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Abstract

Most of the recent literature on image Super-Resolution
(SR) can be classified into two main approaches. The first
one involves learning a corruption model tailored to a spe-
cific dataset, aiming to mimic the noise and corruption in
low-resolution images, such as sensor noise. However, this
approach is data-specific, tends to lack adaptability, and its
accuracy diminishes when faced with unseen types of image
corruptions. A second and more recent approach, referred
to as Robust Super-Resolution (RSR), proposes to improve
real-world SR by harnessing the generalization capabilities
of a model by making it robust to adversarial attacks. To
delve further into this second approach, our paper explores
the universality of various methods for enhancing the ro-
bustness of deep learning SR models. In other words, we
inquire: “Which robustness method exhibits the highest de-
gree of adaptability when dealing with a wide range of ad-
versarial attacks ?”. Our extensive experimentation on both
synthetic and real-world images empirically demonstrates
that median randomized smoothing (MRS) is more general
in terms of robustness compared to adversarial learning
techniques, which tend to focus on specific types of attacks.
Furthermore, as expected, we also illustrate that the pro-
posed universal robust method enables the SR model to han-
dle standard corruptions more effectively, such as blur and
Gaussian noise, and notably, corruptions naturally present
in real-world images. These results support the significance
of shifting the paradigm in the development of real-world
SR methods towards RSR, especially via MRS.

1. Introduction

The aim of single-image super-resolution (SISR) is to im-
prove the resolution of a given low-resolution (LR) image,
by producing a high-resolution (HR) image that is clear and
without artifacts. SISR is widely used in a range of real-
world applications, such as oceanography [9], surveillance
[35], and medical images [12]. However, super-resolving

an image poses a considerable challenge due to the ill-posed
nature of the problem, since multiple HR solutions can cor-
respond to a single LR image. There are several well-known
methods for scaling high-resolution images, such as linear
interpolation methods [17] or the estimation of covariance
or correlation in LR data [2, 23]. Unfortunately, these meth-
ods often produce results that appear blurred, noisy and
have difficulty in faithfully capturing high-frequency image
details.

In recent years, SISR methods based on deep neural net-
works (DNNs) have made considerable progress [8, 21, 29,
33, 37] and offer much better quality for the upscaled im-
age. Despite this progress, DNNs have been shown to be
vulnerable to adversarial attacks, whether in classification
[11, 27, 31] or in SR [6, 7] (see Figure 1). The inevitability
and universality of adversarial examples is rooted in their
definition. It is possible to systematically introduce addi-
tive perturbations into the input, causing the model to mis-
classify an example. The susceptibility to adversarial inputs
poses a potential issue, hindering the application of deep
learning methods in security and safety-critical contexts. It
is important to note that even state-of-the-art SR models
[24, 37] tend to perform poorly on real-world images that
contain some corruption or amount of sensor noise. Since
the majority of SR models are trained in a supervised way,
requiring matching pairs of HR and LR images, LR images
are typically generated from HR images by using bicubic
downscaling.

The recognition of this constraint spurred the investiga-
tion of real-world SR on datasets with synthetic and natu-
ral corruptions. Several benchmarks [25, 26] design real-
world artifacts and corruptions under different assumptions
or from varying sensors. Consequently, some methods in
real-world SR [10, 14] generate photo-realistic results only
when they are evaluated on a specific dataset for which they
were trained, but they fail to generalize to new datasets with
unseen corruptions. A more recent approach, Castillo et al.
[4], referred to as Robust Super-Resolution (RSR), proposes
to improve real-world SR by harnessing the generalization
capabilities of a model, making it robust to unseen noise by
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using adversarial training, see Subsection 3.2. To the best
of our knowledge, it is the only work that has attempted
to create a generalized real-world SR model that achieves
state-of-the-art results without training or fine-tuning on
real-world datasets.

