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Abstract
The spiking cameras offer the benefits of high dynamic

range (HDR), high temporal resolution, and low data redun-
dancy. However, reconstructing HDR videos in high-speed
conditions using single-bit spikings presents challenges due
to the limited bit depth. Increasing the bit depth of the spik-
ings is advantageous for boosting HDR performance, but the
readout efficiency will be decreased, which is unfavorable
for achieving a high frame rate (HFR) video. To address
these challenges, we propose a readout mechanism to ob-
tain rolling-mixed-bit (RMB) spikings, which involves inter-
leaving multi-bit spikings within the single-bit spikings in a
rolling manner, thereby combining the characteristics of high
bit depth and efficient readout. Furthermore, we introduce
RMB-Net for reconstructing HDR and HFR videos. RMB-
Net comprises a cross-bit attention block for fusing mixed-bit
spikings and a cross-time attention block for achieving tem-
poral fusion. Extensive experiments conducted on synthetic
and real-synthetic data demonstrate the superiority of our
method. For instance, pure 3-bit spikings result in 3 times
of data volume, whereas our method achieves comparable
performance with less than 2% increase in data volume.

1. Introduction
Real-world scenes possess a significantly wider dynamic
range that exceeds the capability of conventional sensors.
Typical high dynamic range (HDR) video reconstruction
methods [3, 23, 24, 53] with conventional sensors encode
exposure times to capture images with alternating exposures.
And by fusing the low dynamic range (LDR) images taken
under different exposures, the pitfalls of underexposure and
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Figure 1. The HDR performance of a spiking camera is closely tied
to the bit depth of the spikings. (a) From left to right: Single-bit
quantization (Qc is the accumulated photon electrons), diagram of
single-bit spiking planes, and reconstructed image by accumulating
N spiking planes. Increasing N to 255 significantly boosts HDR
performance. (b) HDR can be boosted by reading out multi-bit spik-
ings. However, multi-bit spikings decrease the readout efficiency,
which is not conducive to obtaining HFR videos. (c) The proposed
RMB spikings with time-varying quantization. We further recon-
struct HDR and HFR videos from RMB spikings.

overexposure are alleviated. This kind of approach has a
dilemma between the frame rate and exposure time [20], i.e.,
long exposure restricts the improvement of frame rate [2],
which makes it challenging to capture high frame rate (HFR)
videos with conventional sensors in high-speed scenes.

Recent advancements in the field of HDR and HFR pho-
tography have benefited from the integration of neuromor-
phic sensors such as event cameras [6, 29, 30] and spiking
cameras [2, 21]. These sensors offer appealing characteris-
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tics such as high dynamic range (>90dB), high temporal
resolution (µs), and low redundancy of single-bit data. In
contrast to difference-based event cameras that solely detect
changes in brightness [30], spiking cameras are more adept
at reconstructing fine texture details as they continuously
accumulate photon electric signals [60]. However, single-bit
spikings are less compatible with the human visual system,
necessitating reconstruction algorithms to convert them into
video frames [57, 58, 61].

As illustrated in Fig. 1 (a), when electrons generated by
accumulated photons in a pixel reach a predetermined thresh-
old, a binary spiking of 1 is read out and the pixel is reset to
0. The video frame reconstruction can be easily achieved by
accumulating a number N of spiking planes. In Fig. 1 (a), a
smaller N leads to lower bit depth of the reconstructed image
(N = 1 for 1 bit), while a larger N results in a higher bit depth
(N = 255 for 8 bit). In static and low-speed conditions, one
could set a large N to reconstruct an HDR image [19]. This
image can then be used to compensate for missing details
in LDR images captured by conventional sensors. However,
these methods [19, 55] suffer from limitations in high-speed
conditions, as longer accumulation time introduces more
severe motion blur. An alternative approach [2] is to build a
hybrid system consisting of a spiking camera and an alter-
nating exposure camera, which enables both HDR and HFR
video reconstruction. Unfortunately, such hybrid systems
require cumbersome synchronization and optical alignment,
and the space occupied by the beam splitter poses challenges
in building a compact device.

As a result, it would be advantageous if we could simulta-
neously achieve HDR and HFR video reconstruction with a
standalone spiking camera. To achieve higher dynamic range
without introducing motion blur, as illustrated in Fig. 1 (b),
it is theoretically feasible to increase the bit depth of spiking
signals. This goal can be achieved along two paths: mod-
ifying the analog-to-digital converter (ADC) to read out
multi-bit spikings, e.g., the cyclic ADC technology [26], or
accumulating more spikings within a limited time interval.
Nevertheless, higher bit depth inevitably brings increased
transmission pressure, which may reduce the readout effi-
ciency of spikings. Hence, the reconstruction of video frames
from spikings faces a trade-off between HDR and HFR.

