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Abstract
The study of complex human interactions and group ac-

tivities has become a focal point in human-centric computer
vision. However, progress in related tasks is often hindered
by the challenges of obtaining large-scale labeled datasets
from real-world scenarios. To address the limitation, we in-
troduce M3Act, a synthetic data generator for multi-view
multi-group multi-person human atomic actions and group
activities. Powered by Unity Engine, M3Act features mul-
tiple semantic groups, highly diverse and photorealistic im-
ages, and a comprehensive set of annotations, which facil-
itates the learning of human-centered tasks across single-
person, multi-person, and multi-group conditions. We
demonstrate the advantages of M3Act across three core ex-
periments. The results suggest our synthetic dataset can sig-
nificantly improve the performance of several downstream
methods and replace real-world datasets to reduce cost.
Notably, M3Act improves the state-of-the-art MOTRv2 on
DanceTrack dataset, leading to a hop on the leaderboard
from 10th to 2nd place. Moreover, M3Act opens new re-
search for controllable 3D group activity generation. We
define multiple metrics and propose a competitive baseline
for the novel task. Our code and data are available at our
project page: http://cjerry1243.github.io/M3Act.

1. Introduction
Understanding collective human activities and social
groups carries significant implications across diverse do-
mains, as it contributes to bolstering public safety within

†Work done during internship at Roblox

surveillance systems, ensuring safe navigation for au-
tonomous robots and vehicles amidst human crowds, and
enriching social awareness in human-robot interactions [8,
9, 11, 12, 21, 37, 49, 51]. However, the advancement in
related tasks is often impeded by the challenges of obtain-
ing large-scale human group activity datasets in real-world
scenarios with fine-grained multifaceted annotations.

Generating synthetic data is an emerging alternative to
collecting real-world data due to its capability of produc-
ing large-scale datasets with perfect annotations. Nonethe-
less, most synthetic datasets [4, 20, 40, 48, 53] are pri-
marily designed to facilitate human pose and shape esti-
mation. They can only provide data with independently-
animated persons, which is unsuitable for tasks in single-
group and multi-group conditions [51]. To address the lim-
itation, we propose M3Act, a synthetic data generator, with
multi-view multi-group multi-person human actions and
group activities. As presented in Tab. 1, M3Act stands
out by offering comprehensive annotations including both
2D and 3D annotations as well as fine-grained person-level
and group-level labels, thereby making it an ideal synthetic
dataset generator to support tasks such as human activity
recognition and multi-person tracking across all listed real-
world datasets.

Illustrated in Fig. 1, our synthetic data generator features
multiple semantic groups, highly diverse and photorealistic
images, and a rich set of annotations. It encompasses 25
photometric 3D scenes, 104 HDRIs (High Dynamic Range
Images), 5 lighting volumes, 2200 human models, 384 an-
imations (categorized into 14 atomic action classes), and 6
group activities. For our experiments, We generated two
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Figure 1. M3Act is a large-scale synthetic data generator designed to support multi-person and multi-group research topics. M3Act
features multiple semantic groups and produces highly diverse and photorealistic videos with a rich set of annotations suitable for human-
centered tasks including multi-person tracking, group activity recognition, and controllable human group activity generation.

datasets, M3ActRGB and M3Act3D. M3ActRGB contains
both single-group and multi-group data with a total of 6M
frames of RGB images and 48M bounding boxes, rendered
in 20 FPS. M3Act3D is a 3D-only and single-group dataset,
which contains 3D motions of all persons within a group. It
has large group sizes (max 27 people) and an average of 6.7
persons per group. In total, M3Act3D contains a duration
of 87.6 hours of group activities, captured in 30 FPS.

We first demonstrate the merit of M3Act via synthetic
data pre-training and mixed training on multi-person track-
ing and group activity recognition. For multi-person track-
ing, training with our synthetic data yields significant per-
formance gain on several downstream methods [23, 52, 56,
57]. We also demonstrate notable improvements in the
state-of-the-art MOTRv2 method [57] and observe that our
synthetic data can substitute for 62.5% more real-world
data, without compromising performance. In terms of
group activity recognition, results indicate that pre-training
with M3ActRGB greatly improves both person-level and
group-level accuracy for Composer [58] and ActorTrans-
former [25] methods. Based on our generated data, we then
introduce a novel task, controllable 3D group activity gen-
eration, which aims to synthesize a group of 3D human mo-
tions, given control signals such as activity labels and group
sizes. We systematically approach the new task by introduc-
ing both learning-based and heuristics-based metrics, along
with a competitive baseline to generate meaningful human
activities.
This paper makes the following contributions:
• We propose a novel synthetic data generator, M3Act, and

provide two large-scale synthetic datasets with highly di-
verse human activities, photorealistic multi-view videos,
and comprehensive annotations.