In this paper, we delve further into this latter approach.
We recall that the adversarial learning employed in [4] relies
on using the Projected Gradient Descent (PGD) attack 3.1
as a form of attack on LR images during the training phase.
However, we will show that this type of defense is sensitive
to other types of perturbations, and it is not the most effec-
tive generalized real-world SR model. In response to this
limitation, we employ the Median Randomized Smoothing
(MRS) approach, a scalable technique providing certified
robustness for neural network-based models. This tech-
nique, initially applied in the context of object detection
[5], transforms any DNN into a new smoothed one with
certifiable l2-norm robustness guarantees, as described in
Lemma 4.1. The transformation is defined as follows: let
fθ : [0, 1]n → [0, 1]m, fθ = (f1

θ , ..., f
m
θ ), be a SR neural

network, and x be an input. Then, the median smoothing
of fθ is defined as q0.5(x) = (q10.5(x), ..., q

m
0.5(x)), where

qi0.5(x) = inf{y ∈ R|P(f i
θ(x + G) ≤ y) ≤ 0.5} and

G ∼ N(0, σ2I) follows a Gaussian distribution. The esti-
mation of q0.5(x) can be approximated empirically through
Monte Carlo (MC) sampling, as explained in [5]. The ad-
vantage of using the median on SR over the mean, com-
monly used in the classification field [28], stems from the
fact that the median is nearly unaffected by outliers present
in LR images. Unlike the median, the mean tends to smooth
out the areas where predictions are locally constant, [5],
which is disadvantageous for images as they often contain
textures. Moreover, it is important to mention that the MRS
method is known to require a large number of samples (of
order 2000 [5]) with the MC procedure for classification
and regression in object detection tasks. However, we dis-
covered that in the context of SR, the MSR is well-suited
because pixel-wise variations in predicted images are not
large. We can easily control this instability with a few sam-
ples (of order 21). Finally, we will need to fine-tune the
SR model on noisy LR images using different Gaussians
samples to make it insensitive to this type of noise, as we
are certifying our model with this type of noise, for our SR
model to be insensitive to this type of noise.
Our main contributions are as follows:
1. We extend the use of adversarial attacks in SR. Until

now, only the PGD attack presented in [4] has been ap-
plied in the context of real-world SR based on the per-
ceptual loss. In this paper, we adapt other commonly
used attacks from the classification literature. Specifi-
cally, we adapt the Fast Gradient Sign Method (FGSM),
the Basic Iteration Method (BIM), and the Carlini and
Wagner (CW) attack to the perceptual and pixel level of

the image. We apply adversarial training using these at-
tacks to create RSR models.

2. We propose a novel use of MRS to create a real-world
SR model named CertSR that achieves state-of-the-art
results, particularly for the Learned Perceptual Image
Patch Similarity (LPIPS) metric.

3. Finally, we show that MRS is more universal in terms
of robustness compared to all the previously mentioned
adversarial training techniques.

2. Related works

It has been shown by Choi et al. [6] that state-of-the-
art deep learning-based SR methods are highly suscepti-
ble to adversarial attacks. This vulnerability is primarily
attributed to the propagation of the perturbation through the
convolutional operation. In the SR domain, adversarial ex-
amples can be represented as follows: an original LR image
x is perturbed by adding a small value δ to generate an ad-
versarial LR image xadv . Consequently, xadv is slightly dif-
ferent from x. However, the prediction of xadv deteriorates
significantly compared to the prediction of x.

We note that adversarial attacks and robust models are
applied to SR for the first time by Choi et al. [6, 7]. No-
tably, Choi et al. [6] explored target and non-targeted at-
tacks, originally developed for classification tasks by Ku-
rakin et al. [20]. They adapted these attacks to SR with the
goal of maximizing the pixel degradation of super-resolved
images. In [7], Choi et al. proposed a defense method for-
mulated as an entropy regularization loss for model train-
ing, against the adversarial attacks constructed in [6], thus
improving the robustness of the original SR model. How-
ever, as explained in [4], these last works focused on eval-
uating the methods based on pixel-wise metrics and did not
concentrate their study on real-world SR.

It is worth mentioning that in the context of SR, the pri-
mary objective is to obtain perceptually well-resolved HR
images. In pursuit of this objective, Castillo et al. [4] re-
cently employed an adversarial attack based on pixel-wise
and perceptual losses to construct a robust model. This type
of attack was originally introduced by Madry et al. [27] for
classification tasks. To the best of our knowledge, this work
is the only one that reports the study of adversarial train-
ing for real-world SR problems, where the evaluation was
done on perceptual metrics. In this study, we will show that
our method performs much better, is more robust, and gen-
eralizes better to real-world SR problems, achieving state-
of-the-art results without training or fine-tuning on corrupt
datasets.