To balance the trade-off between HDR and HFR, a rea-
sonable solution is to alternately read out mixed-bit data
stream that comprises both multi-bit and single-bit spikings.
From the perspective of hardware manufactures and practical
deployment, it is desirable that the design principles of the
readout mechanism for mixed-bit spikings incorporate ad-
vantages such as simplified implementation, low bandwidth
requirements, and fast sampling rates. Compared to the full-
frame readout mechanism, the rolling readout mechanism
can naturally take the above advantages [1, 11, 50, 52] and
thus has been widely employed in HDR [17, 31] and HFR [8–

10, 12] video reconstruction. Taking inspiration from these
approaches, as shown in Fig. 1 (c), we propose to design
the rolling-mixed-bit (RMB) spikings to take the best of
both worlds: high bit depth and efficient readout. Further, we
propose an HDR and HFR video reconstruction framework,
termed RMB-Net, that leverages a cross-bit attention and a
cross-time attention block, to effectively reconstruct an HDR
and HFR video from RMB spikings.

Through experiments conducted on both synthetic and
real-synthetic data, our RMB-Net demonstrates comparable
performance to using pure multi-bit spikings while maintain-
ing the advantage of fewer data redundancy. For instance,
compared to pure single-bit data, in an RMB spiking plane
with a row count of 500 and containing 4 rows of 3-bit spik-
ings, the increase in data volume is less than 2%, whereas
pure 3-bit spikings result in three times of data volume. Our
main contributions can be summarized as:
• discovering a promising solution to boost the HDR perfor-

mance through a comprehensive analysis of the relation-
ship between dynamic range and bit depth of spikings;
• designing a novel RMB spiking mechanism that effectively

balances both bit depth and readout efficiency;
• proposing an effective RMB-Net to reconstruct HDR and

HFR videos from the RMB spikings.

2. Related Work
HDR with conventional sensors. Conventional sensors of-
ten fail to capture HDR ambient light with a single exposure.
The methods for HDR image reconstruction from these sin-
gle LDR images [4, 7, 27, 33] cannot restore the missing
details in under-exposure and over-exposure regions. One
solution for HDR reconstruction is to fuse a set of LDR
images with different exposures [5, 41]. This approach often
leads to ghosting artifacts in dynamic scenes. To address this
issue and enhance the sharpness of HDR images, techniques
such as image alignment [35, 46] and deep learning [22, 54]
are employed. Lee and Song [28] utilize motion information
from high frame rate sequences to improve HDR image syn-
thesis and minimize ghosting artifacts. Merging sequences of
alternating-exposure frames is feasible to reconstruct HDR
videos with frame rates ranging from 20 to 60FPS [16, 23–
25, 37, 38]. Chen et al. [3] propose a coarse-to-fine network
that performs alignment and fusion sequentially in both im-
age and feature space.
HDR/HFR with unconventional sensors. Numerous uncon-
ventional sensors have been investigated for the purpose of
capturing HDR videos, such as scanline exposure [18], per-
pixel exposure [44], or multiple sensors [40, 49]. Many un-
conventional sensors, including event cameras [30], spiking
cameras [21], single photon avalanche diodes (SPAD) [45],
and quanta image sensors (QIS) [14], have emerged with the
capability to capture HDR signals even in high-speed con-
ditions. The QIS and spiking cameras have similar imaging
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models and primarily output binary sequences. But they
differ in several characteristics, e.g., the QIS16TS cam-
era [34] features very small pixels (1.1µm × 1.1µm) and
a relatively low frame rate (62FPS with a frame size of
1024× 1024), whereas spiking cameras have larger pixels
(17µm× 17µm) and higher frame rate (20,000FPS with a
frame size of 1000× 1000) [13, 21]. HDR images are recon-
structed by [15, 36] in the context of QIS cameras. Han et
al. [19] and Yang et al. [55] leverage the intensity map re-
constructed from events or spiking signals to compensate for
LDR images. Liu et al. [32] present the single-photon camera
guided HDR imaging. Messikommer et al. [42] and Shaw et
al. [47] explore the motion information within events to
promote image alignment of alternating exposure images.
Chang et al. [2] build a hybrid spike-RGB camera system
to recover 1000FPS HDR video. However, the hybrid cam-
era requires synchronization and optical alignment, and the
space taken up by the beam splitter presents challenges in
constructing a compact device.