• We demonstrate that M3Act can significantly improve
benchmark performances for multi-person tracking and
group activity recognition and replace a large portion of
real-world training data to reduce cost.

• M3Act promotes new research initiatives for controllable
3D group activity generation, suggesting that synthetic
data can not only support existing tasks but also create
datasets for novel research.

2. Related Works
Human Centered Synthetic Datasets. The use of syn-
thetic datasets for human-centered tasks has become in-
creasingly prominent due to their diversity, scalability, and
perfect annotations, with proven merits connected to var-
ious fields in machine learning, including domain adapta-
tion [34, 46], heterogeneous multitask learning [54], and
sim2real [24] or task2sim [39] transfer. Most previous syn-
thetic datasets are constructed to support human pose es-
timation. For example, SURREAL [48] contains render-
ings of human motions from 145 avatars composited to a
background image. Subsequent works [2, 20, 40] man-
aged to improve the image quality by leveraging realis-
tic 3D scenes, high-quality renderings, and HDRI images.
Recently, synthetic datasets have been proposed to tackle
human shape and mesh estimation. SynBody [53] con-
structs layered human assets to increase character diversity.
BEDLAM [4] adds physically simulated hair and clothes
to achieve state-of-the-art performances on shape and mesh
estimation. Nonetheless, data with collective human mo-
tions and group activities cannot be obtained from them.
Our work, M3Act, is constructed with animated human
groups tailored to multi-person and multi-group research.
Real Multi-Person Datasets. Real-world datasets [15, 17,
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Dataset
Image
Type

Avatar
Num. Video

Multi-
View

Multi-
Person

Multi-
Group

Annotations
2D 3D Atomic Atn. Group Act.

SURREAL, 2017 [48] Composite 145 ✓ ✓ ✓
AGORA, 2021 [40] HDRI 350 ✓ ✓ ✓
HSPACE, 2021 [2] 3D Scene 1600 ✓ ✓ ✓ ✓ ✓
GTA-Humans, 2021 [6] 3D Scene 600 ✓ ✓ ✓ ✓
PSP-HDRI+, 2022 [20] HDRI 28 ✓ ✓ ✓
SynBody, 2023 [53] 3D Scene 10k ✓ ✓ ✓ ✓ ✓
BEDLAM, 2023 [4] 3D Scene 271 ✓ ✓ ✓ ✓
M3Act (Ours) Photometric 3D + HDRI 2200 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CAD, 2011 [15] Real - ✓ ✓ ✓ ✓ ✓ ✓
Volleyball Dataset, 2016 [29] Real - ✓ ✓ ✓ ✓ ✓ ✓
NTU-RGBD 120, 2019 [33] Real - ✓ ✓ ✓ ✓ ✓ ✓
HiEve, 2020 [32] Real - ✓ ✓ ✓ ✓ ✓
PoseTrack, 2021 [18] Real - ✓ ✓ ✓ ✓
MOT, 2020 [17] Real - ✓ ✓ ✓ ✓
DanceTrack, 2022 [45] Real - ✓ ✓ ✓
JRDB, 2023 [21, 37, 49] Real - ✓ ✓ ✓ ✓ ✓ ✓

Table 1. A comparison of synthetic datasets as well as commonly-used real datasets for activity understanding and person tracking. We
refer to JRDB as a union set of JRDB, JRDB-Act, and JRDB-Pose datasets. Note that it offers 3D bounding boxes, but not poses.