3. Adversarial attacks and training on SR

In this section, we present novel adversarial attacks tailored
for SR tasks. It is noteworthy that these attacks are drawn
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from the most relevant and widely employed techniques in
the classification literature [3, 11, 20, 27]. The visual effect
of these adversarial attacks is revealed in Figure 1. Subse-
quently, we will provide a general overview of adversarial
learning, regardless of the specific adversarial attack used.
These adversarial attacks, as well as the RSR based on these
attacks, will be used in our experiments to assess the univer-
sality of the robustness of our certified SR approach. This
evaluation encompasses various adversarial attacks, pertur-
bations existing in the literature, and synthetic perturbations
representative of those encountered in real-world images (as
detailed in Section 5).

3.1. Adversarial attacks

Figure 1. Visualization of both non-attacked and the correspond-
ing attacked LR image subjected to various types of attacks, which
we presented above, along with their predictions using ESRGAN
[33], is provided in the first row. The top-left corner displays
the ground truth image from the validation dataset of DIV2K [1],
while the clean LR image is shown below it. The LR image was
attacked using FGSM, BIM, and PGD with perturbations bounded
within a ball of radius ϵ = 10/255. For the CW attack, we utilized
Adam [18] optimization to solve the problem in (2) with a learning
rate of 10−2 for 6 iterations and c = 0.01.

Fast Gradient Sign Method (FGSM) is primarily de-
signed to be a fast algorithm for generating adversarial LR
images. Moreover, it is an attack that uses the gradient of
the loss function to determine the direction in which pixel
intensities should be changed to find the most efficient input
perturbation. The adversarial LR image is mathematically
calculated as follows:

xadv = x+ ϵ sign(∇xL(fθ(x), y)), (1)

where L is composed of the Lpercep perceptual and L1

pixel-wise loss functions of the generator. Here, x repre-
sents the LR image, y represents the HR ground truth, and ϵ
is the step size for the allowed perturbation. As ϵ increases,
it becomes easier to degrade the network’s predictions.

Basic Iterations Method (BIM) represents a simple re-
finement of the FGSM attack. Instead of taking a single

step of size ϵ in the direction of the gradient sign, multi-
ple smaller steps α are taken. Specifically, begin by setting
x0 = x as a clean LR image used for initialization in itera-
tion,

xt = xt−1 + α sign(∇xt−1L(fθ(xt−1), y)).

Here, α = ϵ
T , where T represents the number of iterations.

This approach is convenient because it provides extra con-
trol over the attack.

Projected Gradient Descent (PGD) [4] is considered as
a generalization of the BIM attack that doesn’t require the
condition α = ϵ

T . Moreover, the initialization begins
with perturbed LR images following a uniform distribution
U(−ϵ, ϵ). The perturbation is computed by taking multiple
steps of gradient ascent with a small step size α and then
projecting the perturbation onto the ϵ-ball around the input.
Specifically, start by setting x0 = x+ u, where x is a clean
LR image and u ∼ U(−ϵ, ϵ) is used for initialization in
iteration,

xt = clipx,ϵ(xt−1 + α sign(∇xt−1
L(fθ(xt−1), y))).

Here, clipx,ϵ denotes the clipping of the values of the adver-
sarial sample so that they fall within an ϵ-neighborhood of
the original sample x.

Carlini and Wagner attack (CW) is an optimization-
based adversarial attack. In this attack, the perturbation is
not constrained by the ϵ-ball in the infinite norm but aims
to be minimal for the L2 norm. The goal of this attack is to
maximize the loss function by attacking images with the op-
timal perturbation. The optimization problem is given by:

min
δ

(∥δ∥2−c ·L(fθ(x), y)), such that x+δ ∈ [0, 1]n, (2)

where c is a hyperparameter. To ensure that x+ δ ∈ [0, 1]n,
which means that x+ δ yields a valid image, it introduces a
new variable w to substitute as follows

δ =
1

2
(tanh(w) + 1)− x.

3.2. Adversarial training

Roughly speaking, adversarial training consists of using ad-
versarial examples generated from the training data set to
increase robustness locally around the training samples. In
this paper, in addition to our main method, which will be
presented in Section 4, we will employ this technique to
create robust models for comparison.