3. Dynamic Range of Spikings
In this paper, we investigate the reconstruction of HDR
videos from mixed-bit spikings, allowing for the simulta-
neous achievement of HDR and HFR. Toward this goal, we
begin by providing a concise description of the emission
model for both single-bit and multi-bit spikings in Sec. 3.1.
Subsequently, in Sec. 3.2, we analyze the correlation be-
tween HDR performance and bit depth of the spikings.

3.1. Spiking emission model
Single-bit spikings. For each pixel in the spiking camera,
the electrons generated by photons are continuously accu-
mulated as long as the electrons does not reach the threshold
Qth. Simultaneously, the readout circuit samples the pixel
value at a fixed frequency and the value of 0 is read out at
each readout point. Once the accumulated electrons reach
Qth, a signal of 1 is read out and the electrons of the pixel is
reset to 0. We denote the accumulated electrons at a read out
point t as Qc(t), the single-bit spiking S(t) at t is

S(t) =

{
1, Qc(t) ≥ Qth,

0, otherwise,
(1)

where Qc(t) consists of three components: the accumulated
electrons Qa(t) in the previous accumulation interval, the
photo-generated electrons Qp(t), and the dark electrons
Qd(t). That is, Qc(t) = Qp(t) + Qa(t) + Qd(t). Qth is
also affected by the deviation of the capacitor capacitance
CS , the voltage deviation V S when resetting the voltage,
and the voltage deviation V T0(t) caused by temperature1.
How to increase bit depth. Single-bit (also called 1-bit)
spikings are limited in representing textures, hence, increas-
ing the bit depth is necessary to encode richer texture in-
formation. There are two viable solutions to increase bit
1Details of the Qc and Qth are available in the supplementary material.

depth and obtain finer textures. The first solution employs
higher-level quantization of the detected electrons, while the
second solution focuses on accumulating more spikings in
the temporal domain. For the first solution, we define the
bit depth of a spiking as B, and the quantization level as L,
where L is equal to 2B − 1. The formulation for generating
multi-bit spiking, denoted as SL(t) is given by

SL(t) =

{
L, Qc(t) ≥ Qth,

H, Qc(t) ∈ [HQth

L , (H+1)Qth

L ),
(2)

where H is an integer within the range of [0, L − 1]. The
accumulator is reset to 0 when 0 < SL(t) ≤ L. For the
second solution, we denote τ as the time interval between
two adjacent spikings, and accumulate a sequence of N
consecutive readout spikings:

SN (t) =

N∑
n=1

S(t+ nτ). (3)

Then, by combining Eqns. (2) and (3), the bit depth can be
jointly increased as SL

N (t) =
∑N

n=1 S
L(t+ nτ).

3.2. HDR with multi-bit spikings
SNR vs. dynamic range of spikings. The dynamic range
of camera sensors is typically defined as the range of the
exposure where the signal-to-noise ratio (SNR) surpasses
a threshold of 1. Let SL(t) refer to a spiking with an ar-
bitrary bit depth at a pixel, µ = E(SL(t)) is the expec-
tation, and σ2 = Var(SL(t)) is the variance of the spik-
ing signal. Similar with the definition in [15], the SNR of
spiking camera can be defined as SNRλ(S

L(t)) = λ
σ

dµ
dλ ,

where λ denotes the exposure, i.e., the average number of
photons. The expectation of SL

N (t) is linearly related to
E(SL(t)), i.e., E(SL

N (t)) = N · E(SL(t)). The variance
of SL

N (t) is N · Var(SL(t)) when the spiking signals be-
tween intervals are independent of each other. For spik-
ing cameras, information inheritance2 occurs between in-
tervals due to continuous electron accumulation. This leads
to a reduction in information loss and variance. Thus, we
have Var(SL

N (t)) ≤ N · Var(SL(t)). And consequently,
SNRλ(S

L
N (t)) ≥

√
N · SNRλ(S

L(t)). Since the expecta-
tion and variance of spiking signals are the same for each
accumulation interval t, we omit t in the subsequent formu-
lations. E(SL) and Var(SL) can be formulated as

E(SL) =

L∑
H=0

H P(SL = H), (4)

Var(SL) =

L∑
H=0

H2 P(SL = H)− E2(SL). (5)

Here, P(SL = H) denotes the probability of the read out
value being H , and it is formulated as follows:

P(SL = H) =

+∞∑
Q′=−∞

+∞∑
k=−∞

PQ′Pk

∑+∞
n=1 P

H
n∑L

h=1

∑+∞
n=1 nP

h
n

, (6)

