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Abstract

Large-scale visual-language pre-trained models have
achieved significant success in various video tasks. How-
ever, most existing methods follow an “adapt then align”
paradigm, which adapts pre-trained image encoders to
model video-level representations and utilizes one-hot or
text embedding of the action labels for supervision. This
paradigm overlooks the challenge of mapping from static im-
ages to complicated activity concepts. In this paper, we pro-
pose a novel “Align before Adapt” (ALT) paradigm. Prior
to adapting to video representation learning, we exploit the
entity-to-region alignments for each frame. The alignments
are fulfilled by matching the region-aware image embeddings
to an offline-constructed text corpus. With the aligned enti-
ties, we feed their text embeddings to a transformer-based
video adapter as the queries, which can help extract the
semantics of the most important entities from a video to a
vector. This paradigm reuses the visual-language alignment
of VLP during adaptation and tries to explain an action by
the underlying entities. This helps understand actions by
bridging the gap with complex activity semantics, partic-
ularly when facing unfamiliar or unseen categories. ALT
demonstrates competitive performance while maintaining
remarkably low computational costs. In fully supervised ex-
periments, it achieves 88.1% top-1 accuracy on Kinetics-400
with only 4947 GFLOPs. Moreover, ALT outperforms the
previous state-of-the-art methods in both zero-shot and few-
shot experiments, emphasizing its superior generalizability
across various learning scenarios.

1. Introduction

Video action recognition is a fundamental task in the pur-
suit of intelligent video understanding. The recent trend
of utilizing the visual-language pre-trained (VLP) mod-
els [26, 31, 49, 73] have significantly advanced the research
of action recognition [27, 37, 43, 45, 64, 71]. By lightly
fine-tuning the model, VLP-based methods outperform the

previous end-to-end network architectures, including two-
stream networks [54, 63, 78], 3D convolutional neural net-
works [6, 14, 15, 22, 48, 58, 59, 67], and vision-transformer-
based (ViT) networks [3, 12, 38, 46, 70]. Employing a pre-
trained VLP model for action recognition can better encode
the semantic meaning of items in images, even if they have
very different visual appearances. This is very helpful in
understanding human action and also explains why VLP
models have achieved superior performance. As shown in
Fig. 1, the current VLP-based action recognition methods
follow an “adapt then align” paradigm. They either introduce
temporal interaction upon image representations or insert
temporal modules into pre-trained image encoders. However,
the “adapt then align” paradigm will merely fit the video
representation to the action name, which potentially destroys
the other visual-semantic correspondences provided by VLP
models. As far as we are concerned, actions are complex
concepts that involve multiple fine-grained entities, such as
body parts, scenes, and objects. With VLP model, the text
embedding of the relevant entities should also be grounded
in some image region. “adapt then align” paradigm does not
emphasize the underlying entities-to-regions correspondence
behind the action concept. Furthermore, human-centric ac-
tivities often share common entities, implying that visual-
language correspondences can be reused across different
actions, even for those that were not included in the training
set. The re-usability of entities-to-regions correspondences
allow the model to quickly recognize new action categories.

In this paper, we propose the “ALign before adapt” (ALT)
paradigm. Unlike the “adapt then align” approaches that
align the image-level visual embedding with the text embed-
ding of the action name, ALT aims to establish an entity-level
correspondence to support action recognition. The relevant
entities should have evidence in specific regions of the image.
To achieve entities-to-regions alignment, the VLP model is
leveraged in two aspects: (1) Aggregating adjacent and sim-
ilar image token embeddings from the VLP model. The
resulting embedding typically represents a region containing
the same entity. (2) Selecting the most relevant entities for
each region by matching their image embeddings to the text
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Figure 1. Left: Paradigm comparison between traditional adaptation approaches and our “Align before Adapt” method. Right: Zero-shot
and few-shot performance comparison on HMDB-51 dataset. Pretrained on Kinetics-400, our method surpasses the previous state of the arts.

embeddings of a text corpus.
Using the established alignments, we utilize the text em-

bedding of the entities as queries in a transformer-based
decoder for action recognition. This adaptation step helps
bridge the gap between general image representations and
video action representation while preserving the visual-
language correspondences from VLP models. ALT exhibits
impressive generalization ability with low computational
complexity. It enhances our framework by 6.8% in top-1
accuracy on the HMDB-51 dataset under the 2-shot configu-
ration, while reducing computational cost by 23% with the
ViT-base backbone. In summary, our contributions are as
follows:
• We propose an “align before adapt” paradigm that lever-

ages entities-to-region correspondences to guide the adap-
tation from VLP to action recognition. The paradigm
preserves the visual-language alignment of VLP during
the video representation adaption, achieving better inter-
pretability and generalization ability.