Adversarial learning typically takes the form of a robust
min-max optimization problem, that is given as follows,

θ∗adv = argminθ∈Θ

1

N

∑
(x(i),y(i))∈D

max
∥δ∥2≤ϵ

L(fθ(x(i)+δ), y(i)),

9061



where D is a batch of LR and HR images. The training
is usually processed using an optimization algorithm based
on gradient descent on mini-batches. It is important to note
that at each iteration of the optimization process, the DNN
parameters are updated, and it is necessary to compute the
adversarial perturbations with respect to these new param-
eters at each iteration. This step requires a huge additional
computation time compared to classical learning.

4. The Main Method

4.1. Median Randomized Smoothing (MRS)

The MRS is a scalable approach to obtain certified robust-
ness guarantees for any super-resolution neural network.
The main principle of this method is to create from one LR
image a sample of images by adding Gaussian noise with a
certain standard deviation. Then, we get the median of all
the predictions pixel-by-pixel. Consequently, we obtain a
smoothed model that is certified in an interval of percentiles
depending on the perturbation that exists in the input image
of the model. More precisely, let G ∼ N(0, σ2I), a Gaus-
sian random variable. The percentile smoothing of a DNN
gθ : Rn → R is defined as follows

qp(x) = inf{y ∈ R|P(gθ(x+G) ≤ y) ≥ p},

q
p
(x) = sup{y ∈ R|P(gθ(x+G) ≤ y) ≤ p}.

We denote qp(x) as the percentile-smoothed function when
either definition is applicable. When p = 0.5 these per-
centiles are equivalent to the median q0.5(x). Therefore,
from [5] we have the following Lemma:

Lemma 4.1 A percentile-smoothed function qp with adver-
sarial perturbation δ can be bounded as follows

q
p
(x) ≤ qp(x+ δ) ≤ qp(x), ∀∥δ∥2 < ϵ (3)

such that p = Φ(Φ−1(p) + ϵ
σ ) and p = Φ(Φ−1(p) − ϵ

σ ),
where Φ is the standard Gaussian CDF.

Here, we are interested in the case p = 0.5. In this case, the
median is bounded between the percentile of p = Φ( ϵ

σ ) and
p = Φ(− ϵ

σ ). On the one hand, we observe from Lemma 4.1
that a smaller distance between q

p
(x) and qp(x) indicates a

more robust and well-certified model. On the other hand,
the bounds of the interval depend on the value of ϵ

σ where ϵ
represents the size of the perturbation against which we aim
to certify. Therefore, the choice of σ depends on the adver-
sarial attack and the perturbation that exists on LR images.
Fortunately, at the inference phase, there is some flexibility
in choosing the standard deviation of the Gaussian noise, σ,
that will help us to get a robust and certified SR model.

4.2. Median Randomized Smoothing for SR

To create our RSR model which we call CertSR (Certi-
fied Super-Resolution) model, we need to go through three
essential steps. First, we implement an initial SR model
based on a Generative Adversarial Network (GAN) previ-
ously trained on clean LR images. Second, we need to fine-
tune the SR model on noisy LR images using samples of
i.i.d. Gaussians with a specified number of draws and stan-
dard deviations. This type of data augmentation will make
the SR model more robust to noisy samples. We call this
second step MRSFine−tuning . Finally, in a third step that
we call MRSInference phase, we use the median random
smoothing method to certify the fine-tuned SR model with a
sample of i.i.d. Gaussians associated to a standard deviation
(see Figure 2).

Super-Resolution Model This study is based on the ES-
RGAN model [33], which is a generative adversarial net-
work (GAN) used for super-resolving images. The gener-
ator adopts the Residual-in-Residual Dense Block (RRDB)
[22] structure to improve the quality of the enhanced image.
The resolution of the generated images will be enlarged by a
factor of 4. We recall that several loss functions are applied
during the training. Firstly, the L1 loss is used to evaluate
the pixel distance between the ground truth (GT) and the
super-resolved image. Secondly, the perceptual loss Lperc

[15] utilizes the activation features of the pre-trained VGG-
19 [30] between the GT and the super-resolved image. This
loss helps enhance the visual effect of low-frequency com-
ponents. The third loss is the adversarial loss Ladv , em-
ployed to enhance the texture details of the super-resolved
image and make it more realistic. The total loss function is
the sum of these three losses:

Ltotal = L1 + Lperc + Ladv.