18, 29, 32, 33, 37, 45] with multiple persons are usually col-
lected for tasks such as group activity understanding, multi-
person tracking, and human trajectory prediction. Rec-
ognizing and parsing collective human activities [25, 58]
rely primarily on multiple modalities (RGB, bounding box,
pose) and hierarchical action and activity labels. These fine-
grained labels are provided by datasets like CAD [15] and
Volleyball Dataset [29]. On the other hand, datasets for per-
son tracking, such as HiEve [32], MOT [17, 38], and Dance-
Track [45], require not only 2D annotations (e.g., bound-
ing box) for individual frames, but also the association of
the objects between them. Specifically, DanceTrack pro-
vides multiple persons in a group with the same clothing,
making it difficult for the association of the individuals.
MOT datasets target tracking for human crowds and con-
tain mostly outdoor scenes from a bird-eye view. Recently,
JRDB [21, 37, 49] with rich annotations is released. The
images are captured by a social robot, navigating around
daily scenes. It provides fine-grained annotations that sup-
port various tasks, including person detection, pose estima-
tion, tracking, collective activity detection, and understand-
ing. M3Act not only offers the same modalities and anno-
tations for supporting the aforementioned tasks, but it also
provides full 3D annotations, making it suitable for a wide
range of applications beyond the 2D domain.

3. M3Act
M3Act is a multi-view multi-group multi-person human
atomic action and group activity data generator built with
Unity Engine and the Perception [5] library. Inspired by
PeopleSansPeople [19] that populates randomly posed hu-
man avatars in a scene and renders static images, M3Act
not only offers the same functionalities for human poses but
also extends it to the spatio-temporal domain. It generates
RGB videos for dynamic human motions and produces a
rich set of annotations simultaneously, including (a) 2D

and 3D joints/meshes, (b) 2D and 3D bounding boxes for
individual persons, (c) atomic action and group activity
categories, (d) tracking information such as individual and
group IDs, (e) segmentation, depth, and normal images, and
(f) scene description.

3.1. Data Generation
The process of our data generation is illustrated in Fig. 2.
First, the generation process is configured by the simulation
scenario that manages multiple independent simulations of
human activities. Then for each simulation, a 3D scene
with background objects, lights, and cameras is set up, and
groups of human characters are instantiated to be animated.
Lastly, the multi-view RGB image frames are rendered and
the annotations are exported at the end of the simulation.
Scene Instantiation. We represent the environment
through 25 photometric 3D scenes and 104 panoramic
HDRIs. Each scene is initiated with randomized lighting
and camera configuration. To attain a balance between re-
alistic environmental illumination and pronounced shadow
detail, our lighting schema integrates HDRI Sky lighting
with a directional light. This directional light is subject to
random variations in its direction, color temperature, and
intensity. Regarding camera placement, we always point
cameras towards the center of avatar groups and introduce
variability by randomizing both the field of view and the
camera’s distance to these groups.
Human Models and Motion Assets. M3Act leverages
2000 human models generated by Synthetic Humans [42],
ranging across all ages (1 ∼100), genders, ethnicities (such
as Caucasian, Asian, Latin American, African, Middle East-
ern), diverse body shapes, hair, and clothing. We also incor-
porated 200 widely-used human characters from Render-
People [1]. For the human motions, we collected 384 ani-
mation clips from AMASS [36], categorized into 14 atomic
action classes. We created a universal animation controller
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Figure 2. The data generation process of M3Act. It consists of multiple data simulations with scene instantiation, group activity authoring,
and a data capture module. A high degree of randomization is involved in all aspects of the process to ensure diverse data.

that blends styles, including arm space and stride size, to
create diverse motions from the collected clips.

Modular Group Activities. Each group activity is struc-
tured as a parameterized module, allowing for the cus-
tomization of numerous variables. These variables include
the number of individuals in the group and the specific
atomic actions permitted within the group activity. This
modularization ensures easy duplication, repositioning, and
reuse of the group activities, enabling simulations of mul-
tiple groups at the same time. To procedurally animate a
group of humans within a modular group, we establish the
positions and orientations of the selected characters while
choosing the appropriate animation clip for each character
through the activity script. It’s important to note that, de-
spite drawing characters from the same set of avatars, the
configurations and animations of these characters can vary
significantly from one group to another. For example, ani-
mating a queueing activity may require all characters to be
aligned in a straight line, while those in a walking group
may form various shapes. The atomic actions that a person
can perform also depend on the specific group activity. We
carefully consider all these factors when authoring activities
and provide a summary in the Sup. Mat.

