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Abstract

We propose a hierarchical correlation clustering method
that extends the well-known correlation clustering to pro-
duce hierarchical clusters applicable to both positive and
negative pairwise dissimilarities. Then, in the following, we
study unsupervised representation learning with such hier-
archical correlation clustering. For this purpose, we first in-
vestigate embedding the respective hierarchy to be used for
tree preserving embedding and feature extraction. There-
after, we study the extension of minimax distance measures
to correlation clustering, as another representation learn-
ing paradigm. Finally, we demonstrate the performance of
our methods on several datasets.

1. Introduction
Data clustering plays an essential role in unsupervised

learning and exploratory data analysis. It is used in a va-
riety of applications including web mining, network analy-
sis, image segmentation, bioinformatics, user analytics and
knowledge management. Its goal is to partition the data into
groups in a way that the objects in the same cluster are more
similar according to some criterion, compared to the objects
in different clusters.

Many clustering methods partition the data into K flat
clusters for example, K-means [55], spectral clustering
[62,68] and correlation clustering [8]. In many applications,
however, the clusters are preferred to be presented at differ-
ent levels, encompassing both high-level and detailed infor-
mation. Hierarchical clustering is useful to produce such
structures, usually encoded by a dendrogram. A dendro-
gram is a tree data structure where each node corresponds
to a cluster, with the leaf nodes (those at the bottom of the
tree) containing only one object. Higher-level clusters are
formed by aggregating lower-level clusters and the inter-
cluster dissimilarity between them.

Hierarchical clustering can be performed either in an ag-
glomerative (i.e., bottom-up) or in a divisive (i.e., top-down)
manner [56]. Agglomerative methods are often computa-

tionally more efficient, making them more popular in prac-
tice [64]. In both approaches, the clusters are aggregated or
split based on various criteria, such as single, average, cen-
troid, complete and Ward. Several studies aim to improve
these methods. The works in [49,52] focus on the statistical
significance of hierarchical clustering. [24,25,65] formulate
this problem as an optimization problem and propose ap-
proximate solutions. [82] considers multiple dissimilarities
for a pair of clusters, and [11, 17] suggest merging multi-
ple clusters at each step instead of one. [6] employs global
information to eliminate the influence of noisy similarities,
and [19] proposes to apply agglomerative methods to small
subsets of the data instead of individual data objects. [33,38]
augment agglomerative methods with probabilistic models,
and finally, [23,60] propose efficient but approximate meth-
ods for hierarchical clustering.

On the other hand, most clustering methods, ei-
ther flat or hierarchical, assume non-negative pairwise
(dis)similarities. However, in several practical applications,
pairwise similarities can be any real number, positive or
negative. For example, it could be preferable for a user or
oracle to indicate whether two objects are similar (consid-
ered a positive relation) or dissimilar (considered a nega-
tive relation), rather than solely providing a positive (non-
negative) pairwise similarity, even if the two objects are dis-
similar. The former approach yields more precise informa-
tion because, in the latter scenario, the dissimilarity between
two objects (i.e., zero similarity) could be confused with a
lack of available information. Some relevant applications
for this setting include image segmentation with higher or-
der correlation information [47,48], webpage segmentation
[12], community detection over graphs [67], social media
mining [73], analysis of connections over web [43], dealing
with attraction/rejection data [26], automated label genera-
tion from clicks [3] and entity resolution [7, 34].

Hence, a specialized clustering model known as correla-
tion clustering has been developed to work with such data.
This model was first introduced on the graphs with only
+1 or −1 pairwise similarities [7, 8], and then was gen-
eralized to the graphs with arbitrary positive or negative
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edge weights [5, 13, 26]. The original model obtains the
number of clusters automatically. The variant in [20] lim-
its the number of clusters to fixed K clusters. Semidefi-
nite programming (SDP) relaxation provides tight approxi-
mation bounds in particular for maximizing the agreements
[13, 58], although it is computationally inefficient in prac-
tice [74]. Then, [15,74] provide efficient greedy algorithms
based on local search and Frank-Wolfe optimization with a
fast convergence rate.

However, all of these methods produce flat correlation
clusters. In this paper, we first propose a Hierarchical Cor-
relation Clustering (HCC) method that handles both pos-
itive and negative pairwise (dis)similarities and produces
clusters at different levels (Section 3). To the best of our
knowledge, this work is one the first extensions of the well-
known correlation clustering to hierarchical clustering.1 A
hierarchical correlation clustering, also called HCC, is de-
veloped in [76]. This method offers a 0.4767 approxima-
tion, but lacking experimental evaluation. Furthermore, un-
like our method, the method in [76] does not follow the
generic agglomerative clustering procedure.