The Discriminator is structured on a VGG-128 architecture
[30] and operates under the same principle as the Relativis-
tic GAN [16]. It estimates the probability that a real image
appears more realistic than a fake one.

CertSR We use the pre-trained network generator of the
ESRGAN model [33]. Subsequently, we propose to fine-
tune this model, denoted MRSfine−tuning , on LR images
by adding samples of Gaussians noise. We use different
standard deviations and for each of them, we choose the
same amount of draws1. Then, we calculate the median of
predictions associated with each standard deviation, follow-
ing the procedure outlined in the fine-tuning phase of Figure
2. Finally, in the inference phase, denoted MRSinference,
we use the MRS to certify the SR model with a specific

1Note that in our experiments we observed that it is suitable to also use
the original image (without adding Gaussian noise).
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Figure 2. Framework of our proposed CertSR method. In the training part, we add different samples of i.i.d. Gaussians with different
standard deviations to the same LR image. We then calculate the median of predictions associated with each standard deviation. In the test
part, we use MRS to certify our generator by adding sample i.i.d. Gaussians with the same standard deviation.

standard deviation, which is a hyperparameter that must be
selected to best suit each perturbation, as shown on the right
of Figure 2. We emphasize that thanks to the small invari-
ance of the pixel-wise loss on the super-resolved images, at
this stage we draw only 21 Gaussian samples in all our ex-
periments to certify our model, which allows us to control
this invariability. Moreover, we rely on the LPIPS metric in
this context to ensure that we have chosen the best standard
deviation.

5. Experimental Results

In this section, we describe the experimental settings, in-
cluding the utilized datasets and model configurations.

5.1. Evaluation Metrics

We evaluate the performance of different methods by calcu-
lating metrics such as Peak-Signal-to-Noise Ratio (PSNR),
[34], Structural Similarity Index Measure (SSIM), [38], and
Learned Perceptual Image Patch Similarity (LPIPS), [36].
PSNR and SSIM are widely used to evaluate image restora-
tion and focus primarily on image fidelity rather than visual
quality. LPIPS, on the other hand, places greater empha-
sis on assessing the similarity of visual features between
images. To do this, it uses a pre-trained AlexNet [19] to
extract image features, then calculates the distance between
these features. As a result, a lower LPIPS value indicates a
closer resemblance between GT and the generated image.

5.2. Dataset

Fine-tuning dataset We fine-tune the SR models on the
DIV2K dataset [1, 32] which is a reference commonly used
in traditional SISR. Its training set consists of 800 2K res-
olution images and their respective LR versions, generated
by a bicubic downscaling process. These images incorpo-
rate no artificial perturbation. We crop the images into 480
× 480 sub-images for our experiments. A scaling factor of
4 was used between the HR images and the 120 × 120 LR
images.

Inference dataset We assess the performance of our
CertSR method on both the clean and the corrupted DIV2K
validation dataset [1, 32], which contains 100 validation im-
ages. Specifically, we corrupt the validation dataset with
sensor noise, which is simulated by adding pixel-wise in-
dependent Gaussian noise with a mean of 0 and a standard
deviation of 0.03. We also corrupt this dataset by degrading
LR images into blurry images. This operation is modeled
by smoothing the images with the Gaussian kernel with 10
in size and a standard deviation of 0.3. Subsequently, we
attack the inference dataset with the adversarial attacks de-
fined in section 3.

It is also crucial to evaluate our main method on real-
world datasets containing various types of synthetic corrup-
tions and sensor noise in LR images. Specifically, we eval-
uate our method using validation datasets from the NTIRE
2020 Real-World Image Super-Resolution Challenge, Track
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1 [26], and the AIM 2019 Real World Super-Resolution
Challenge, Track 2 [25]. The validation sets comprise ar-
tificially degraded versions of the 100 LR images in the
DIV2K validation set, together with their corresponding
GT. For simplicity, we abbreviate NTIRE 2020 and AIM
2019 as NTIRE and AIM, respectively.

