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Abstract

Superpixels play a crucial role in image processing by
partitioning an image into clusters of pixels with similar vi-
sual attributes. This facilitates subsequent image process-
ing tasks, offering computational advantages over the ma-
nipulation of individual pixels. While numerous overseg-
mentation techniques have emerged in recent years, many
rely on predefined initialization and termination criteria. In
this paper, a novel top-down superpixel segmentation algo-
rithm called Hierarchical Histogram Threshold Segmenta-
tion (HHTS) is introduced. It eliminates the need for ini-
tialization and implements auto-termination, outperform-
ing state-of-the-art methods w.r.t. boundary recall. This
is achieved by iteratively partitioning individual pixel seg-
ments into foreground and background and applying inten-
sity thresholding across multiple color channels. The un-
derlying iterative process constructs a superpixel hierarchy
that adapts to local detail distributions until color infor-
mation exhaustion. Experimental results demonstrate the
superiority of the proposed approach in terms of bound-
ary adherence, while maintaining competitive runtime per-
formance on the BSDS500 and NYUV2 datasets. Further-
more, an application of HHTS in refining machine learning-
based semantic segmentation masks produced by the Seg-
ment Anything Foundation Model (SAM) is presented.

1. Introduction

Superpixel segmentation is an important preprocessing step
in computer vision. It groups pixels with similar proper-
ties to reduce the number of primitives and enhance ob-
ject representation. Various image processing tasks benefit
from high-quality superpixels, such as semantic segmenta-
tion [12, 33, 42, 52], object tracking [47], object categoriza-
tion [11], simultaneous localization and mapping (SLAM)
[6, 20], image segmentation [10, 34, 50], video segmen-
tation [39, 40], and stereo matching [37, 44]. There ex-
ists a wide range of approaches for image oversegmention
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Figure 1. Visual comparison of 500 superpixels resulting from
(a, c) ETPS [previous], (b, d) HHTS [proposed] segmentation.

(a) (b) (c)

Figure 2. Visual comparison of semantic segment masks (a) orig-
inal image, (b) semantic segment (SAM ViT-H) [previous] and
(c) refined semantic segment (SAM + HHTS) [proposed]

[1, 5, 7–9, 18, 21, 28, 30, 46, 49, 51], often involving trade-
offs between boundary adherence, regular segment sizes,
and computational efficiency. However, there are also vari-
ous applications e.g. in computer graphics or medical imag-
ing [37, 50] requiring the maximization of boundary recall.

In this work, a novel hierarchical oversegmentation ap-
proach based on auto-terminating local histogram thresh-
olding is introduced, resulting in superpixels with signifi-
cantly higher boundary adherence. The corresponding re-
sults can be utilized e.g. for fine-tuning semantic segmen-
tation masks, as will be shown for the Segment Anything
Model (SAM) [15]. Most established superpixel algorithms
depend on a priori knowledge of image content and struc-
ture: Examples are seed-based methods requiring infor-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3195



mation about the seed number and distribution [1, 5, 7–
9, 17, 18, 21, 28, 28, 38, 46, 49, 51], or optimization meth-
ods relying on a pre-defined iteration limit [1, 5, 9, 17–
19, 23, 28, 30, 38, 46, 49]. Proper parameterization is cru-
cial for achieving optimal segmentation results, but often
difficult to determine in practice [50]. This is true especially
for seed-based methods, since an improper seed configura-
tion may lead to detail losses [51].

The main contribution of this work comprises the Hi-
erarchical Histogram Threshold Segmentation (HHTS) al-
gorithm, capable of adapting to varying detail distributions
and auto-terminating segmentation without prior knowl-
edge about the input image. This is achieved through an
iterative and hierarchical splitting of image regions across
multiple color spaces into smaller, more homogeneous seg-
ments. It is assumed that the local histogram of each seg-
ment encodes information about local object boundaries,
which are extracted iteratively, resulting in superpixels with
very high boundary adherence. By utilizing multiple color
spaces, various types of foreground and background can
be distinguished. Larger segments, lacking recognizable
boundaries, are retained in order to keep the number of im-
age primitives low, thus potentially increasing the efficiency
of segmentation applications. The only required control pa-
rameter is the smallest size in pixels of image details to cap-
ture. Additional common parameters (like the target num-
ber of superpixels) are supported, but are not mandatory.
HHTS can detect color channel exhaustion and automati-
cally stop further processing. Therewith, it can be utilized
for automatic postprocessing or fine-tuning of other over-
segmentation results.