We note that unlike flat clustering, hierarchical clustering
yields an ordering among the objects, i.e., objects that join
earlier in the hierarchy are closer to each other than those
that join at later steps. This implies that hierarchical clus-
tering induces a new (dis)similarity measure between the
objects, connected to the way the objects join each other to
form clusters at different levels. Thereby, in the following,
we consider two representation learning methods related to
hierarchical clustering and study their adaptation to hierar-
chical correlation clustering. This enables us to not only use
HCC for producing hierarchical clusters, but also to employ
it for computing a suitable similarity/distance measure as an
intermediate data processing step.

One way to perform representation learning from hier-
archical clustering is to compute an embedding that corre-
sponds to the respective hierarchy. Tree preserving embed-
ding [69, 70] is a method that achieves this for the special
case of single linkage method. Later, [21] develops tree pre-
serving embedding for various standard agglomerative clus-
tering methods. We then adapt these works (in particular the
later work [21]) to develop a tree preserving embedding for
HCC dendrograms (Section 4) where the embedded features
can be used as a set of new features for an arbitrary down-
stream task. In this way, we can investigate HCC for the
purpose of computing relevant features for a probabilistic
method such as Gaussian Mixture Model (GMM), instead
of solely using HCC for the purpose of hierarchical clus-
tering. This enables us to apply a method like GMM for

1We note the so-called hierarchical correlation clustering methods pro-
posed in [2, 36, 53] are irrelevant to the well-studied correlation clustering
problem [7,8]; they study for example the correlation coefficients for high-
dimensional data.

clustering the pairwise similarities that can be positive or
negative numbers, a task that was not possible before.

Another representation learning paradigm that we study
is called minimax dissimilarity, a graph-based method that
is tightly connected to hierarchical clustering. It provides
a sophisticated way to infer transitive relations and extract
manifolds and elongated clusters in an unsupervised way
[14, 32, 46, 54]. Thereby, for the first time, we study mini-
max dissimilarities on the graphs with positive and negative
(dis)similarities, i.e., with correlation clustering (Section 5).
We show that using minimax dissimilarities with correlation
clustering not only helps for extracting elongated patterns,
but also yields a significant reduction in the computational
complexity, i.e., from NP-hardness to a polynomial runtime.

We finally perform several experiments on various
datasets to demonstrate the effectiveness of our methods in
different settings (Section 6).

2. Notations and Definitions
A dataset is characterized by a set of n objects with in-

dices O = {1, ..., n} and a pairwise similarity or dissimi-
larity matrix. An n × n matrix S ∈ Rn×n represents the
pairwise similarities between the objects, whereas, the pair-
wise dissimilarities are shown by matrix D ∈ Rn×n. Both
of similarities and dissimilarities can be positive or nega-
tive. This property allows us to convert the pairwise simi-
larities to dissimilarities by a simple transformation such as
D = −S, i.e., the pairwise dissimilarities are obtained by
the negation of the similarities and vice versa. 2 The objects
and the pairwise (dis)similarities are represented by graph
G = (O,S) or G = (O,D).

A cluster is represented by a set, e.g., v, which includes
the objects belong to that. The function dis(u,v) denotes
the inter-cluster dissimilarity between clusters u and v that
can be defined according to different criteria. A hierarchi-
cal clustering solution can be represented by a dendrogram
T defined as a rooted ordered tree such that, i) each node
v in T includes a non-empty subset of the objects corre-
sponding to a cluster, i.e., v ⊆ O, |v| ≥ 1,∀v ∈ T , with
the leaf nodes including distinct single objects, and ii) the
overlapping clusters are ordered, i.e., ∀u,v ∈ T, if u∩v ̸=
0, then either u ⊆ v or v ⊆ u. The latter condition im-
plies that between every two overlapping nodes an ancestor-
descendant relation holds, i.e., u ⊆ v indicates v is an an-
cestor of u, and u is a descendant of v.

The clusters at the lowest level, called leaf clusters/node,
are the individual distinct objects, i.e., v is a leaf cluster if

2Such a nonparametric transformation resolves the issues related to ob-
taining a proper similarity measure from pairwise dissimilarities. For ex-
ample, with kernels, e.g., RBF kernels, finding the optimal parameter(s)
is often crucial and nontrivial, and the optimal parameters occur inside a
very narrow range [61, 80]. Moreover, the methods we develop in this pa-
per are unaffected by the choice of the transformation D; for example in
Algorithm 1, we only use the pairwise similarities S.
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and only if |v| = 1. A cluster at a higher level contains
the union of the objects of its children. The root of a den-
drogram is defined as the cluster at the highest level which
has the maximum size, i.e., all other clusters are its descen-
dants. linkage(v),v ∈ T returns the dissimilarity between
the children of v based on the criterion used to compute
the dendrogram (i.e., dis(cl, cr) where cl and cr indicate
the two child clusters of v). For simplicity of explanation,
w.l.g., we assume every non-leaf cluster has two children.
The level of cluster v, i.e., level(v), is determined by

level(v) = max(level(cl), level(cr)) + 1. (1)

For the leaf clusters, level() and dis() return 0. Every
connected subtree of T whose leaf clusters contain only in-
dividual objects from O constitutes a dendrogram on this
subset of objects. We require that every common node
present in both T and the subtree must have the same child
nodes or clusters. We use TT to refer to the set of all
(sub)dendrograms obtained in this way from T .