5.3. Implementation details

Fine-tuning is based on the pre-trained ESRGAN [33].
We perform all the fine-tuning methods that we need on a
node composed of 8 GPU A100 80Gb with 1.5 Terabytes
of RAM and dual AMD processors. We use an Adam op-
timizer [18] with β1 = 0.9 and β2 = 0.99 for both the
generator and discriminator with an initial learning rate of
10−4. For the classical fine-tuning of ESRGAN, as well
as for adversarial fine-tuning, we choose 18k iterations and
16 images per batch. Regarding the hyperparameters for
adversarial learning, the choices are as follows: (i) Adver-
sarial Learning with FGSM (AD-L-FGSM) has ϵ = 9/255.
(ii) Adversarial Learning with BIM (AD-L-BIM) uses the
same ϵ as AD-L-FGSM with 2 iterations. (iii) Adversarial
Learning with CW (AD-L-CW) employs c = 10−2, 4 itera-
tions, and utilizes Adam optimization for resolving 2 with a
learning rate of 10−2. (iv) Adversarial Learning with PGD
(AD-L-PGD) uses the pre-trained model from [4]. Subse-
quently, for the MRSFine−tuning step we take 59k as a
number of iterations with 5 images per batch. During this
phase, we duplicate the batch training set five times. For
the first two batches, we add i.i.d. Gaussian samples with a
standard deviation of σ = 0.03. For the next two batches,
we add i.i.d. Gaussian samples with a standard deviation of
σ = 0.2. The last remaining batch remains unchanged to
ensure CertSR considers cleaned images as well. For more
details on the hyperparameters of adversarial learning and
the MRSFine−tuning step, please refer to the supplemen-
tary material.

Comparison with State-of-the-Art We compare our
main method CertSR2 with other state-of-the-art methods
to establish a universal robust baseline for SISR models.
For this, we evaluate our results on both clean and cor-
rupted images. We compare our results with ESRGAN
[33], and AD-L-PGD [4]. To ensure a fair comparison,
we fine-tune ESRGAN on the DIV2K training set. For
real-world images, we also compare our results with the
top-performing models on the NTIRE and AIM datasets:
Impressionism [14] and ESRGAN-FS [10], respectively.
We use pre-trained weights for Impressionism on NTIRE
and DPED [13] datasets and for ESRGAN-FS on AIM and
DPED datasets. Moreover, we fine-tune Impressionism on
AIM and ESRGAN-FS on NTIRE, by employing default
parameters from their works.

2See supplementary material for the ablation study.

Data Clean Noisy Blurry

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
ESRGAN [33] 27.48 0.75 0.12 20.25 0.29 0.67 22.23 0.62 0.48
AD-L-PGD [4] 26.60 0.71 0.22 22.63 0.47 0.37 22.15 0.60 0.50

AD-L-FGSM (ours) 26.28 0.70 0.34 24.84 0.57 0.32 21.95 0.59 0.53
AD-L-BIM (ours) 26.21 0.68 0.25 25.11 0.60 0.29 21.93 0.58 0.48
AD-L-CW (ours) 28.41 0.77 0.14 19.47 0.25 0.78 22.34 0.62 0.50
CertSR (ours) 28.24 0.76 0.12 26.35 0.70 0.19 22.11 0.60 0.44

Table 1. This table reports the quantitative results of the robust
and non-robust methods for clean, sensor noise (noisy), and blurry
DIV2K validation dataset. In all the tables of this document, the
arrows indicate if high ↑ or low ↓ values are desired. The best
scores are displayed in Red and the second in Blue.

5.4. Evaluation on Clean and Corrupted Images

In Table 1, we present a comparison of PSNR, SSIM, and
LPIPS values for our CertSR method, the non-robust SR
model, ESRGAN , and various RSR models. In the quan-
titative experiments, we focus on the LPIPS measure, as it
has the best correlation with image similarity. We see from
Table 1 that our CertSR method performs well on all three
inference datasets. It is important to note that on the clean
and noisy dataset, we do not need to use MRSinference,
using only the MRSfine−tuning we achieve the same re-
sults. Furthermore, since the MRSfine−tuning includes
both clean and noisy data simultaneously. We obtained a
LPIPS value that is almost the same as that of ESRGAN.
However, the LPIPS metric value of the ESRGAN model
on the noisy dataset is the lowest. Concerning the blurry
case, we use the MRSinference on this validation dataset
with σ = 0.05. Moreover, we observe that the performance
of our CertSR method surpasses that of all other RSR meth-
ods. Regarding the other robust models, we can see that
AD-L-CW is the best RSR on the clean validation dataset,
while AD-L-BIM performs better on the noisy and blurry
datasets. Finally, we note that AD-L-FGSM performs better
on noisy images than on clean images, which is attributed
to the training conducted on attacked images.