Experiments demonstrate that HHTS yields superior
boundary adherence results compared to recent methods,
while maintaining competitive performance for multi-level
segmentation. Its effectiveness is shown through the refine-
ment of semantic segmentation masks.

2. Related Work
Image oversegmentation methods rooted in morphologi-
cal image processing, such as Compact Watershed [28]
and Waterpixels [21], leverage the original watershed algo-
rithm [24] to produce fine-grained partitions of an image.
These methods construct watershed lines to separate catch-
ment basins, ultimately forming superpixels.

Graph-based superpixel techniques interpret segmenta-
tion as a graph partitioning problem. Nodes in the graph
represent pixels [19], grids [49], or rectangles [38]. These
nodes are merged or split based on edge weights, such as
color similarity, with the aim of achieving a balanced trade-
off between boundary adherence and compactness.

Clustering-based superpixel algorithms group pixels
based on similarity measures in feature space, typically ini-
tiated by a seed distribution [1, 17, 18, 28, 30].

Energy optimization approaches seek an optimal label-
ing configuration by formulating an energy function that
balances data fidelity and regularization terms. Often, the
image is initially divided into regular grids to denote super-
pixel boundaries [9, 23, 46]. Pixels are then reassigned to
neighboring superpixels iteratively based on energy.

In recent years there have been significant advances in
deep learning-based superpixel techniques, resulting in ap-
proaches such as LDFUNet [8] and APENet [7]. These ap-
proaches require extensive training, but then strike a good
balance between segmentation accuracy and speed [8].

There is a well-known significant issue across the afore-
mentioned methods regarding parameter sensitivity: Each
approach typically involves one or more key parameters that
require careful adjustment to achieve optimal results for
specific application contexts, such as medical image seg-
mentation [50]. These parameters play a pivotal role in
shaping the characteristics of the generated superpixels.

Two common aspects of parameterization are initializa-
tion and termination. Superpixel algorithms often require
grids [7–9, 38, 46, 49] or seed points [1, 5, 17, 18, 28, 51],
and markers [21, 28] as a starting condition. Typically,
seed-based algorithms rely on complex initialization to cap-
ture details in images where information is not evenly dis-
tributed. Zhou et al. [51] propose a novel seed initialization
solution for also capturing thin details, even for images with
highly varying detail densities.

Termination is often determined by a user-defined super-
pixel count or maximal number of iterations [1, 5, 9, 17–
19, 23, 28, 30, 38, 46, 49]. Hierarchical approaches like Su-
perpixel Hierarchy [41] and CRTrees [45] generate multiple
superpixel resolutions, providing more flexibility when a
less strict termination criterion is used. Additionally, further
processing steps of computer vision algorithms [13, 16, 43]
can significantly benefit from such multi-scale results [41].

In this paper, a novel superpixel segmentation algorithm
is presented that does not require complex initialization. It
is also capable of auto-termination by analyzing locally co-
herent pixel color distributions, while accurately determin-
ing fine-grained segment structures.

3. Method

3.1. Multi-Channel Thresholding

The main idea of Hierarchical Histogram Threshold Seg-
mentation (HHTS) is to extract foreground from back-
ground within a given image region by utilizing local his-
tograms: Following the basic approach of single-color-
channel histogram segmentation, an intensity threshold has
to be selected that separates objects or components from
their surroundings. This may work satisfactory, if objects
are clearly distinguishable (e.g. white object on a black
background in a grayscale image). To maximize the like-
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lihood of finding a suitable object separation, it is pro-
posed to employ multiple color channels and even multi-
ple color models. Other superpixel oversegmentation ap-
proaches usually support RGB [19, 23, 46], LAB [1, 5, 9],
and HSV [9, 24], each yielding different results for detect-
ing edges and object boundaries [26]. In this work, all three
color models are utilized simultaneously to capture as many
object outlines as possible.

3.2. Threshold Selection

Selecting an appropriate threshold for histogram-based ob-
ject segmentation is a challenging aspect, as applying sim-
ple local or global minima is usually insufficient. Tradi-
tional approaches attempt to minimize intra-class variance,
such as Otsu thresholding [29] or its more recent optimiza-
tion [31]. However, their ability to detect boundaries and
object outlines is suboptimal (cf . Sec. 4).