Domain Randomization. M3Act provides domain ran-
domization for almost all aspects of the data generation pro-
cess to ensure the simulation data is highly diverse. These
aspects include the number of groups in a scene, the number
of persons in each group, the positions of groups, the align-
ment of persons in a group, the positions of individuals,
the textures for the instantiated characters, and the selection
of scenes, lighting conditions, camera positions, characters,
group activities, atomic actions, and animation clips. De-
spite the fact that animating group activities inherently lim-
its the degree of freedom in the placement of characters, by
altering the shapes in which characters align (e.g, either in a
cluster, a straight line, or a curve), M3Act nonetheless gen-
erates diverse activities and achieves sufficient randomiza-
tion for downstream model generalization. More details re-

garding the randomization variables and their distributions
are provided in Sup. Mat.
Rendering and Annotations. M3Act utilizes the Unity
high-definition render pipeline for the creation of photore-
alistic RGB images and leverages the Perception library for
capturing annotations. On average, data is generated at a
rate of 4.2 FPS using one NVIDIA RTX 3070 Ti graphics
card, with a resolution of 1920x1080, and all annotations
are enabled. Similar to PeopleSansPeople, the 2D skeleton
follows COCO [31] format, with additional labelers for ex-
porting 3D joints, meshes, group IDs, and activity classes.
After the data generation, the 3D joints and meshes are fit-
ted with SMPL parameters [35, 41].

3.2. Dataset Statistics
M3Act comprises 25 photometric 3D scenes, 104 HDRIs,
5 lighting volumes, 2200 human models, 384 animations
(categorized into 14 atomic action classes), and 6 group ac-
tivities. Using the generator, we first generated our syn-
thetic dataset, M3ActRGB. It contains 6K simulations of ev-
ery single-group activity and 9K simulations of multi-group
configuration, with 4 camera views. Each simulation pro-
duces a 5-second video clip, captured in 20 FPS and FHD
resolution. In total, M3ActRGB contains 6M RGB images
and 48M bounding boxes. The average track length is 4.65
seconds.

Additionally, we generated M3Act3D, a large-scale 3D-
only dataset. It consists of more than 65K simulations of
single-group activity. Each contains 150 frames of multi-
person collective interactions in 30 FPS, resulting in a total
duration of 87.6 hours. As shown in Tab. 2, both the group
size and the interaction complexity are significantly higher
than those in previous multi-person motion datasets. Specif-
ically, when compared with GTA-Combat [44], M3Act3D
contains more persons in a group, has more group activities,
and provides a variable number of persons in a group. To
the best of our knowledge, M3Act3D is the first large-scale
3D dataset for human group activities with large group sizes
as well as per-frame individual action labels. See Sup. Mat.
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Dataset FPS # of # of Persons # of DurationActy. Avg Max Actn.
SBU [55] 15 8 2.0 2 - 7.6 mins
Duet Dance [30] 25 5 2.0 2 - 2.3 hrs
CHI3D [22] 50 8 2.0 2 - 2.7 hrs
NTU RGBD 120 [33] 30 26 2.0 2 - 15.0 hrs
GTA-Combat [44] 15 1 3.2 5 - 39.0 hrs
M3Act3D 30 6 6.7 27 8 87.6 hrs

Table 2. A comparison of datasets for 3D multi-person human
activities. M3Act3D is the largest dataset with labels for atomic
actions and more persons in a group.

for detailed statistics of both datasets.

4. Experiments
We showcase the practical utilities of M3Act through three
core experiments: Multi-Person Tracking (MPT), Group
Activity Recognition (GAR), and controllable Group Ac-
tivity Generation (GAG). The experiments are carefully de-
signed to cover the following three perspectives:

- Multi-modality: Our experiments cover various modali-
ties contained within our dataset, including RGB videos,
2D keypoints, and 3D joints. We leverage the rich anno-
tations including bounding boxes, tracklets, group activi-
ties, and person action labels.

- Performance: We conduct the ablation study by altering
the amount and the type of synthetic data used for training
to see its effect on the model performance.

- Novel task: We introduce a novel generative task (GAG),
showing that synthetic data can not only support existing
CV tasks but also create datasets for new research.

4.1. Multi-Person Tracking
The objective of MPT is to predict the trajectories of all
persons from a dynamic video stream. Typically, person
tracking involves two separate processes, person detection
and association. While the tracking task is approached in
some prior works with the tracking-by-detection method [3,
7, 50], we consider end-to-end approaches [23, 52, 56, 57]
to evaluate the use of synthetic data on the performance of
MPT as a whole, in lieu of an improved performance caused
only by refined detection.
Real-world Dataset: DanceTrack [45] (DT) is a challeng-
ing MPT dataset characterized by dynamic movements with
human subjects in uniform appearances. It has a total of 100
videos with over 105K frames.
Synthetic Dataset. Given the motion categories in the
real-world dataset, we select a subset of M3ActRGB with
groups of people dancing, walking, and running. We use
1000 video clips with a single “dance” group as well as
1500 videos with a “walk” group and a “run” group sim-
ulated at the same time (denoted as WalkRun). We alter the
use of the synthetic group activities (Dance, WalkRun, and
Dance+WalkRun) in our experiments.