3. Hierarchical Correlation Clustering
Agglomerative methods begin with each object in a sep-

arate cluster, and then at each round, combine the two
clusters that have a minimal dissimilarity according to a
criterion (defined by the dis(., .) function) until only one
cluster remains. For example, the single linkage (SL)
criterion [71] defines the dissimilarity between two clus-
ters as the dissimilarity between their nearest members
(dis(u,v) = mini∈u,j∈v Di,j), whereas, complete linkage
(CL) [50] uses the dissimilarity between their farthest mem-
bers (dis(u,v) = maxi∈u,j∈v Di,j). On the other hand,
the average linkage (AL) criterion [72] considers the av-
erage of the inter-cluster dissimilarities as the dissimilarity
between the two clusters (dis(u,v) =

∑
i∈u,j∈v

Di,j

|u||v| ).
These methods can be shown to be shift-invariant, as men-
tioned in Proposition 1 [18].

Proposition 1 Single linkage, complete linkage and aver-
age linkage methods are invariant w.r.t. the shift of the pair-
wise dissimilarities by an arbitrary real number α.

Thus, we can still use these methods even with possi-
bly negative pairwise dissimilarities as shifting the pairwise
dissimilarities (by a large enough constant) to make them
non-negative does not change the solution.

However, clustering the data consisting of positive and
negative dissimilarities is usually conducted by correlation
clustering. Thus, despite the applicability of single link-
age, average linkage and complete linkage methods, we
propose a novel hierarchical clustering consistent with the
standard correlation clustering, called Hierarchical Correla-
tion Clustering (HCC). This method is thus adapted to pos-
itive/negative pairwise (dis)similarities, and as our experi-

ments confirm, it outperforms the other methods (i.e., SL,
CL, and AL) when applied to such data.

The cost function for flat (standard) correlation cluster-
ing accounts for disagreements (i.e., negative similarities in-
side clusters and positive similarities between clusters) and
is written by [20]

RCC(v1, ...,vK ;S) =
1

2

K∑
k=1

∑
i,j∈vk

(|Sij | − Sij)

+
1

2

K∑
k=1

K∑
k′=1,
k′ ̸=k

∑
i∈vk

∑
j∈vk′

(|Sij |+ Sij), (2)

where K is the number of clusters and vk’s indicate the
different clusters.

We may rewrite the cost function as

RCC(v1, ...,vK ;S) = − 1

2

K∑
k=1

K∑
k′=1

∑
i∈vk

∑
j∈vk′

Sij︸ ︷︷ ︸
constant

+
1

2

K∑
k=1

∑
i,j∈vk

|Sij |+
1

2

K∑
k=1

K∑
k′=1,
k′ ̸=k

∑
i∈vk

∑
j∈vk′

|Sij |

︸ ︷︷ ︸
constant

+
1

2

K∑
k=1

K∑
k′=1,
k′ ̸=k

∑
i∈vk

∑
j∈vk′

Sij +
1

2

K∑
k=1

K∑
k′=1,
k′ ̸=k

∑
i∈vk

∑
j∈vk′

Sij .

(3)

We then have

RCC(v1, ...,vK ;S) = constant+

K∑
k=1

K∑
k′=1,
k′ ̸=k

∑
i∈vk

∑
j∈vk′

Sij

≡ constant−
K∑

k=1

K∑
k′=1,
k′ ̸=k

∑
i∈vk

∑
j∈vk′

Dij . (4)

Therefore, correlation clustering aims to minimize the
inter-cluster similarities, and in other words, it maxi-
mizes the inter-cluster dissimilarities. This formulation
in Eq. 4 inspires us for a consistent way of defining a
new inter-cluster dissimilarity function for hierarchical (ag-
glomerative) correlation clustering of positive and negative
(dis)similarities. At each step, we merge the two clusters
that have a minimal dissimilarity (or a maximal similarity),
where we define the dissimilarity between the two clusters
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u and v as

disCC(u,v) =
∑
i∈u

∑
j∈v

Dij = −
∑
i∈u

∑
j∈v

Sij . (5)

We emphasize that HCC is consistent with the generic
agglomerative clustering framework applied with, for ex-
ample, single linkage, average linkage, complete linkage
and other criteria. The only difference is the definition of
the inter-cluster dissimilarity function where with HCC we
use disCC(., .) defined in Eq. 5 (inspired from the cost
function of flat correlation clustering). Other than this, the
algorithmic procedure is consistent. Algorithm 1 in Ap-
pendix A describes the pseudocode of the HCC algorithm.