In this work, object boundaries are identified in the his-
togram by interpreting intensity clusters as object classes:
It is assumed that high local differences in histogram val-
ues indicate the upper or lower boundary of an object
class. For boundary detection, a discrete 1D Laplace-Kernel[
1 −2 1

]
is applied to the histogram to detect thresh-

olds candidates for object class outlines. Additionally, to
prevent tiny areas being cut off from lower and upper his-
togram limits (e.g. because of blurry boundaries due to im-
age compression), weights for a more equal partition are in-
troduced. So, in a histogram h =

(
h0 h1 · · · hb−1

)
with b bins, the applicability ai – as the threshold for
each bin i ∈ {0, 1, · · · , b − 1} – can be determined as
ai = li · wi, where the 1D Laplace filter results l are given
by: li = hi−1 − 2 · hi + hi+1. For the equal partition
weights w an adjusted Cauchy distribution is applied to
the cumulative histogram ĥ to favor thresholds near ĥb−1

2 :

wi = [(2 − 4ĥi

ĥb−1
)4 + 1]−1, with ĥi =

∑i
j=0 hj . Then,

the segmentation threshold t is computed as t = h̃it based
on the mean histogram intensity of bin it with the highest
threshold applicability a:

it = arg max
i∈{0,1,··· ,b−1}

(ai) (1)

The corresponding pseudocode is shown in Algorithm 2.

3.3. Hierarchical Segmentation

The segmentation of an image I with n channels(
I0 I1 · · · In−1

)
is based on the following hierarchi-

cal approach: Initially, a global histogram is computed for
the entire input image, applying the image thresholding pro-
cedure from Sec. 3.2. This results in two or more spatially
connected segments, typically representing a separation be-
tween visually correlating components (e.g. similarly col-
ored foreground objects) and the remaining image content

(a) (b) (c) (d) (e)

Figure 3. First four segmentation iterations with 14, 30, 48 and
92 segments: (a) most significant image channel for iteration seg-
ment, (b) iteration segment, (c) its local histogram – blue: intensity
distribution, green: threshold applicability, red: separation thresh-
old, (d) segmentation result, (e) mean segmentation image

(e.g. background or less distinguishable objects). This step
primarily serves to delineate pixel intensity gradients in any
color channel. The resulting segments encompass a smaller
range of pixel intensities in at least one channel and are
thus labeled as more homogeneous. Subsequently, the his-
togram threshold segmentation is performed for any result-
ing segment (using local segment histograms) based on a
priority fprio. This process iteratively builds up a segmen-
tation hierarchy in which homogeneity increases with each
successive sub-segment.

Now, let S be a set of image segments, initially compris-
ing the entire image. For iterative superpixel segmentation,
the selection of the next segment snext for subdivision is
determined by evaluating the priority fprio(I, s). It is de-
fined by the highest per channel standard deviation σ(Ij , s)
and segment size |s|:

snext = argmax
s∈S

(fprio(I, s)) (2)

fprio(I, s) = max
j∈{0,1,··· ,n−1}

(σ(Ij , s)) · |s|2 (3)

Segmentation iterations are illustrated in Fig. 3, incl. pro-
gressive extraction of image details and object outlines.

Since the entire segment selection process favors split-
ting smaller, more inhomogeneous segments over larger,
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homogeneous ones, successive iterations automatically
“fine-tune” more detailed regions while preserving larger
regions with less detail. Depending on the application con-
text, some iterations may yield too small fragments in terms
of pixel area for the final segmentation result. For such
cases, a user-defined threshold parameter, detail size, is in-
troduced to identify too small segments, which will not be
separated from their segment environment (even on detec-
tion of a potential object boundary). This approach is com-
parable to “forced connectivity” between small segments
and their environment in SLIC postprocessing [1].

3.4. Termination Criteria

The basic iterative segmentation process continues until one
of the following (combinable) termination criteria is met:
Superpixel count – HHTS divides inhomogeneous segments
until the specified number of superpixels is reached. Ex-
cept for early iterations (e.g. < 100 segments), experiments
indicate a typically accurate count of ± 2. Segment homo-
geneity – HHTS divides the most inhomogeneous segments
iteratively until every segment exceeds the specified homo-
geneity threshold (cf . Eq. (3)).