Training Data HOTA↑ DetA↑ AssA↑ IDF1↑ MOTA↑
DT⊛ 69.8 83.0 58.9 71.6 89.3
DT 68.8 (10) 82.5 57.4 70.3 90.8
DT + Syn (D) 59.0 75.5 46.1 59.0 82.6
DT + Syn (WR) 70.1 83.1 59.4 72.5 92.0
DT + Syn (WR+D) 71.9 (2) 83.6 62.0 74.7 92.6
DT + Syn† (WR+D) 72.2 83.4 62.6 75.5 92.7
DT (MOTRv2*) 73.4 83.7 64.4 76.0 92.1
DT + BEDLAM [4] 55.9 68.7 44.5 53.8 79.1
DT + GTA-Humans [6] 54.1 66.8 44.2 52.1 78.8

Table 3. MPT results on DanceTrack with MOTRv2. “D”
means synthetic dance group. “WR” means walk and run groups.
“WR+D” refers to “D” and “WR” combined. The symbol ⊛ rep-
resents the author-provided checkpoint. The symbol † marks the
same model with additional association at inference. Numbers in
parentheses represent the rank in the DanceTrack leaderboard.

Model Syn. Data HOTA DetA AssA IDF1 MOTA
54.2 73.5 40.2 51.5 79.7

MOTR [56]
✓ 60.0 76.4 48.1 56.0 83.8

68.5 80.5 58.4 71.2 89.9
MeMOTR [23]

✓ 71.1 81.8 62.3 74.1 92.2
69.4 82.1 58.9 71.9 91.2

CO-MOT [52]
✓ 72.5 83.6 63.3 75.9 92.8

68.8 82.5 57.4 70.3 90.8
MOTRv2 [57]

✓ 71.9 83.6 62.0 74.7 92.6
73.4 83.7 64.4 76.0 92.1

MOTRv2* [57]
✓ 74.6 84.1 64.9 76.4 93.1

Table 4. MPT results on DanceTrack using different methods
trained with our synthetic data.

Results. We mix together both synthetic and real data dur-
ing training and present the results in Tab. 3. First, adding
our synthetic data yields significant improvement in all 5
tracking metrics as well as a hop in ranking on HOTA
from 10th to 2nd place. The model trained with our syn-
thetic data plus the extra association, marked as DT+Syn†

(WR+D), achieves similar performance to MOTRv2*, the
same model that is trained with additional validation data
with an ensemble of 4 models [57]. This suggests that
the synthetic data used in our experiment is equivalent to
at least 62.5% more real data. Second, Compared with
other synthetic data sources, such as BEDLAM and GTA-
Humans, M3Act demonstrates superior performance, indi-
cating its better suitability for multi-person dynamic condi-
tions. Third, we observe that the type of synthetic groups
affects the model performance on real data. Adding the
“WalkRun” groups to the training data is more effective
than adding the “Dance” group. This is because while the
DanceTrack dataset contains dynamic dance movements,
the real challenge lies in detection and tracking when the
subjects switch positions. By design, the positions of the
characters in our dance group are well-staged and the move-
ments are nearly synchronous. (See Sup. Mat. for the de-
sign.) Contrarily, having a walk and a run group together
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Model Pretrained
Syn. Data

Group Activity Person Action
Top 1 Acc (%) ↑ Top 1 Acc (%) ↑

Composer
[58]

N/A 84.87±2.3 (88.20) 81.31±2.4 (83.13)
10% 86.12±1.8 (87.87) 84.16±1.8 (86.03)
25% 87.65±1.2 (89.01) 86.36±1.3 (86.81)
50% 89.39±0.4 (90.14) 86.68±1.5 (87.99)
100% 89.74±1.0 (91.51) 88.74±1.7 (89.05)
Gains +4.87 (+3.31) +7.43 (+5.92)

Actor
Transformer

[25]

N/A 78.08±1.0 (79.47) 76.22±2.2 (78.07)
10% 77.59±2.4 (81.00) 76.01±3.2 (79.76)
25% 81.36±2.1 (83.19) 78.86±2.4 (80.05)
50% 82.72±1.3 (84.56) 79.95±1.6 (81.47)
100% 83.67±1.2 (84.88) 81.65±1.2 (82.22)
Gains +5.59 (+5.41) +5.43 (+4.15)