4. Feature Extraction from HCC
As mentioned, HCC represents the relations between ob-

jects according to the way they join to form the hierarchy.
In this section, we use this intuition and develop a data rep-
resentation consistent with HCC. For this purpose, we adapt
the methods in [69, 70] and in particular [21] to our setting.
Hereby, we first introduce distance functions over HCC, and
then, investigate the embedding of such a distance func-
tion. This procedure leads to obtaining a set of features
from HCC for each object which then can be used in the
downstream task.

4.1. Distance functions over HCC

Given dendrogram T , each cluster v ∈ T represents the
root of a dendrogram T ′ ∈ TT . T ′ admits the properties
of its root cluster, i.e., level(T ′) = maxu∈T ′ level(u) =
level(v) and linkage(T ′) = maxu∈T ′ linkage(u) =
linkage(v), since the root cluster has the maximum link-
age and level among the clusters in T ′. Hence, in this way,
we define functions such as level() and linkage() for the
dendrograms as well.

The linkage() function may seem to be a natural choice
for defining a distance function over a HCC dendrogram.
Specifically, one can define the dendrogram-based distance
function Xij over dendrogram T between i, j ∈ O as

Xij = min linkage(T ′) s.t. i, j ∈ T ′, and T ′ ∈ TT .
(6)

This choice corresponds to the linkage of the smallest
cluster that includes both i and j. This in particular makes
sense for the single linkage dendrogram, and it would be
consistent with the tree-preserving embedding in [69, 70].
If the original dissimilarity matrix D contains negative val-
ues, then using Proposition 1, one can sufficiently shift the
pairwise dissimilarities to make all of them non-negative,
without changing the structure of the dendrogram and the
order of the clusters. Therefore, the conditions for a valid
distance function including non-negativity still hold.

However, for the HCC dendrogram, the linkage func-
tion might not fulfill the conditions for a distance function.
For example, consider a set of n objects where all the pair-
wise similarities are +1, i.e., the dissimilarities are thus−1.
Then, the linkage function will always return negative val-
ues which would violate the non-negativity condition of a
valid distance function. On the other hand, the HCC link-
age disCC(., .) is not shift-invariant (similar to the standard
flat correlation clustering [18]) and we cannot use the shift
trick in Proposition 1. Let Dα shows the shifted pairwise
dissimilarities, i.e., Dα

i,j = Dij + α. Then, disCC(u,v)
between two clusters u and v based on Dα is given by

disCC(u,v) =
∑

i∈u,j∈v

Dα
i,j =

∑
i∈u,j∈v

(Di,j + α)

=
∑

i∈u,j∈v

Di,j + α|u||v| . (7)

With α > 0, this shift would induce a bias for the HCC
linkage to choose imbalanced clusters. In other words,
disCC(., .) is not shift-invariant and we cannot shift the
pairwise dissimilarities in D to make them nonnegative.

Therefore, we consider another choice, i.e., the level()
function used in [21]. It is nonnegative and satisfies the
desired conditions. Then, Xij is now computed by

Xij = min level(T ′) s.t. i, j ∈ T ′ and T ′ ∈ TT . (8)

Intuitively, Eq. 8 selects the level of the smallest clus-
ter/dendrogram that contains both i and j. The lower the
level at which the two objects join, the greater the similarity
or proximity between them, indicating a closer relationship
in the hierarchical clustering structure. In other words, a
higher level in the dendrogram signifies a later fusion of the
two objects, suggesting that they share fewer common char-
acteristics compared to objects fused at lower levels.

4.2. Embedding the HCC-based distances

After applying the distance function in Eq. 8, we obtain
an n×n matrix representing pairwise HCC-based distances
among objects. It is usually preferred to obtain vector-based
representations for objects rather than pairwise distances.
Models like Gaussian Mixture Models (GMMs) which in-
volve mixture density estimation (see, e.g., [75]), can only
be applied to vectors. Additionally, working with vector-
based data simplifies feature selection. Hence, it is desired
to compute an embedding of the objects into a new space, so
that their pairwise squared Euclidean distances in the new
space match their pairwise distances obtained from the den-
drogram.

The matrix of pairwise distances X obtained via Eq. 8
induces an ultrametric [21,51]. The primary distinction be-
tween a metric and an ultrametric is that the addition oper-
ation in the triangle inequality for a metric is replaced by a
maximum operation, i.e., with ultrametric we have
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∀i, j, k : Xij ≤ max(Xik,Xkj). (9)

The connection between ultrametric and trees is well-
established in mathematics [42,57]. Here we instantiate it to
our setting via making the argument in [21] more accurate.