2Explanations are available in the supplementary material.
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Figure 2. We show the curves of expectation and standard deviation
of normalized SL

N , where N is set to 1. (a) The expectation exhibits
a stepwise increase when the bit depth is low. The real-captured
spikings are marked by red points. In each flat region of the step,
single-bit spikings cannot differentiate between different exposures,
leading to the loss of some texture information. As the quantization
level L increases, the range of flat regions in each step decreases,
allowing for better preservation of textures. (b) Higher-level quanti-
zation leads to a smaller standard deviation.

where PQ′ = P(Qth = Q′) represents the probability of the
threshold electrons Qth being Q′, Pk = P(Qd = k) denotes
the probability of dark electrons being k 3. PH

n represents
the probability that, when initiating the accumulation with
Qa = 0, no spikings are emitted within the time interval
[0, (n − 1)τ ], and the quantization level within the range
((n− 1)τ, nτ ] is H . PH

n can be expressed as follows:

PH
n =

∑
u∈Nu

P(Qp = u|npαλ)
∑
v∈Nv

P(Qp = v|αλ), (7)

where np = n− 1, Nu = [−npk, ⌊Q′/L⌋ − npk) ∩N, and
Nv = [⌈Q′H/L⌉−u−nk, ⌈Q′(H+a)/L⌉−u−nk)∩N,
a = 1 when H < L and a→ +∞ when H = L. Note that
the photons arrived at a pixel can be modeled as a Poisson
process. For any z ∈ N, the probability for photo-generated
electrons Qp being z in n intervals is:

P(Qp = z|nαλ) = (nαλ)z exp(−nαλ)/(z!), (8)
where α denotes the photoelectric conversion rate.
Simulation and validation. By jointly solving Eqns. (4)-
(8), the mapping from λ to E(SL) and Var(SL) can be
obtained correspondingly. Denote the normalized spiking
which equals to SL/L as SL. The curves of E(SL) and√

Var(SL) with respect to exposure are shown in Fig. 2. To
validate our analysis, we conducted measurements on the
response of real-captured spikings4 to exposure and fit the
theoretical curves to the actual responses. In Fig. 2 (a), when
L = 1, E(SL) demonstrates a stepwise increasing curve as
λ increases. As L gradually increases, the stepwise pattern
becomes more refined until the relationship between E(SL)
and λ approaches a smoothly linear response. In Fig. 2 (b),√

Var(SL) shows a trend of initially increasing and then de-
creasing with the increase of λ. As L increases,

√
Var(SL)

tends to decrease. E(SL) and
√

Var(SL) collectively deter-
mine the SNRλ, as shown in Fig. 3, thereby influencing the
dynamic range of the spiking camera.
3Explanations of Eqn. (6) are available in the supplementary material.
4Details of this experiment are available in the supplementary material.
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Figure 3. The dynamic range of the spikings (SL
N (t)) is jointly

determined by L and N . We illustrate the mapping curve between
the exposure λ and signal-to-noise ratio SNRλ. (a) We set N = 10
and L is varied as 1, 3, and 7. (b) We set L = 1 and N is varying
as 10, 30, and 70. Both increasing L and N boost the extension of
the dynamic range. Here, the unit for exposure is the number of
photons per square micron per second (photon/(µm2 · s)).

Table 1. Dynamic range for varying bit depth and number of inter-
vals N . Here, the unit for dynamic range is decibels (dB).

L
N

1 10 30 70 1000 10000 20000

1 (1-bit) 9.07 22.70 32.73 40.33 63.84 84.25 90.38
3 (2-bit) 13.91 32.32 42.35 49.95 73.48 93.80 99.91
7 (3-bit) 21.79 39.79 49.83 64.09 80.83 101.70 107.71

Theoretical bound of dynamic range. In Fig. 3, we illus-
trate the dynamic range of the spiking signal (SL

N (t)) with
respect to L and N . In Fig. 3 (a), where N is set to a fixed
value of 10, the dynamic range is boosted from 23dB to
40dB when L is increased from 1 to 7. In Fig. 3 (b), where
L is fixed at 1, increasing N from 10 to 70 also boosts the
dynamic range. To provide a more detailed overview of the
relationship between dynamic range and {L,N}, we list the
detailed numbers in Table 1. When N takes a very large
value, i.e., 20,000, the theoretical bound of single-bit spik-
ings is around 90dB, while the theoretical bound of 3-bit
spikings is around 107dB.