Table 5. Results of 2D keypoint-based group activity and person
action recognition on CAD2 dataset. The best results are shown
in parentheses. The results suggest that pre-training with our syn-
thetic data largely increases the accuracy for both group activity
and person actions. Note that group accuracy saturates at 93.4%
and 86.2% for Composer and Actor Transformer respectively.

in a scene leads to frequent position switches relative to
the camera view and thus improves the model performance.
Lastly, Tab. 4 presents the tracking results using different
methods. Results indicate that our synthetic data is effec-
tive across various models.

4.2. Group Activity Recognition
The goal of GAR is to determine the class of the group ac-
tivity performed by the dominant group as well as the action
class of each person. We consider Composer [58] and Ac-
tor Transformer [25] as the benchmark models. The for-
mer is a multi-scale transformer-based model and accepts
only 2D keypoints as input. The latter can take combina-
tions of multiple input modalities.
Real-world Dataset: CAD2 [15] and Volleyball Dataset
[29]. CAD2 is an extended version of the Collective Activ-
ity Dataset [14] that records human group activities and is
widely used for GAR benchmarks [51]. Volleyball Dataset
(VD) is an action recognition dataset. It has 55 videos with
9 player action labels and 8 team activity labels.
Synthetic Dataset. We use a subset of all single-group data
from M3ActRGB. It contains a total of 10K videos and over
600K frames. It contains all group activity and individual
action classes that CAD2 provides and further includes 7
more action types.
Results. We experimentally study how the size of our pre-
training synthetic dataset and the capacity of a GAR model
affect generalization from the synthetic to real domains. We
first train the models on different amounts of synthetic data.
Then we fine-tune them on CAD2 and report the top 1 ac-
curacy of both group activity and person action recognition
on the test set of CAD2. Tab. 5 presents the results using
only 2D keypoints as input. We see a common trend for

Model 2D RGB Flow CAD2 Syn+CAD2 VD Syn+VD
Composer ✓ 88.2 91.5 94.6 95.1

Actor
Transformer

✓ 79.5 84.9 92.3 93.7
✓ 78.2 80.7 91.4 92.5

✓ ✓ 81.0 85.2 93.5 94.3
✓ ✓ 81.3 85.0 94.4 95.0

✓ ✓ 79.5 81.9 93.0 94.1

Table 6. The group activity recognition accuracy on CAD2 and
Volleyball Dataset using different input modalities.

both GAR models that the recognition accuracy increases as
more synthetic data is used for pre-training. With 100% of
synthetic data, the accuracy of Composer increases, with an
average of 4.87% at the group level and 7.43% at the person
level, whereas Actor Transformer sees a 5.59% increase at
group level and 5.43% increase at person level. Moreover,
Tab. 6 shows the group recognition accuracy using different
input modalities on CAD2 and VD. The performance gains
in the experiment indicate that our synthetic data can ef-
fectively benefit the downstream GAR task across different
methods, input modalities, and datasets.

4.3. Controllable 3D Group Activity Generation
While the procedural generation of our group activities in
M3Act yields realistic and diverse human activities, the im-
plementation requires considerable effort and involves the
design and application of specific heuristics. Learning a
generative model for human group activities, instead, en-
codes the heuristics to the architecture inherently and en-
compasses the capabilities of probabilistically generating
diverse activities, with control over the entire group of hu-
man motions from various signals. To this end, we intro-
duce controllable 3D group activity generation (GAG).
Definition. Let Gp

t = {mn
i }i=1∼t,n=1∼p be a group of hu-

man motions with t frames and p persons. The individual
pose is denoted as mn

i ∈ Rj×d, where j is the number of
joints in the skeleton and d is the joint dimension. The goal
of GAG is to synthesize a group of 3D human motions Gp

t

from Gaussian noise, given an activity label and an arbitrary
group size as input conditions. It requires a model capable
of learning the temporal and spatial motion dependencies
among persons within the same group and generating hu-
man motions with any group size simultaneously. GAG is
related to dyadic motion generation [10, 16] and partner-
conditioned reaction generation [43], but involves the mo-
tion interactions of more than two persons.
Baselines. Although previous works [16, 43, 44] can gener-
ate motions for multiple persons, they are limited to dyadic
scenarios or groups with a fixed number of persons. There-
fore, we present two baselines. The first one is the vanilla
motion diffusion model, MDM [47]. It was proposed for
probabilistic single-person motion generation from an in-
put condition. We adopt their action-to-motion architecture
for conditional synthesis and train the model on M3Act3D
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A group of 11 people queueing.A group of 6 people walking.

