can be arbitrarily large, we regular-
ize the estimated blending coefficients w⇤ to be small with
a weak L2 regularizer.

LW = �wReg||w⇤||22 (22)

We set �wReg = 0.75 for all our experiments.

Temporal Regularizer Finally when optimizing for coeffi-
cients on sequential data, we regularize the optimized frame
codes zj to remain similar between adjacent frames.

LT = �tReg||zj � zj�1||22 (23)

We set �tReg = 0.05 for all our experiments. Our final fit-
ting energy LFitting is therefore

LFitting = L3D
Pos + L2D

Pos + LW + LT (24)

For 3D/2D fitting, we set �2D and �3D to 0 respectively.

4.3. Implementation Details

In the model learning stage, we optimize our implicit co-
ordinate networks for 1e4 iterations with a learning rate of
2e�3. This takes approximately 10 minutes to converge on
a single Nvidia RTX 3090 for an actor model with 40,000
vertices and 20 blendshapes. In the model fitting stage, we
use a learning rate of 1e�3 and optimize the fitting MLPs
FT and FW for 1e4 iterations. This process takes 1 second
per frame on a single Nvidia RTX 3090. We implement
all our MLPs in PyTorch [36]. In our supplementary ma-
terial we discuss the performance implications of replacing
our current python backend with the well engineered fused
MLP implementation [32].

5. Results

We now present several results, applications and evaluations
of our Anatomical Implicit face Model (AIM).

shapes reconstruction

skinning weights

target neutral reconstruction anatomy

error thickness

skinning weights

target neutral reconstruction anatomy

error thickness

shapes reconstruction

reconstruction error

reconstruction error

Figure 4. We demonstrate the ability of our Anatomical Im-
plicit face Model to recover plausible anatomic features of the
face, while also modeling the skin surface with very high fidelity.
A subset of 3 expressions from 2 different actor specific mod-
els are shown here. The errors are displayed with a scale of
0mm 5mm.

5.1. Learning Actor Specific Anatomy

We begin by showing the reconstruction accuracy of our
AIM on facial blendshapes of multiple actors. As seen in
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cheeks soft-tissue volume editing

mask

Figure 5. Once the AIM is learned for an actor, it can be used to
intuitively deform a face using the learned anatomic properties, as
demonstrated here by scaling the soft tissue thickness in a hand
painted cheek region, and by propagating the change to the skin
surface thanks to our formulation.

Fig. 4 on 2 different actors, our method can faithfully rep-
resent facial shapes with high fidelity while capturing both
the low and high frequency features of facial shape and ex-
pression. We also show the anatomic features recovered by
our new formulation which includes the dense underlying
facial anatomy (shown in red), the soft tissue thickness at
every point on the anatomy (visualized as heatmap), and the
optimized subject specific skinning weights. These results
highlight the new abilities introduced by our method in re-
covering plausible anatomy features while jointly learning
to model surface deformations.

5.2. Anatomy Manipulation

Our ability to estimate the underlying anatomy that densely
constrains the skin surface opens up new, yet computa-
tionally inexpensive ways to edit facial geometry using our
learned anatomic properties. For example, as illustrated in
Fig. 5, by simply scaling the learned soft tissue thickness d
in desired regions of the face (denoted by the hand drawn
mask), an artist can interactively sculpt/deform an actor’s
face shape to match their requirements.

5.3. Expression Reconstruction

We next evaluate the expressiveness of our model by fit-
ting it to unseen 3D performances of multiple actors. Given
a sequence of J dynamic 3D shapes from a studio scan-
ner [2], we first deform our template mesh C to match
the scanned shapes using standard mesh registration tech-
niques such that the dynamic 3D scans are in full vertex
correspondence with our AIM. We then follow the fitting
procedure described in Section 4.2 and obtain per-frame
transformations [Tg

j ,Tb
j ] and shape coefficients wj that

explain the captured ground truth shape. For this experi-
ment, we use the 3D position constraint from Eq. (24) and
set L2D to 0. We densely constrain the fitting procedure
at every vertex of the ground truth shape. In Fig. 6 we pro-
vide both a qualitative and quantitative comparison of fitting
to novel performance from an actor against global blend-
shapes (GBS) [27], a patch blendshape model (PBS) [13],
and the anatomical local model (ALM) [47]. In this exper-

Table 1. Average fitting error (in mm) across 819 frames from 5
sequences of 5 different actors.