It is evident that when Xij ≤ Xik, the inequality in Eq.
9 is satisfied. Conversely, if Xij > Xik, it implies that ob-
jects i and k are included in the same cluster (shown by ci,k)
before i and j join (to form cluster ci,j). The bottom-up hi-
erarchical clustering process then continues until ci,j,k is
formed, encompassing all three objects i, j, k. Notice that i
and k join j simultaneously via ci,k. In this case, according
to Eqs. 8 and 9, and the relationships illustrated in Figure 1,
we conclude

Xij = Xkj ≤ max(Xik,Xkj). (10)

Figure 1. Illustration of ultrametric property of X.

Ultrametric matrices, in turn, exhibit positive definite-
ness [31, 78], and such positive definite matrices result in
inducing an Euclidean embedding [66]. Thereby, after en-
suring the existence of such an embedding, we can employ
a proper method to compute it. Specifically, we use the
method proposed in [83] known as multidimensional scal-
ing [59]. This method proposes first centering X to obtain
a Mercer kernel and then performing an eigenvalue decom-
position. It works as follows.

1. We center X by

B← −1

2
(In −

1

n
Ln)X(In −

1

n
Ln), (11)

where In is an identity matrix of size n× n and Ln rep-
resents an n × n matrix filled entirely with ones. With
this centering, the sum of both the rows and columns in
matrix B becomes zero.

2. With applying the transformation in step 1, B becomes a
positive semidefinite matrix, i.e., all the eigenvalues are
nonnegative. Thus, we decompose B into its eigenbasis:

B = YZYT, (12)

where Y = (y1, ...,yn) represents the eigenvectors yi

and Z = diag(z1, ..., zn) is a diagonal matrix of eigen-
values z1 ≥ ... ≥ zl ≥ zl+1 = 0 = ... = zn.

3. We calculate the n×l matrix A as the matrix of new data
features:

A = Yl(Zl)
1/2, (13)

with Yl = (y1, ...,yl) and Zl = diag(z1, ..., zl),
where l specifies the dimensionality of the new vectors.

In the embedded space, the new dimensions are arranged
based on their corresponding eigenvalues. One can opt to
select only the most significant ones, rather than utilizing
all of them. Therefore, computing such an embedding also
offers the benefit of feature selection.

We also note that many clustering methods can be writ-
ten in matrix factorization form via for example spectral K-
means [28]. This induces an embedding and hence a set
of relevant features. However, for general positive/negative
similarity matrices no exact embedding might be feasible
due to violating positive semidefiniteness. The method that
we described here provides a solution to this challenge, i.e.,
enables us to extract features when the base pairwise simi-
larities are positive and negative.

5. Correlation Clustering and Minimax Dis-
similarities

Finally, we study minimax dissimilarities for correlation
clustering, a graph-based method that corresponds to con-
structing a hierarchical clustering.

Given graph G(O,D), the minimax (MM) dissimilarity
between i and j is defined as

DMM
ij = min

p∈Pij(G)
max

1≤l≤|p|−1
Dp(l)p(l+1), (14)

where Pij(G) is the set of all paths between i and j over
G(O,D). Each path p is specified by a sequence of object
indices, i.e., p(l) indicates the lth object on the path.

Minimax dissimilarities enable a clustering algorithm to
capture the inherent patterns and manifolds in an unsuper-
vised and nonparametric way by extracting the transitive
connections [16, 32]. For example, if object i is similar to
object j, j is similar to k, and k is similar to l, then the
minimax dissimilarity between i and l will be small, even
though their direct dissimilarity might be large. The rea-
son is that minimax dissimilarity finds the connectivity path
i → j → · · · → k → l and connects i and l via this path.
This property is helpful in finding elongated clusters and
manifolds of arbitrary shapes in an unsupervised way.

Minimax dissimilarities have been so far solely used
with nonnegative pairwise dissimilarities. In the case of
possible negative dissimilarities, we may use a trick simi-
lar to Proposition 1. As shown in Lemma 1, minimax paths
are invariant w.r.t. the shift of the pairwise dissimilarities.

Lemma 1 Consider graphs G(O,D) and Gα(O,Dα),
where the pairwise dissimilarities (edge weights) in
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Gα(O,Dα) are shifted by constant α, i.e., Dα
i,j = Di,j+α.

Then, the minimax paths between every pair of objects i and
j are identical on graphs G(O,D) and Gα(O,Dα).

All the proofs are in Appendix B. Hence, given a dissimi-
larity matrix D, one can subtract α := min(D) from all the
elements to obtain Dα. Then, the minimax dissimilarities
can be computed from Gα(O,Dα). After computing the
minimax dissimilarities from Gα, we may add α to all the
pairwise minimax dissimilarities. We can obtain the mini-
max similarities SMM

ij via SMM
ij = −DMM

ij , if needed.
We demonstrate that for correlation clustering there ex-

ists a simpler method to calculate the minimax dissimilar-
ities intended for use in correlation clustering. According
to Theorem 1, performing correlation clustering on mini-
max dissimilarities can be achieved in polynomial time via
computing the connected components of the unweighted
graph G(O,S′), where the similarity matrix S′ is obtained
by S′

ij = 1 if Sij > 0, and S′
ij = 0 otherwise.