Figure 3. The qualitative comparison of two group activities from
ground truth (GT), MDM, and MDM+IFormer. The distribution
of the persons from MDM+IFormer is closer to GT.

for generating an individual person’s motion from an input
group activity class label. In order to generate a group of hu-
man motions from a given group size, we repeat the single-
person inference several times. In other words, the individ-
ual motions are generated independently by MDM. Our sec-
ond baseline, MDM+IFormer is extended from MDM and
includes an additional interaction transformer (IFormer)
that works along the dimension of the persons. The inter-
action transformer encourages the model to learn the inter-
person motion dependencies. At inference, MDM+IFormer
is capable of producing coordinated group activities in one
forward pass, due to its modeling of human interactions.
Implementation. We utilize a common skeleton for all in-
dividual persons with 25 joints. We process the data so each
motion is represented as both the 6D joint rotations [59]
and the root positions. The final representation of a col-
lective group activity with multiple persons is a tensor with
shape (#persons × #frames × 26 × 6). For a fair compari-
son, both baseline models were trained on an NVIDIA RTX
3090 graphics card with 90% data from M3Act3D for 320K
iterations and then tested on the other 10%.

4.3.1 Evaluation
Metrics. Due to the probabilistic nature of the task, we
consider the following learning-based metrics, recognition
accuracy, Frechet Inception Distance (FID), diversity, and
multimodality, defined in [26]. These metrics, however,
were originally designed for single-person motion genera-
tion. To evaluate the generated group activities, we report
them at both group and person levels because they account
for the fidelity and variations for the groups and the indi-
viduals. We train a multi-scale group activity recognition
model using the Composer [58] architecture for the metrics.
See Sup. Mat. for detailed explanations of how to construct
the learning-based metrics, including the recognition model
as well as the latent representations at both levels.

In addition to the learning-based metrics, we tailor four

position-based metrics, collision frequency, repulsive inter-
action force, contact repulsive force, and total repulsive
force, to the evaluation of human groups. The latter three
are based on the social force model [27, 28], which ex-
plains crowd behaviors using socio-psychological and phys-
ical forces. Here we describe the four metrics:
Collision frequency indicates how often a collision (or an
invalid interaction) would occur within a group. The col-
lision count is calculated based on a distance threshold be-
tween any two persons in a group. It is then normalized by
the total number of interactions to obtain the frequency. In
other words, if N persons are in a group, the normalization
denominator is N · (N − 1)/2.
Repulsive interaction force describes the psychological
tendency of two persons to stay away from each other. As
the distance between two persons decreases, the repulsive
force increases exponentially.
Contact repulsive force represents the compression body
force when two persons collide with each other. The contact
force is nonzero only when two persons collide. A larger
contact force means the interaction is less likely to occur.
Total repulsive force is the accumulation of interaction and
contact forces.

All four position-based metrics are calculated using the
Euclidean distances of the persons’ positions, with the
shoulder width as the collision threshold. The social forces
are calculated by averaging the magnitude of each indi-
vidual’s force accumulated through all its interactions with
other persons. A well-performing model should generate
group activities with low collision frequency and similar
social force values to the ground truth. For the evaluation,
we generated 500 samples for each group activity using the
two well-trained baseline models. Each generated sequence
contains 60 frames. We use the test split as the ground truth
and randomly extract the group activity of the same length
for evaluation. To ensure the distributions of group sizes are
similar to the ground truth, we calculate the minimum and
maximum group sizes from the training split and uniformly
sample a group size from that range to generate group ac-
tivities. Please refer to Sup. Mat. for more details regarding
the baseline architectures, metrics formulas, and evaluation.