Figure 3. This figure presents the qualitative results of the robust
and non-robust methods for clean, sensor noise (noisy), and blurry
DIV2K validation dataset.
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Figure 3 represents the qualitative results of robust and
non-robust methods with respect to the clean, sensor noise,
and blurry DIV2K validation dataset. Our CertSR method
provides clearer images with richer texture detail and with-
out artifacts, showing that our method is the most robust
against noisy and blurry perturbations. On the other hand,
we observe that AD-L-PDG and AD-L-FGSM generate
very smooth images, and AD-L-BIM introduces some lit-
tle artifacts in the case where LR images are clean.

Adversarial attacks FGSM BIM PGD CW

Method PSNR↑SSIM↑LPIPS↓PSNR↑SSIM↑LPIPS↓PSNR↑SSIM↑LPIPS↓PSNR↑SSIM↑LPIPS↓
ESRGAN [33] 16.70 0.18 0.70 14.97 0.15 0.76 17.83 0.19 0.83 16.43 0.23 0.69
AD-L-PGD [4] 21.74 0.50 0.36 19.45 0.45 0.44 24.21 0.60 0.24 25.15 0.67 0.24

AD-L-FGSM (ours) 25.55 0.70 0.19 23.48 0.60 0.29 21.56 0.39 0.46 24.13 0.64 0.32
AD-L-BIM (ours) 24.17 0.60 0.27 23.79 0.59 0.26 24.65 0.59 0.33 25.57 0.65 0.25
AD-L-CW (ours) 4.72 0.23 0.99 12.83 0.09 0.91 15.39 0.13 0.95 18.37 0.33 0.61
CertSR (ours) 24.72 0.64 0.27 24.28 0.64 0.25 25.09 0.67 0.24 26.66 0.72 0.18

Table 2. This table shows the quantitative results concerning the
robust and non-robust methods against the most relevant adversar-
ial attacks. The best scores are displayed in Red and in Blue.

Table 2 presents the quantitative results of the robust
and non-robust methods against the adversarial attacks. To
study this, we place ourselves in the worst-case scenario,
which means we test the universality of our CertSR’s ro-
bustness against the same attacks that were used to build
RSR models. It is important to mention that in the valida-
tion part, we use MRSinference against each adversarial
attack with respect to different standard deviations. More
precisely, against PGD (see 3.1) and FGSM (see 3.1) at-
tacks, we certify our model with σ = 0.06. Against the
BIM attack (see 3.1), we choose σ = 0.07, and against the
CW attack (see 3.1), we use σ = 0.03 (please consult the
supplementary material to see how these hyperparameters
have been selected). Therefore, we see from Table 2 that
our main method achieves the best performance against all
adversarial attacks with respect to PSNR, SSIM and LPIPS
metrics, except against ADV-L-FGSM, where CertSR is the
second-best method against FGSM attacks. Therefore, we
can say that CertSR is the most globally robust SR method
against adversarial attacks.

In Figure 4, we present qualitative results concerning
CertSR’s robustness against the most relevant adversarial
attacks. Visually, it is clear that CertSR produces super-
resolved images that are superior to those of other RSR
models. The images generated by these RSR models show
noticeable artifacts. This figure illustrates that even models
trained with a specific adversarial attack remain somewhat
vulnerable when subjected to a similar attack. We observe
that the weakest robust SR model is AD-L-CW. This is re-
lated to the fact that even CW attack has the advantage of
being the optimal and strongest attack, it also has the disad-
vantage of being the most difficult to learn.

Figure 4. This figure provides qualitative results concerning ro-
bust and non-robust methods against the most relevant adversarial
attacks.

5.5. Evaluation on Real-World Images

Table 3 presents the quantitative results of reference metrics
for CertSR method, state-of-the-art methods and RSR mod-
els on both the NTIRE and AIM validation datasets. We
observe that CertSR achieves the best LPIPS performance
without any training or fine-tuning on these datasets. AD-L-
CW and ESRGAN achieve the worst LPIPS on both valida-
tion datasets. We also observe that AD-L-BIM is more per-
formant than AD-L-PGD on the AIM. These results are vi-
sually confirmed in Figure 5. For the MRSinference phase,
we choose σ = 0.03 and σ = 0.06 for NTIRE and AIM
respectively. Please refer to the supplementary material to
see how these hyperparameters have been selected.