4. RMB-Net for HDR and HFR Video
In high-speed scenes, given the constraint of limited band-
width, increasing L from 1 to 7 results in 3 times of data
volume, which poses a disadvantage for HFR video recon-
struction. Therefore, further consideration is required for the
theoretical bound of HDR. To balance the bit depth and read-
out efficiency, we design a rolling-mixed-bit (RMB) readout
mechanism in Sec. 4.1. This approach yields a significant re-
duction of data volume compared to pure multi-bit spikings,
while still retaining the capability to reconstruct HDR and
HFR videos. In Sec. 4.2, we propose an effective RMB-Net
to reconstruct HDR and HFR videos from RMB spikings.
The RMB-Net utilizes a cross-bit attention block to merge
the single-bit signals and multi-bit spikings. Meanwhile, as
there are high-speed motions, naive accumulation with a
large N yields motion blur. And it becomes increasingly
challenging with larger values of N . Intuitively, the accu-
mulation of N spikings is better determined by a weighting
scheme that takes into account the temporal information.
Thus, RMB-Net employs a cross-time attention block that
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Figure 4. (a) Two conceptual designs for mixed-bit spikings are
proposed: (I) Reading out full-frame multi-bit spiking planes inter-
mittently; (II) sequentially mixing multi-bit spikings row by row
within single-bit spikings. T is the scanning cycle of multi-bit spik-
ings, th is the timestamp that the scan precisely undergoes a half
cycle, Mr(th) is the corresponding spiking plane by accumulating
the multi-bit spikings read out within T . (b) We rectify the shape
distortion of Mr(th) to obtain M(th). The warping operation is
performed with the optical flow estimated from single-bit spikings.

learns weight masks cross a sequence of spiking frames to
facilitate the merging process.

4.1. Preprocessing for RMB spikings
We now describe two conceptual designs for the mixed-bit
spikings. The first design shown on the left side of Fig. 4 (a)
reads out full-frame multi-bit spiking planes intermittently.
These full-frame multi-bit spikings instantaneously impose
high transmission pressure. The RMB mechanism shown in
the right side of Fig. 4 (a) employs a time-varying readout
mechanism to evenly distribute the transmission pressure
generated from multi-bit spikings. In this work, the size of
full frame is 500× 500, RMB mechanism reads out 4 rows
of three-bit spikings at each readout point. Thus, compared
to pure single-bit spikings, the increase in data volume is
((496 + 3× 4)/500− 1)× 100% = 1.6%.
Upsampling to dense multi-bit spikings. As illustrated
in Fig. 4 (b), during scanning multi-bit spikings over time,
motions often cause shape distortion in Mr(th), similar to the
jelly effects of a rolling shutter sensor. Rectifying the shape
distortion is solvable since the full-time motion information
for each pixel is captured by single-bit spikings. We denote
the target multi-bit spiking plane at th as M(th). As shown
in Fig. 4 (b), we firstly estimate the differential of spike
firing time (DSFT) [59] corresponding to Mr(th) and M(th).
Then, we estimate the optical flow between DSFT(Mr(th))
and DSFT(M(th)) using Spike2Flow [59]. This is followed
by a warping operation to obtain M(th). Similarly, we can
estimate the bidirectional optical flows between each pair

single-bit spikings
0.5ms 

Is(i) Is(i+3) Im(i) Im(i+3) 

multi-bit spikings

… …

∑ ∑

Is(i-3) Im(i-3) ……
(a) (b)

N = 10

Figure 5. (a) and (b) show the preliminary reconstruction from
single-bit and upsampled multi-bit spikings, respectively.

∑
de-

notes the temporal accumulation in this figure.