GBS [27] PBS [13] ALM [47] Ours (G) Ours

0.83 0.51 0.09 0.86 0.31

iment, we use 20 ground truth actor blendshapes to build
the GBS, PBS, and ALM models, and the anatomically re-
constructed blendshapes for our method. Even under this
slight disadvantage, our method outperforms both GBS, and
PBS and provides visually comparable results to the ALM
model. Table 1 shows the average fitting error of each
method across 819 frames from 5 sequences of 5 different
actors. Ours (G) refers to a variant of our fitting algorithm
where the expression coefficients are applied globally to ob-
tain a face shape. Our method converges in a few seconds
for each frame, while the ALM algorithm consistently re-
quires several minutes per frame. While the continuous na-
ture of AIM enables us to evaluate it with coefficients of ar-
bitrary locality, it could result in situations where our fitting
is underconstrained in the absence of dense constraints lead-
ing to broken shapes. To illustrate that this does not happen
in our reparameterized optimization, we show the result of
fitting the AIM to sparse constraints in Fig. 7. While in-
creasing the density of constraints improves the fitting ac-
curacy, fitting our model to sparse landmarks also provides
plausible results. Note that we do not compare fitting accu-
racy against generic morphable models like FLAME [29] or
NPHM [21] as ours is actor specific and therefore a quanti-
tative comparison might be unfair to the other methods. We
kindly refer to our supplemental material for more results.

5.4. 3D Performance Retargeting

Another important application of our method is in the area
of 3D performance retargeting, where the goal is to trans-
fer a facial animation from a source to a target character
while respecting the identity and anatomical characteris-
tics of the target character. To accomplish this using our
model, we learn two separate instances of our model for the
source and target character respectively from a sparse set of
20 blendshapes in correspondence. We then fit our source
model to the facial animation of the source target character
to obtain per-frame transformations [Tg

j ,Tb
j ] and shape

coefficients wj . These coefficients can simply be played
back on the target model to achieve facial performance re-
targeting. In Fig. 8, we provide a qualitative comparison to
the state-of-the-art 3D retargeting algorithm of Chandran et
al. [10] by retargeting the performance from a source to a
target character. Our method provides competitive results
to state of the art, while also allowing users to disentangle
the rigid jaw motion and the soft tissue deformations of the
skin surface. Our method additionally provides a substan-
tial runtime benefit here and retargets each frame in a few
(2-3) seconds, while the method of Chandran et al. requires
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Figure 6. We show qualitative and quantitative comparisons of
fitting 3D performances with various actor specific models. All the
errors are displayed with a scale of 0mm 5mm.

several minutes per frame due to a costly anatomical solve.
Finally unlike the approach of Chandran et al., our method
provides all of above benefits without having to manually
choose design parameters such as the patch layout, number
of overlaps etc.

5.5. Limitations

Due to the sparse supervision on the facial anatomy, some-
times artifacts can appear on the learned anatomical sur-
face especially in areas surrounding the lip region. Another
limitation of our work is we current do not skin the facial

64

500

36000

Figure 7. Our continuous anatomical face model can be fit to 3D
scans with varying density of constraints and still provide valid
results due to our fitting algorithm.: all the errors are displayed
with a scale of 0mm 5mm.

input ours ours LBS ours deformations[Chandran et al. 2022]

Figure 8. We show the result of facial performance transfer in 3D
from an input actor (left) to a different actor as produced by our
method (2nd column) and the local retargeting model of Chandran
et al. [10]. While providing qualitatively similar results, our model
implicitly disentangles the performance into rigid jaw motion (3rd
column), and nonrigid soft tissue deformations (4th column).

anatomy to rigidly deform it along with facial expressions.
Addressing these limitations through additional anatomical
regularization or by predicting expression specific normals
and thickness maps could be interesting future work. Some
temporal jitter could also occur in our fitting step for chal-
lenging performances if the optimization is terminated too
early. Finally extending our model to support facial appear-
ance could be valuable future work.

6. Conclusion

In this paper we propose a new anatomically constrained
implicit face model which provides a holistic representation
of both facial anatomy and the enclosing skin surface using
an ensemble of coordinate neural networks. Given an
arbtrary set of skin surface meshes and only a neutral shape
with estimated skull and jaw bones, our method recovers
a dense anatomical substructure to constrain each point on
the skin surface, and can model complex skin deformations
with high fidelity. While we have explored the use of
such a model in the context of actor specific blendshape
models, future work could analyze it’s implications as a
generic morphable model, by extending our formulation
to handle multiple identities at once. Our new Anatomical
Implicit face Model (AIM) has applications in shape repre-
sentation and manipulation, retargeting and more, and we
hope that our method encourages exciting future research.
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