Theorem 1 The optimal clusters of the correlation cluster-
ing on graph G(O,SMM ) are equal to the connected com-
ponents of graph G(O,S′).

As mentioned, correlation clustering on an arbitrary sim-
ilarity matrix S is NP-hard [8, 26]. Therefore, using min-
imax (dis)similarities with correlation clustering not only
helps for extracting elongated complex patterns, but also
yields a significant reduction in the computational complex-
ity, i.e., from NP-hardness to a polynomial runtime.

Among the approximate algorithms proposed for corre-
lation clustering on complete graphs with discrete weights,
the method in [5] provides a 3-factor approximation. with
a randomly selected unclustered object in the graph, this
method greedily finds the object’s positive neighbors (those
with similarity +1) to form a new cluster. Then, it repeats
this procedure for the remaining objects. One can con-
clude that in the optimal solution of correlation clustering
on graph G(O,SMM ), only the positive neighbors of an ob-
ject will be in the same cluster as the object is, i.e., interest-
ingly the 3-factor approximation algorithm in [5] becomes
exact when applied to G(O,SMM ) (Theorem 2).

Theorem 2 Assume the edge weights of graph G(O,S) are
either +1 or −1. Then, the approximate algorithm in [5]
is exact when applied to the minimax similarities, i.e., to
graph G(O,SMM ).

6. Experiments
In this section, we describe our experimental results on

various datasets. We compare our methods with single link-
age (SL), complete linkage (CL) and average linkage (AL).3

3Some criteria, e.g. centroid, median and Ward compute a representa-
tive for each cluster and then compute the inter-cluster dissimilarities by

As mentioned, there are several improvements over these
basic methods. However, such contributions are orthogonal
to our contribution. Moreover, it is unclear how such im-
provements can be extended to the dissimilarities that can
be both positive and negative. Thus, we limit our baselines
to these methods which as mentioned in Proposition 1, are
applicable to such data.

In our studies, we have access to the true labels. There-
fore, consistent with several previous studies on hierarchical
clustering, e.g. [4, 9, 29], we evaluate the results according
to the following criteria: i) Normalized Mutual Information
(MI) [79] that measures the mutual information between the
true and the estimated clustering solutions, and ii) Normal-
ized Rand score (Rand) [41] that obtains the similarity be-
tween the two solutions. We do not use the labels to infer
the clustering solution, they are only used for evaluation.
Therefore, we are still in the unsupervised setting where the
ground-truth labels play the role of an external evaluator.

In Appendix C, we describe additional experimental re-
sults, in particular on datasets from other domains.

6.1. HCC on UCI data

We first investigate the hierarchical correlation cluster-
ing on the following six UCI datasets [45]. (i) Breast Tis-
sue: includes electrical impedance measurements of freshly
excised 106 tissue samples from the breast. The number of
clusters is 6. (ii) Cardiotocography: contains 2126 mea-
surements of fetal heart rate and uterine contraction fea-
tures on cardiotocograms in 10 clusters. (iii) Image Seg-
mentation: contains 2310 samples from images of 7 out-
door clusters. (iv) ISOLET: 7797 samples consisting of
spoken attributes of different letters (26 clusters). (v) Leaf :
340 images of leaf specimens originating from 40 differ-
ent plant species (clusters) each described by 16 attributes.
(vi) One-Hundred Plant: 1600 samples of leafs each de-
scribed by 64 features, from in total 100 types (clusters).
The ground-truth labels are shown by c∗, i.e., c∗i shows the
true label for object i. We assume an oracle reveals the pair-
wise similarities S according to the (flip) noise parameter
η. If c∗i = c∗j then Si,j = U(0, 1) with probability 1 − η
and Si,j = U(−1, 0) with probability η. If c∗i ̸= c∗j then
Si,j = U(−1, 0) with probability 1− η and Si,j = U(0, 1)
with probability η. The function U(., .) returns a uniform
random number within the specified range. For each η we
repeat the experiments 20 times and report the average re-
sults. This setup provides a systematic approach to study
the robustness of various methods to noise.

Figure 2 shows the results for different datasets as a func-
tion of the noise level η w.r.t. MI. Rand scores shown in
Figure 5 in Appendix C exhibit a consistent behavior. We

the distances between the representatives. Computing such representatives
might not be feasible for possibly negative pairwise dissimilarities. Thus,
we do not consider them.
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(a) [Breast Tissue] (b) Cardio (c) Image Segmentation (d) ISOLET (e) Leaf (f) One-Hundred Plant

Figure 2. MI score of different hierarchical clustering methods applied to UCI datasets, where x-axis shows the parameter η.