of M(th) and M(th + T ), enabling us to upsample dense
multi-bit spikings with the linear interpolation.
Preliminary reconstruction. To reconstruct videos with a
frame rate of 2,000FPS from 20,000Hz spikings, as illus-
trated in Fig. 5, we initially split the spiking data with a
fixed interval of 0.5ms (N = 10) in the time domain. Then,
we accumulate the spikings in each interval to preliminarily
reconstruct spiking frames. The spiking frames accumulated
from single-bit and upsampled multi-bit spikings are de-
noted as Is = {Is(i)|i = 0, 1, ...K} and Im = {Im(i)|i =
0, 1, ...K}, where i is the index of the spiking frames, and
K is the total number of frames in a sequence.
Input of RMB-Net. For the current step i, since the accu-
mulation interval N for preliminary reconstruction is 10, the
theoretical dynamic ranges of Is(i) and Im(i) are limited
to 22.7dB and 39.79dB, respectively (see Table 1). Larger
N has been proven to be effective for boosting HDR per-
formance. Hence, for the current reference image Is(i), we
select a bunch of frames Is(i) = {Is(j)|j ∈ N} as the input
of RMB-Net, whereN = [i−w, i+w] and w is the number
of subsequent or previous frames. Hence, the accumulation
interval N for each step is (2w + 1) × 10. To balance the
trade-off between HDR performance and motions in high-
speed scenes, we set the value of w to 3, which is equivalent
to N = 70 and is well suited for video reconstruction at
2,000FPS. Simultaneously, in correspondence with Is(i), we
also select a bunch of upsampled multi-bit spiking frames
Im(i) = {Im(j)|j ∈ N} to further boost the HDR recon-
struction process. In this condition, assuming that multi-bit
spikings can be ideally upsampled from the rolling multi-bit
spikings, the theoretical limit of HDR video is 64.09dB.

4.2. Architecture of RMB-Net
As shown in Fig. 6, RMB-Net firstly tackles the issue of
spatial misalignment with the optical flows estimated from
single-bit spikings. Next, two encoders are utilized to extract
multi-scale features from the two-stream input Is(i) and
Im(i) in parallel, and the corresponding features are denoted
as Fs(i) = {Fs(j)|j ∈ N} and Fm(i) = {Fm(j)|j ∈ N}.
To reconstruct a single frame at step i by merging Fs(i)
and Fm(i), the design of a two-stage fusion process is rea-
sonable: We firstly accomplish the fusion of single-bit and
multi-bit features, and then deal with the fusion of the tempo-

25121



XBA XTA

shared
encoder

shared 
encoder

Sp(i-1)

Fs(i)

Fm(i) Fms(i)

Is(i) Im(i)

IHDR(i)

Is(i-1) Im(i-1)

IHDR(i)

Is(i+1) Im(i+1)

IHDR(i+1)
Im(i)

Is(i)
warping

C

�Fms(i)

IHDR(i) 

decoder

optical flow

warping

…

…

Sp(i-1)

Figure 6. RMB-Net reconstructs HDR and HFR videos in a step-wise manner. The input at step i consists of two bunches of single-bit
frames Is(i) and multi-bit frames Im(i). We align the images to the reference timestamp i using Spike2Flow [59]. Fs(i), Fm(i), and F̄sm(i)
are internal features. The cross-bit attention (XBA, details in Fig. 7) and cross-time attention (XTA) are designed to facilitate the merging
process. Sp(i− 1) is the previous states of step i− 1. IHDR(i) is the output image.
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XBA (q)

F m
(k

)

Figure 7. The cross-bit attention learns weight masks from each
pair of Fs(q) and Fm(k). The weight masks are normalized with
SoftMax and then applied to Fms(i).

ral sequence within the bunchN . In the first stage, RMB-Net
achieves the fusion by merging multi-bit and single-bit fea-
tures through a cross-bit attention (XBA) block. The output
of XBA is denoted as F̂m(i). Subsequently, RMB-Net con-
catenates F̂m(i) and Fs(i) to obtain the mixed-bit feature
collection. In the second stage, RMB-Net achieves fusion
by leveraging temporal fusion with the cross-time attention
block (XTA). The output of it is denoted as Fms(i). Then, an
average operation is applied to Fms(i) in temporal domain
to obtain F̄ms(i). Finally, we use a decoder to reversely map
F̄ms(i) to the output frame IHDR(i), and we add residual
links from the reference feature Fms(i) to the decoder. In
order to output flicker-free video frames, we add three Con-
vLSTM layers [48] to feed previous states Sp(i−1) forward
in the temporal domain.
Fusing with cross-bit attention. Since motions are continu-
ous during a bunch of frames, there are spatial correlations
between Fs(q) and Fm(k) for a given query index q and
any key index k ∈ N . To measure these correlations, the
cross-bit attention block that learns weighted masks between
all the pairs of Fs(q) and Fm(k) is designed as illustrated
in Fig. 7. We denote the collection of weighted masks for
index q as XBA(q):

XBA(q) = {F(C(Fs(q), Fm(k)))|q ∈ N}, (9)

where XBA(q) comprises 2w+1 attention masks, F(·) de-
notes the projection function composed of multiple convo-
lutional layers, C(·) signifies the concatenation operation.
Subsequently, we perform normalization with SoftMax:

XBA(q)← SoftMax(XBA(q)). (10)
The weighted masks are then applied to Fm(i) in order to
obtain the refined multi-bit F̂m(q):