3.5. Auto-terminating Segmentation

HHTS also supports “information-exhaustive” oversegmen-
tation, which does not require parameter adjustment, nor
prior knowledge of input data for termination: If during it-
erative execution a segment comprises more than one pixel
intensity in any color channel, it is considered as (still) split-
table. Otherwise, it is marked as final, since its channel
information has been exhausted. Upon exhausting all split-
table segments, execution terminates automatically, yield-
ing the final oversegmentation result.

Note that after termination, every pixel cluster that is
smaller than detail size remains connected to its adjoining
neighboring pixels, preserving object coherence according
to Sec. 3.2. Consequently, each final superpixel contains
clusters of identical pixels (with the same intensity in ev-
ery color channel) alongside clusters of corresponding fine-
granular details. Refer to Algorithm 1 and 2 for the com-
plete HHTS procedure and segment splitting, respectively.

3.6. Extension – Superpixel Refinement

HHTS can be applied to non-rectangular or (binary) masked
sub-images of any shape. Thus, its auto-termination can be
employed to auto-refine other oversegmentation approaches
as follows: Instead of “guessing” any fine-tuned para-
metric adjustment relevant for initialization or termination
(e.g. a high superpixel count), a less detailed segmentation
(i.e. easier to estimate low superpixel count) is performed
with a fast oversegmentation algorithm. Then, its results are
passed to HHTS for auto-segmenting the remaining details
within the initial superpixel structure.

Algorithm 1 HHTS segmentation algorithm
Input: Image I , histogram bins b, min detail size m, [termi-
nation criterion c = false,] [pre-segmentation P = {I}]
Hist: Histogram Calculation Algorithm
Output: Superpixel labels S

1: S ← P
2: snext ← argmaxs∈S fprio(I, s)
3: while c(snext) = false do
4: S ← S − {snext}
5: hnext ← Hist(snext, I, b)
6: if |hnext|< 2 then
7: break
8: end if
9: Ulow, Uhigh ← Split(snext, hnext,m)

10: S ← S ∪ Ulow ∪ Uhigh

11: snext ← argmaxs∈S fprio(I, s)
12: end while

Algorithm 2 HHTS segment split algorithm Split(s, h, m)
Input: Segment s, Histogram h, min detail size m
CC: Connected Components [4]
Output: Segments below threshold Ulow, Segments above
threshold Uhigh

1: it ← argmaxi∈{0,1,··· ,|h|−1}(ai)

2: t← h̃it

3: Ulow ← CC(s < t)
4: Uhigh ← CC(s ≥ t)
5: Usmall

low ← {u ∈ Ulow | |u|< m}
6: Usmall

high ← {u ∈ Uhigh | |u|< m}
7: while Usmall

low ̸= ∅ and Usmall
high ̸= ∅ do

8: Ulow ← CC(Ulow − Usmall
low ∪ Usmall

high )

9: Uhigh ← CC(Uhigh − Usmall
high ∪ Usmall

low )

10: Usmall
low ← {u ∈ Ulow | |u|< m}

11: Usmall
high ← {u ∈ Uhigh | |u|< m}

12: end while

4. Experiments

For HHTS evaluation, the superpixel benchmark proposed
by Stutz et al. [36] is used on the BSDS500 [2] and
NYUV2 [35] datasets. BSDS500 comprises 500 outdoor
nature images, while NYUV2 consists of 1449 depth im-
ages, both providing ground truth segment annotations. All
experiments were conducted on a laptop with an Intel i9-
13900HX at 3.8GHz, 64GB RAM, and a mobile RTX 4070.

4.1. Comparison with State-of-the-Art Methods

The oversegmentation results are compared quantitatively
using common evaluation metrics, including: (1) Boundary
Recall (BR) [22], (2) Undersegmentation Error (UE) [1, 17,
27], (3) Mean Distance to Edge (MDE) [3], (4) Achievable
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Figure 4. Benchmark results for BSDS500 and NYUV2 datasets with default parameterization [36] in comparison to proposed HHTS