4.3.2 Results
MDM+IFormer is capable of generating group activities
with well-aligned character positions. As shown in Fig. 3,
MDM generates human groups that are poorly positioned.
For example, the persons in a walking group do not walk
in the same direction and the persons are poorly placed in a
queueing group. This is because MDM generates the group
activities by inferring the individual motions independently.
The placement of the individuals simply follows the prob-
abilistic distribution of all persons’ positions in the dataset.
On the other hand, MDM+IFormer successfully learns the
probabilistic distribution for the entire group due to its in-
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Group Level Person Level
Acc ↑ FID ↓ Diversity → Multimodality → FID ↓ Diversity → Multimodality →

GT 99.937 0.001± 0.000 17.752± 0.025 3.491± 0.012 0.001± 0.000 14.506± 0.013 7.546± 0.010
MDM 97.367 3.909± 0.019 17.683± 0.037 4.155 ± 0.019 4.434± 0.010 14.158± 0.035 7.588 ± 0.013

MDM+IFormer 98.100 3.242 ± 0.016 17.855± 0.040 4.198± 0.021 3.066 ± 0.007 14.827± 0.031 6.945± 0.011

Table 7. The results of the generated group activities with the learning-based metrics at both levels. An up arrow means the result is better
when the metric score is higher. A right arrow means the metric score should be close to ground truth (GT).

Collision Interaction Contact Total
Freq. ↓ Force → Force → Force →

GT 0.037 65.79 46.55 112.33
MDM 3.643 7,121.50 3,822.47 10,903.57

MDM+IFormer 1.157 1,796.25 1,373.40 3167.80

Table 8. Results of the generated human activities with position-
based metrics. The collision frequency is calculated on a 60-frame
group activity and normalized by the total number of interactions
in a group.

teraction transformer. The persons are better aligned in a
group and they have coordinated motions.
Both baselines are capable of generating diverse activi-
ties that match the input condition, but MDM+IFormer
obtains better FID scores. Tab. 7 shows the results for the
learning-based metrics. When compared with ground truth,
both baselines obtain similar scores on recognition accu-
racy, diversity, and multimodality at both levels. The results
indicate that both models successfully learn to generate dis-
tinguishable individual motions and group activities. The
generated motions are also as diverse as the ground truth.
The observations align with the results on action-to-motion
generation in MDM [47]. MDM+IFormer receives a lower
FID score than MDM, suggesting that MDM+IFormer gen-
erates group activities with higher quality.
The interaction transformer in MDM+IFormer greatly
lowers the collision frequency within the generated
group activities. As shown in Tab. 8, the collision fre-
quency of the group activities generated by MDM+IFormer
is much lower than the vanilla MDM. It suggests that the
interaction transformer better learns the inter-person depen-
dencies and generates more valid person interactions. In
fact, we observe that the group activities generated by the
vanilla MDM sometimes contain overlapping person posi-
tions. The high collision frequency of the MDM baseline
also affects the repulsive forces, which makes social forces
within the group activities of MDM implausible.

5. Discussion and Conclusion
We show the merit of M3Act by conducting three core ex-
periments with multiple modalities and enhanced perfor-
mances, as well as introducing a novel generative task. In
both MPT and GAR experiments, we observe positive cor-
relations between the volume of synthetic data used for
training and model performance, indicating an improved
model generalizability to unseen test cases with more syn-
thetic data. Moreover, our comparison between DT+Syn†

and MOTRv2* reveals that synthetic data can replace cer-
tain real-world data from the target domain without sac-
rificing performance [13]. Essentially, our synthetic data
reduces the need for extensive real data during training,
thereby effectively lowering the costs associated with data
collection and annotation. This discovery represents a
promising step towards achieving few-shot and potentially
zero-shot sim2real transfer. In our 3D Group Activity Gen-
eration experiment, we observe that MDM+IFormer, de-
spite being a baseline for the novel task, learns to embed the
heuristics for person interactions and produces well-aligned
groups given the controls. It’s important to highlight that the
generative approach, though currently underperforms the
procedural method (GT), demonstrates the unique poten-
tial of controlling the group motions directly from various
signals, including activity class, group size, trajectory, den-
sity, speed, and text inputs. With the anticipation of more
data availability and increased model capacity for genera-
tive models in the future, we expect the generative method
to eventually prevail, leading to broader applications for so-
cial interactions and human collective activities.

While the complexity of group behaviors in our dataset
may be constrained by the heuristics used for activity au-
thoring, M3Act offers notable flexibility for incorporating
new group dynamics tailored to any specific downstream
tasks. These new groups could be derived from expert-
guided heuristics, rules generated by large language mod-
els, or outputs from our 3D GAG model. Furthermore, we
recognize the existing domain gaps between synthetic and
real-world data. With more assets included in our data gen-
erator in future iterations, we can enhance model generaliz-
ability and alleviate the disparities.
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