F̂m(q) =
∑
k∈N

XBA(q, k)⊙ Fm(k), (11)

where ⊙ is element-wise multiplication. Next, by concate-
nating each F̂m(q) to Fs(q) and reducing the channel of
features with 1×1 convolutional layers, we obtain the mixed-
bit feature collection: Fms(i) = {Fms(q)|q ∈ N}.
Fusing with cross-time attention. The cross-time attention
block is proposed to deal with the temporal fusion of the fea-
ture collection Fms(i). Similar to cross-bit attention, cross-
time attention is performed to measure the inter-correlations
between all pairs of Fms(q) and Fms(k). The attention mask
for each Fms(q) is:
XTA(q) = {F(C(Fms(q), Fms(k))) +B(i)|q ∈ N},

(12)
where B(i) is the bias that equals the temporal average of
Fms(i), F(·) and C(·) are the same as Eqn. (9). Also, we
adopt SoftMax to normalize the weight masks like Eqn. (10).
XTA(q) is then applied to Fms in the same manner
as Eqn. (11), and the output feature is denoted as F̂ms(q).
Finally, we merge all the F̂ms(q) for the current step i as:
F̄ms(i) =

1
2w+1

∑
q∈N F̂ms(q).

4.3. Implementation details
Data preparation. RMB-Net incorporates Spike2Flow [59]
for optical flow estimation. Since Spike2Flow has not been
trained for HDR scenes, we finetune it with our synthetic
dataset. The dataset utilized to train RMB-Net includes three
components: RMB spikings, ground truth optical flows, and
ground truth HDR video frames. Following Chang et al. [2]
and Zhao et al. [59], we synthesize HDR and HFR videos
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HDR scene TFW-S [57] TFI [57] Spk2ImgNet [53] GC20 [13] MG20 [33] Ours GT

(b)

(a) 

spikings

spikings

Figure 8. Visual equality comparison of synthetic data between the proposed method and compared methods. The HDR scene is captured by
alternating exposures. Please zoom-in electronic versions for better details, and watch the videos in the project page.

Table 2. Quantitative results and ablation studies on our synthetic data. ↑ (↓) indicates larger (smaller) values are better.
Comparison with state-of-the-art methods Ablation studies

Method TFW-S [61] TFW-L [61] TFI [61] Spk2ImgNet [57] GC20 [15] MG20 [36] Ours w = 0 Pure-S Pure-M Full-M w/o XBA w/o XTA
PSNR↑ 9.04 13.33 17.67 15.91 19.22 16.16 24.06 19.95 19.37 26.62 24.50 22.29 21.81
SSIM↑ 0.408 0.778 0.697 0.717 0.800 0.748 0.895 0.807 0.867 0.904 0.901 0.881 0.858

HDR-VDP3↑ 6.383 7.564 7.048 7.664 7.249 7.623 8.103 7.531 7.502 8.182 8.120 7.971 7.957
HDR-VQM↓ 0.939 0.621 0.849 0.753 0.618 0.741 0.096 0.259 0.315 0.084 0.093 0.112 0.106

with the alternating-exposure videos in [2]. Then, we syn-
thesize the RMB spikings with the mechanism described
in Sec. 3. T is 12.5ms in this work. We also collect 10 groups
of real data. As the spiking camera at our disposal has not yet
undergone hardware upgrades to enable the RMB readout,
we simulate RMB spikings through spatial and temporal ag-
gregation, i.e., a 3-bit spiking is obtained by aggregating the
spikings in a 2×2×2 (height, width, and time) binning. Sim-
ilarly, the single-bit spiking is obtained by retaining only one
pixel in the binning. Since the RMB spikings are generated
from real data, there is no ground truth for them.
Loss and training. It has been confirmed that training the
network on the tone-mapped images is more effective than
training directly in the HDR domain [3, 19, 22]. We com-
press the range of the ground truth G by applying the µ-law
function: T (G) = log(1 + µG)/log(1 + µ). To train our
merging module, we employ the l2 loss, Structure similar-
ity (SSIM) loss [51], and Learned Perceptual Image Patch
Similarity (LPIPS) loss [56]. The total loss at step i is:
L(i) = Ll2(i) + β1LSSIM(i) + β2LLPIPS(i), (13)

where β1 = β2 = 1. We train the merging module at each
step i. We set the batch size to 2 and use Adam optimizer for
training. The merging module is trained with 50 epochs.