It is important to note that, we also test the proposed
CertSR method on other SR models besides ESRGAN, on
both NTIRE and AIM validation datasets, to demonstrate
that the method can enhance the accuracy and robustness
of other initial SR models. See supplementary material for
more details.

6. Conclusion

In this work, we explore the fruitful relationship between
Robust Super-Resolution (RSR) and real-world SR. Our
main finding is the demonstration that the most universal
model in terms of robustness to different adversarial attacks
is also the more robust to unseen natural noise in the LR in-
put real-world images. This important insight is based on a
study conducted on two different types of RSR models: one
type built from various adversarial training techniques (in-
cluding the existing RSR model using PGD attack [4] and
new RSR models that we built from FGSM, BIM and the
CW attacks) and another original one built from a certifi-
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Method Training Data Fine-tuning Data PSNR↑ SSIM↑ LPIPS↓
NTIRE AIM Avg NTIRE AIM Avg NTIRE AIM Avg

Bicubic 25.51 22.35 23.93 0.67 0.62 0.65 0.63 0.68 0.66

ESRGAN-FS [10]
NTIRE 24.59 22.07 23.33 0.69 0.63 0.66 0.25 0.47 0.36

Flickr2K AIM 19.56 20.82 20.19 0.31 0.51 0.41 0.56 0.39 0.48
DPEP 17.79 20.15 18.97 0.34 0.53 0.43 0.51 0.47 0.49

Impressionism [14]
NTIRE 24.82 21.47 23.15 0.66 0.54 0.60 0.23 0.52 0.37

Flickr2K AIM 19.65 21.89 20.77 0.29 0.60 0.45 0.67 0.41 0.54
DPEP 17.53 18.84 18.18 0.34 0.49 0.41 0.60 0.47 0.53

ESRGAN [33] Flickr2K DIV2k 21.94 21.95 21.03 0.39 0.55 0.49 0.56 0.51 0.53
AD-L-PGD [4] Flickr2K DIV2K 24.31 21.99 23.15 0.65 0.60 0.62 0.23 0.37 0.30

AD-L-FGSM (ours) Flickr2K DIV2k 25.55 22.70 24.20 0.65 0.63 0.64 0.30 0.42 0.36
AD-L-BIM (ours) Flickr2K DIV2K 25.35 22.31 23.95 0.63 0.59 0.61 0.26 0.36 0.31
AD-L-CW (ours) Flickr2K DIV2K 21.25 21.86 21.63 0.37 0.58 0.48 0.63 0.47 0.55
CertSR (ours) Flickr2K DIV2K 26.67 21.75 24.21 0.71 0.59 0.65 0.21 0.33 0.27

Table 3. Quantitative results on Real-World Images. We present the quantitative results of reference metrics between our method,
state-of-the-art methods, and robust and non-robust models on NTIRE and AIM validation datasets. Red and Blue colors highlight the best
two scores. Bold represents the best method for LPIPS metric for both datasets.

Figure 5. Qualitative results on Real-World Images. Comparison between the proposed methods including CertSR and state-of-the-art
RSR method (AD-L-PGD [4]), for two corruption datasets: NTIRE and AIM. For reference, we show the input, the results of ESRGAN-FS
method [10], Impressionism method [14] and the ground-truth (GT). Blue frames denote training and validation on the same dataset. Red
frames denote training and validation on different datasets. The training dataset is indicated in gray just below the name of the methods.

cation technique that leverages MRS procedure with Gaus-
sian noise. Our experiments on synthetic and real datasets
show that, compared to the RSR models AD-L-PGD [4]
AD-L-FGSM, AD-L-BIM, AD-L-CW, the proposed model
CertSR, is the most universal in terms of robustness to ad-
versarial attacks and is also the one that achieves the best
results on real-world SR. We also show that the CertSR
achieved state-of-the-art results in particular with the LPIPS

metric. We expect that this finding will encourage further
study of the RSR approach to tackle noise in real-world SR.
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