Table 1. Performance of different tree preserving embedding methods on UCI datasets applied with GMM.

Breast Tissue Cardiotocography Image Segm. ISOLET Leaf One-Hun. Plant
method MI Rand MI Rand MI Rand MI Rand MI Rand MI Rand

SL 0.006 0.008 0.007 0.007 0.008 0.001 0.009 0.016 0.008 0.003 0.015 0.020
SL+GMM 0.093 0.077 0.120 0.135 0.239 0.250 0.192 0.174 0.155 0.161 0.083 0.077

CL 0.227 0.166 0.077 0.056 0.187 0.125 0.057 0.017 0.081 0.038 0.029 0.008
CL+GMM 0.251 0.171 0.081 0.060 0.201 0.154 0.061 0.043 0.140 0.129 0.054 0.049

AL 0.542 0.519 0.391 0.479 0.518 0.495 0.257 0.165 0.181 0.106 0.066 0.023
AL+GMM 0.550 0.513 0.422 0. 463 0.522 0.501 0.240 0.179 0.152 0.143 0.081 0.065

HCC 0.903 0.900 0.987 0.994 0.945 0.943 0.938 0.918 0.429 0.373 0.159 0.104
HCC+GMM 0.914 0.911 0.979 0.974 0.960 0.966 0.941 0.917 0.462 0.401 0.183 0.217

observe that among different methods, HCC performs sig-
nificantly better and produces more robust clusters w.r.t. the
noise parameter η. The results on Leaf and One-Hundred
Plant are worse with all the methods. The reason is that
these datasets are complex, having many clusters (respec-
tively, 40 and 100 clusters) and fairly a small number of
objects per cluster.

6.2. Tree preserving embedding on UCI data

In the following, we investigate tree preserving embed-
ding and feature extraction. After computing the embed-
dings from different hierarchical clustering methods, we ap-
ply Gaussian Mixture Model (GMM) to the extracted fea-
tures and evaluate the final clustering using the ground-truth
solution. This kind of embedding enables us to apply meth-
ods like GMM to positive and negative pairwise similari-
ties, a task that was not possible before. Since the extracted
features appear in the form of vectors, thus, the final clus-
tering method is not limited to GMM, and in principle, any
numerical clustering can benefit from this embedding.

Table 1 shows the results for different UCI datasets.
We observe that the embeddings obtained by HCC (i.e.,
‘HCC+GMM’) yield significantly better results compared
to the embeddings from other methods (i.e., ‘SL+GMM’,
‘CL+GMM’ and ‘AL+GMM’). It is worth noting that the
results of embeddings (e.g., ‘HCC+GMM’) typically sur-
pass the results obtained from the hierarchical clustering
alone (e.g., ‘HCC’). This observation supports the idea that
employing HCC to compute an embedding (for extracting
new features) for a clustering method such as GMM may

be advantageous, yielding superior results compared to us-
ing HCC exclusively for clustering purposes. This verifies
why tree preserving embedding can be effective in general.

6.3. Experiments on Fashion-MNIST

Next, we investigate HCC and tree-preserving embed-
ding on two randomly selected subsets of Fashion-MNIST
dataset [81]. Fashion MNIST consists of 28 × 28 images
of Zalando’s articles. Each subset consists of 5, 000 sam-
ples/objects, where we compute the pairwise cosine simi-
larities between them and then apply different methods. Ta-
ble 2 shows the performance of different methods on these
datasets. We observe that, consistent with the previous ex-
periments, both ‘HCC’ and ‘HCC+GMM’ yield improving
the results compared to the baselines. Furthermore, employ-
ing HCC to compute intermediate features for GMM (i.e.,
‘HCC+GMM’) achieves higher scores compared to using
‘HCC’ alone for generating final clusters.

6.4. Correlation clustering with minimax dissimi-
larities

Finally, we investigate the use of minimax dissimilar-
ities with correlation clustering. As mentioned, minimax
dissimilarities are especially useful for extracting elongated
and complex patterns in an unsupervised way. Thereby, we
apply ‘minimax + correlation clustering’ to a number of
datasets with visually elongated and arbitrarily shaped clus-
ters, and compare the results with ‘correlation clustering’
alone. The datasets are shown in Figure 3. For each dataset,
we simply construct the K-nearest neighbor graph (using
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Table 2. Performance of different methods on MNIST and Fashion
MNIST datasets. The embeddings by HCC yield better results.