Superpixels Method UE BR ASA EV CO BP

250 SH [41] 0.0970 0.8080 0.9510
HHTS 0.0668 0.8502 0.9332

600 SCAC [48] 0.0680 0.8260 0.9660 0.8750 0.4420
HHTS 0.0373 0.9326 0.9627 0.8989 0.1215

1000 VSSS [51] 0.0324 0.9188 0.9676 0.9123 0.1953
HHTS 0.0307 0.9626 0.9693 0.9100 0.1411

1200 APENet [7] 0.9204 0.9758 0.1878
1000* HHTS 0.9626 0.9693 0.0744

1300 LDFUNet [8] 0.9300 0.9734 0.0996
1000* HHTS 0.9626 0.9693 0.0744

2000 CRTREES [45] 0.0716 0.9624 0.9482
1000* HHTS 0.0307 0.9626 0.9100

Table 1. Comparison of state-of-the-art superpixel methods to HHTS (BSDS500 dataset); “*” indicates HHTS early-termination

Segmentation Accuracy (ASA) [3], (5) Explained Variation
(EV) [25], (6) Intra-Cluster Variation (ICV) [3], (7) Com-
pactness (CO) [32], (8) Boundary Precision (BP).

HHTS is evaluated against popular algorithms, imple-
mented in Stutz’s et al. superpixel benchmark [36] for
the test sets of BSDS500 (205 images) and NYUV2 (399
images): ETPS [46], SEEDS [9], ERS [19], CRS [23],
ERGC [5] and SLIC [1]. Results from more recent state-
of-the-art oversegmentation approaches, including deep

learning-based methods, were compared using their respec-
tive published findings: SH [41], SCAC [48], VSSS [51],
APENet [7], LDFUNet [8] and CRTrees [45]. For all mea-
surements, HHTS is executed with default parameters un-
less stated otherwise: 32 histogram bins, 64 pixels min-
imum detail size. Note that HHTS auto-terminates pro-
cessing (cf . Sec. 3.5) when reaching high superpixel counts
(e.g. 800− 1200 segments for BSDS500 images).

3199



4.1.1 Quantitative Result Comparison

Fig. 4 shows the HHTS superpixel performances for various
segment counts in Sutz’s et al. benchmark [36], and Tab. 1
a comparison to more recent approaches. The segmenta-
tion results obtained with HHTS reveal significantly higher
boundary adherence (cf . BR and MDE) and lower intra-
cluster variation (ICV), outperforming every other method,
except ERS with less than 500 superpixels for NYUV2
and tieing with ETPS on the NYUV2 dataset, respectively.
This superior results are attributed to the priority-driven and
progressive refinement of segments, supporting the multi-
channel histogram-based extraction of local objects and
their outlines, respectively (Sec. 3). However, this achieve-
ment comes at the cost of lower compactness (CO), primar-
ily due to the irregular shapes of HHTS superpixels: Elon-
gated segments contribute to an increase in the relative size
of boundaries, consequently decreasing boundary precision
(BP). Despite this trade-off, the balance between BP and
boundary recall (BR) remains superior, comparable to es-
tablished methods like ETPS. Regarding the other super-
pixel metrics (e.g. UE, ASA and EV), the proposed method
achieves comparable results to leading algorithms.

In general, HHTS performs better particularly for higher
superpixel counts, underlying its effectiveness in capturing
finer objects parts. The top-down approach of HHTS proves
beneficial especially in adapting to varying distributions of
details across images. This addresses the major challenge of
seed-based methods, as discussed in Sec. 3.3 and mentioned
in [51]. Additionally, preserving large homogeneous areas
allows to reduce the overall number of superpixels with-
out compromising the segmentation quality in terms of the
aforementioned metrics. Fewer but larger superpixels can
expedite subsequent image processing steps, such as region
merging [43] or superpixel matching [6], despite a higher
variance in superpixel sizes and a lower compactness.

On the other hand, challenges arise during early itera-
tions of histogram threshold selection, especially if the in-
put image contains highly distinguishable regions, that are
not included in the ground truth segmentation (such as lights
and bright reflections), or excessively smooth object transi-
tions (e.g. due to similar image contents, low image resolu-
tion, or data compression artifacts). The latter poses a sim-
ilar issue as faced by CRTrees [45], resulting in boundary
leakage (since such object outlines are hard to detect using
primarily color distribution information). So, early HHTS
oversegmentation iterations may contain superpixels that
expand over multiple ground truth segments, in particular
increasing the undersegmentation error (UE). Approaches
favoring uniform segment sizes and compactness (typically
due to rectangular seed initialization [46, 49] or optimiza-
tion regulations and constraints [46, 51]) often limit seg-
ment leakages, though sometimes at the expense of less dis-
tinct or even arbitrary superpixel borders [9].