5. Experiments
5.1. Quantitative evaluation on synthetic data
We compare our method with existing spiking-based video
reconstruction methods, i.e., TFW [61], TFI [61], and
Spk2ImgNet [57]. Note that they reconstruct videos from

single-bit spikings. While we acknowledge that it is not en-
tirely fair to compare our method with these approaches
because they are designed only for single-bit spikings, they
serve as the best baselines for showcasing the potential of in-
troducing multi-bit spikings. TFW-S indicates the TFW with
a small temporal window (10), while TFW-L indicates the
TFW with a long temporal window (70). Given the similar
data stream of quanta image sensors (QIS) and spiking cam-
eras, HDR methods developed for QIS can be adapted to spik-
ing cameras. Hence, we choose GC20 [15] and MG205 [36]
for comparison. All the inputs of the compared methods
are RMB spikings. We further conduct ablation studies to
demonstrate the effectiveness of each module in our frame-
work. For “w = 0”, we only input a single Is and a single
Im to RMB-Net, instead of frame bunches; for “Pure-S”,
we feed pure single-bit spikings to RMB-Net; for “Pure-M”,
we feed pure 3-bit spikings to RMB-Net; for “Full-M”, we
feed the first type of data in Fig. 4 (a) to the model; for “w/o
XBA”, we replace cross-bit attention with a simple concate-
nation operation; for “w/o XTA”, we remove the cross-time
attention with a simple temporal average operation.

Fig. 8 shows the reconstruction results on synthetic data
of the proposed method and compared methods. TFW and
TFI tend to reconstruct noisy video frames. Spk2ImgNet [57]
reconstructs low-contrast video frames. GC20 [15] performs
well in preserving textures in bright regions, but fails to
preserve textures in dark regions. MG20 [36] successfully

5We use “first letter of first names of first two authors + year” as the
abbreviation for the comparison methods in this section.
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TFW-S [57] TFI [57] Spk2ImgNet [53] GC20 [13] MG20 [33] Ours Pure-MPure-SHDR scene

(a)

iPhone13

iPhone13

(b)

Spikings 
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Figure 9. Visual equality comparison of real-synthetic data. The four frames captured by iPhone13 are used to illustrate HDR scenes. Please
zoom-in electronic versions for better details, and watch the corresponding videos on the project page.
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Figure 10. Demonstration to capture a bursting balloon of the pro-
posed method and compared methods. (a) The five frames captured
by iPhone13 are used to illustrate the HDR scene. (b) We sample
32 frames from 260 frames for illustration, and select the 17-th
image for comparison. (c) Results of Spk2ImgNet [57], GC20 [15],
MG20 [36], and Pure-M.

recovers sharp textures, but the frames are still contaminated
by noise. The proposed method is capable of reconstruct-
ing rich texture details for both dark and bright regions. We
evaluate the reconstructed HDR videos in terms of PSNR,
HDR-VDP-3 [39], HDR-VQM [43], and SSIM [51] in Ta-
ble 2, showing that our method consistently achieves state-
of-the-art performance.

5.2. Qualitative evaluation on real-synthetic data
In order to demonstrate the effectiveness of the proposed
framework on real-world scenes, we perform experimental
comparisons on real-synthetic data. In Fig. 9 (a), we posi-

tion an LED light array (about 8,000LUX) in front of the
spiking camera and pour out a cup of water, causing small
objects to flow out along with the water. In Fig. 9 (b), we
rapidly wave an LED light strip and a cuboid. Through ob-
serving the regions marked by bounding boxes, we can see
that the RMB approach outperforms state-of-the-art meth-
ods in reconstructing finer details and achieves comparable
performance with Pure-M. As shown in Fig. 10, in a dimly-
lit environment (about 200LUX), a balloon is bursting and
the water is splashing around. Both Spk2ImgNet [57] and
Pure-S yield unsatisfactory results with a loss of detail in the
water splash reflections. Our approach consistently achieves
comparable results with Pure-M in capturing the details.

6. Conclusion
In this paper, through a comprehensive analysis of the dy-
namic range of spiking cameras, we identified that increasing
the bit depth of spikings can boost HDR performance. In
high-speed conditions, compared to the pure multi-bit read-
out mechanism that results in multifold data volume, RMB
spikings only increase the data volume by less than 2% in our
setting, yet still enable comparable reconstruction of HDR
frames. Accordingly, we developed an effective RMB-Net to
achieve HDR and HFR video reconstruction. Under the joint
action of the proposed cross-bit and cross-time attention
blocks, our RMB-Net demonstrates excellent performance
on both synthetic and real data simulations.
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