Fashion MNIST 1 Fashion MNIST 2
method MI Rand MI Rand

SL 0.322 0.206 0.241 0.196
SL+GMM 0.411 0.335 0.384 0.340

CL 0.403 0.293 0.546 0.379
CL+GMM 0.478 0.426 0.574 0.362

AL 0.464 0.468 0.602 0.534
AL+GMM 0.608 0.551 0.647 0.553

HCC 0.499 0.475 0.666 0.557
HCC+GMM 0.581 0.586 0.693 0.548

(a) DS1 [44, 63] (b) DS2 [22]

(c) DS3 [1] (d) DS4 [1]

Figure 3. The datasets with arbitrarily shaped clusters, where
‘minimax + correlation clustering’ acheives perfect clustering.

Figure 4. Embeddings of vehicle motion trajectories computed via
dynamic time wrapping and t-SNE [27, 39].

the ordinary Euclidean distance with a typical K such as 3).
The edges in the nearest neighborhood receive a positive
weight (e.g., +1), and a negative weight (e.g., -1) otherwise.
We then apply either ‘minimax + correlation clustering’ or
‘correlation clustering’ to the resultant graph. We observe
that for all the datasets, ‘minimax + correlation clustering’

yields the perfect clustering, i.e., MI and Rand are equal to
1. Whereas with ‘correlation clustering’ alone these scores
are very low. We acknowledge the existence of other clus-
tering methods, such as DBSCAN [30], capable of achiev-
ing perfect clustering on these datasets. However, these
methods often involve crucial hyperparameters, the tuning
of which can be challenging in unsupervised learning. To
our knowledge, in addition to computational and theoreti-
cal benefits, ‘minimax + correlation clustering’ stands out
as the sole method capable of achieving perfect results on
datasets with elongated clusters of arbitrary shapes, and ful-
fills the following two promises: i) it eliminates the need to
fix critical hyperparameters, a task often intricate in unsu-
pervised learning, and ii) it automatically determines the
correct number of clusters without requiring prior fixing.

In the following, we consider the interesting application
of clustering vehicle motion trajectories for ensuring safety
in self-driving [39]. In this application, 1, 024 trajectories
consisting of drive-by left, drive-by right and cut-in types
are prepared, where some of them are collected in real-
world and some others are generated using Recurrent Auto-
Encoder GAN [27]. Next, dynamic time wrapping [10] and
t-SNE [77] are employed to map the temporal data onto a
two-dimensional space, as illustrated in Figure 4 [27, 39].
We then apply ‘minimax + correlation clustering’ to this
data and compare it with ‘correlation clustering’. Similar
to the datasets in Figure 3, ‘minimax + correlation cluster-
ing’ achieves perfect clustering with MI = Rand = 1 and
accurately determines the correct number of clusters.

7. Conclusion
We proposed a new hierarchical clustering method,

called HCC, suitable when the (dis)similarities can be pos-
itive or negative. This method is consistent with the gen-
eral algorithmic procedure for agglomerative clustering and
only differs in the way the inter-cluster dissimilarity func-
tion is defined. We then considered embedding the HCC
dendrograms, which provides extracting useful features to
apply for example GMM for clustering positive and nega-
tive similarities. In the following, we studied the use of min-
imax dissimilarities with correlation clustering and showed
that it yields reduction in the computational complexity, in
addition to a possibility for extracting elongated manifolds.
Finally, we demonstrated the effectiveness of the methods
on several datasets in different settings.
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Zimek. Mining hierarchies of correlation clusters. In
18th International Conference on Scientific and Statistical
Database Management, SSDBM, pages 119–128, 2006. 2

[3] Rakesh Agrawal, Alan Halverson, Krishnaram Kenthapadi,
Nina Mishra, and Panayiotis Tsaparas. Generating labels
from clicks. In International Conference on Web Search and
Web Data Mining, WSDM, pages 172–181, 2009. 1

[4] Julien Ah-Pine. An efficient and effective generic agglomer-
ative hierarchical clustering approach. J. Mach. Learn. Res.,
19:42:1–42:43, 2018. 6

[5] Nir Ailon, Moses Charikar, and Alantha Newman. Aggre-
gating inconsistent information: Ranking and clustering. J.
ACM, 55(5):23:1–23:27, 2008. 2, 6, 13

[6] Maria-Florina Balcan, Yingyu Liang, and Pramod Gupta.
Robust hierarchical clustering. J. Mach. Learn. Res.,
15(1):3831–3871, 2014. 1

[7] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation
clustering. In 43rd Symposium on Foundations of Computer
Science FOCS, 2002. 1, 2

[8] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation
clustering. Machine Learning, 56(1-3):89–113, 2004. 1, 2,
6

[9] MohammadHossein Bateni, Soheil Behnezhad, Mahsa Der-
akhshan, MohammadTaghi Hajiaghayi, Raimondas Kiveris,
Silvio Lattanzi, and Vahab S. Mirrokni. Affinity clustering:
Hierarchical clustering at scale. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 6864–6874, 2017.
6

[10] R. Bellman and R. Kalaba. On adaptive control processes.
Automatic Control, IRE Transactions on, 4(2):1–9, 1959. 8
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