0.7

0.75

0.8

0.85

0.9

0.95

1

0 500 1000 1500 2000

B
ou

nd
ar

y 
R

ec
al

l (
B

R
)

Superpixels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000

C
om

pa
ct

ne
ss

 (
C

O
)

Superpixels

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0 500 1000 1500 2000

B
ou

nd
ar

y 
P

re
ci

si
on

 (
B

P
)

Superpixels

0.3

0.5

0.7

0.9

1.1

1.3

1.5

0 500 1000 1500 2000

M
ea

n 
D

is
ta

nc
e 

To
 E

dg
e 

 (
M

D
E

)

Superpixels

HHTS HHTS-preETPS ETPS

Figure 5. BSDS500 results for HHTS refinement of ETPS (1:1)

(a) (b) (c) (d)

Figure 6. HHTS auto-refinement of initial ETPS segments
(a) 250 → 1312, (b) 500 → 1355, (c) 1000 → 1470 and (d) orig-
inal image with 1500 ETPS segments as reference

Utilizing HHTS superpixel-refinement for pre-
segmented images (cf . Sec. 3.6) makes it possible control
the trade-off between boundary adherence and superpixel
regularity: Fig. 5 shows the results of this approach exem-
plary for “HHTS-preETPS”, i.e. a ETPS pre-segmentation
(with 50% of superpixels) is subsequently refined with
HHTS (contributing also 50% of superpixels). On the one
hand, this results in a substantial increase in compactness
and boundary precision w.r.t. pure HHTS, while in average
being 26.3% faster for BSDS500 images. On the other
hand, HHTS-preETPS achieves higher boundry recall and
a lower mean distance to edge w.r.t. pure ETPS.

Based on an exemplar segmentation case with 600 su-
perpixels, runtime measurements of HHTS yielded an aver-
age of about 448.0 ms per image for the BSDS500 dataset
(single-threaded and CPU-only implementation). The re-
sulting hierarchical segmentations comprised 172 levels of
segmentation per image (between 10 and 365), so an over-
all average performance of 2.6 ms per image and level.
For a comparable experimental setup, the other approaches
achieved the following average results for a single level per
image: SEEDS 14.3 ms, ETPS 19.4 ms, SLIC 30.3 ms,
ERGC 57.3ms, CRS 156.4ms and ERS 243.3ms. For su-
perpixel segmentation across multiple levels of detail (e.g.
for [16, 43]), the other approaches were capable of gener-

3200



(a)

(b)

(c)

Figure 7. Mean color BSDS500 images at 500 superpixels: (a) ERS, ERGC, SEEDS, SLIC, CRS (two each), (b) ETPS, and (c) HHTS

(a) (b) (c) (d) (e)

Figure 8. Mean images for HHTS segmentation: (a) 200, (b) 300,
(c) 400, (d) 500 superpixels, and (e) original image

ating only a fraction of the 172 levels per BSDS500 image
in the given HHTS execution time (448.0 ms): SEEDS 31
levels (18.2%), ETPS 23 (13.4%), SLIC 14 (8.6%), ERGC
7 (4.5%), CRS 2 (1.7%) and ERS just one level (1.1%).

4.1.2 Qualitative Result Comparison

Fig. 1 and Fig. 7 provide a visual comparison between the
proposed method and other oversegmentation algorithms
for 500 superpixels. The images underline HHTS’s capa-
bility of improved preservation of object boundaries. Fig. 8
illustrates the progressive improvement in visual quality
achieved by HHTS through multiple iterations. Each iter-
ation refines the oversegmentation, capturing increasingly
intricate image color gradients and demonstrating the abil-
ity to extract fine details with each successive step. Fig. 6
shows the results of auto-terminating superpixel-refinement
of ETPS [46]. This illustrates HHTS’s visual adaptability
in pre-segmentation enhancement across various superpixel
resolutions, capturing even thin details.
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Figure 9. The ablation study of HHTS on BR and UE

4.2. Ablation Study

The following HHTS ablation study was conducted us-
ing the BSDS500 dataset, focusing on the boundary recall
(BR) and undersegmentation error (UE): First, instead of
the object-based histogram thresholding method described
in Sec. 3.2, two alternative thresholding approaches were
explored: OTSU thresholding [29] to minimize intra-class
variance (“HHTS-OTSU”), and local histogram minima,
descending from the histogram center (“HHTS-locMin”).
Results revealed a significantly inferior oversegmentation in
terms of BR and UE for both alternatives (cf . Fig. 9) and a
tendency to early-terminate due to tiny segments (cf . detail
size). The results underline the effectivity of the proposed
thresholding approach at any superpixel scale.

By disabling equal partition weights during threshold se-
lection (Sec. 3.2), HHTS is more likely to extract tiny seg-
ments with excessively high or low pixel intensities, respec-
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Figure 10. Visual comparison of semantic segment masks (SAM ViT-H) and refined semantic segments (SAM + HHTS)

tively. This may include leftover boundary pixel fragments
from previous iterations, if the selected threshold could not
separate objects and backgrounds satisfactory. Correspond-
ing results show slightly poorer BR and UE values for dis-
abled equal partition weights (“HHTS-unw”).

To assess the impact of different image color spaces,
HHTS was executed using just RGB (“HHTS-RGB”), HSV
(“HHTS-HSV”), and LAB (“HHTS-LAB”). The results,
also presented in Fig. 9, indicate a BR and UE compa-
rable to the proposed approach. However, using the full
multi-channel approach leads to a clearly higher total num-
ber of achievable superpixel counts. This may be explained
by HHTS-RGB/-HSV/-LAB having limited options during
segmentation threshold selection, potentially leading to the
extraction of less relevant objects.

Applying Gaussian blurring, exemplary with a 3 × 3
kernel (“HHTS-blur”), or altering the number of histogram
bins to 16 and 64 (“HHTS-B16” and “HHTS-64”) had only
a negligible impact on UE and BR, underscoring the algo-
rithm’s robustness against bad parameter choices.

The minimum detail size significantly influenced HHTS:
Increasing the minimum detail size, e.g. to 128 pixels, im-
proved BR and UE, but reduced the number of extracted
segments. Conversely, allowing smaller details, e.g. 32 pix-
els, decreased BR and UE performance in early iterations
due to the extraction of tiny objects that potentially are not
included in the ground truth segments. However, this en-
ables the detection of more detailed structures during later
iteration, resulting in an overall higher BR and UE perfor-
mance at the expense of a higher superpixel count.

5. Application Example
Given the high boundary recall of HHTS, an application for
postprocessing semantic segmentations is proposed: The
primary emphasis lies on machine-learning-based meth-
ods and particularly the large-scale Foundation Model
SAM [15], since the resulting segmentation masks are prone
to coarse boundaries, especially for thin components [14].
Fine-tuning of such masks is implemented by adjusting the
corresponding pixel set towards the nearest oversegmenta-

tion boundaries through a combination of dilation and ero-
sion operations. These morphological transformations are
performed for mask regions intersecting superpixels and de-
pending on whether the majority of the superpixel is in-
side (dilate) or outside the mask (erode). A visual eval-
uation of HHTS mask-refinement based on BSDS500 im-
ages and SAM ViT-H model (for 500 superpixels) resulted
in a significantly improved segmentation fidelity w.r.t. fine-
granular image structures (cf . Fig. 2 and Fig. 10).

6. Conclusion
In this paper, HHTS, a novel superpixel method based on
hierarchical histogram threshold segmentation is presented.
Automatic separation between foreground and background
pixel regions is achieved through iterative processing of lo-
cal histograms. HHTS supports auto-termination w.r.t. to a
user-controllable minimum detail size, eliminating the need
for seed distribution initialization or specification of sec-
ondary termination criteria, such as a maximum superpixel
count. Experimental results demonstrate HHTS’s superior
segmentation performance in terms of boundary adherence
at a competitive speed for multi-level segmentation. More-
over, applications are proposed for refining pre-segmented
superpixel results and fine-tuning semantic segmentation
masks based on the “Segment Anything Model” (SAM).

Future work includes optimizing the runtime of local
histogram computation and connected components estima-
tion, e.g. by utilizing graph-cuts. Leveraging HHTS’s high
boundary adherence in conjunction with its hierarchical
multi-scale approach, integration with dedicated saliency
segmentation methods [13, 16, 43] can further refine se-
mantic masks, offering an additional layer of precision and
adaptability. Ongoing research also comprises dynamically
adjusting the minimum detail size parameter, incorporating
depth information for histogram thresholding, and imple-
menting time-based termination for interactive applications.
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