• We propose a new transformer-based video adapter to
extract the semantics of the most important entities from
a video to a vector. The adapter adopts a transformer-
based architecture, which utilizes the text embedding of
the selected entities as the query and the multi-frame visual
embeddings as the key and values.

• Extensive experiments under various learning configu-
rations are conducted. Besides demonstrating competi-
tive performance with low computational complexity (sur-
passes the current leading approach with the same VLP
backbone by 0.4% top-1 accuracy while requiring 55%
fewer GFLOPs). Our method reveals superior general-
izability due to the reusable text entities (surpasses the
previous state-of-the-art by more than 10%).

2. Related Work
Large Scale Visual-Language pretraining. In the past few
years, the surge of large-scale visual-language pre-trained
(VLP) models [26, 31, 34, 49, 56, 76] have revolutionized

multiple fields of computer vision, including image classifi-
cation, captioning [73], grounding [33], image-text retrieval,
and so on. With the availability of massive amounts of web-
scale visual-text paired data, these models learn cross-modal
representations through masked language modeling and/or
contrastive learning. Specifically, one of the most represen-
tative works, CLIP [49] , is trained on 400M data following
a contrastive manner, and shows remarkable performance
on zero-shot image classification. The success of VLP mod-
els inspires the “fine-tuning” trend on multiple downstream
tasks, such as open-vocabulary detection [21], segmenta-
tion [18, 66, 69], caption [41], summarization [42], gener-
ation [50], etc. Our method adopts CLIP as the backbone
for video action recognition tasks under fully-supervised,
few-shot, and zero-shot scenarios.

Video Action Recognition. The prosperity of deep learn-
ing has sparked various works for effective video action
recognition. Initially, there were two directions of methods:
two-stream 2D CNNs [54, 63, 78] that process and spa-
tial and temporal context parallelly, and 3D CNNs [14, 15,
48, 58, 59, 67] that factorize the convolution across spatial
and temporal dimensions simultaneously. Later transformer-
based approaches, including ViViT [1], Timesformer [3],
and VideoSwin [38] outperformed the convolutional meth-
ods, by better capturing long-term dependencies through
scalable self-attention mechanisms. More Recently, lever-
aging available VLP models such as CLIP [49] and Flo-
rence [74], has become a data-friendly trend. EVL [37], ST-
Adapter [45], and AIM [71] add lightweight modules to the
fixed CLIP backbone for close-set recognition tasks, while
ActionCLIP [64] , X-CLIP [43], and ViFi-CLIP [52] propose
frameworks that enable adaptation to new scenarios. While
the above methods focus on adapting the visual branch of
models to video input directly, our approach explores ‘entity-
to-region’ visual-semantic alignments before the adaptation.
This bridges the gap of mapping with complicated activity
semantics during video representation learning.

Region-Aware Perception for Vision Transformer. In re-
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Figure 2. An overview of our framework: we utilize a video clip and an offline text corpus as inputs to learn a video representation, which is
supervised with the objective of maximizing the similarity score with the text representation of the corresponding action label.

cent research on ViT architectures, it has been well-studied
that capturing fine-grained patterns in visual signals leads to
improved representation learning. Various approaches, such
as Swin Transformer [38], Region ViT [8], and GCViT [23],
propose incorporating multi-scale attention into the ViT to
achieve better performance in various downstream tasks
including recognition, detection, and segmentation. With
the rise of visual-language pretraining, GLIP [33] suggests
learning better instance-level language-aware representa-
tions through grounded image-text data, while FILIP [72]
and Dense CLIP [51] focus on introducing patch-level con-
trastive losses. These works have shown impressive progress
in various scenarios. In contrast to methods that require ad-
ditional structures, data, or supervision, we adopt ToMe [5],
which initially aims at boosting ViTs with minor perfor-
mance drops, in our image encoder. Finding its soft bi-
partite matching strategy tends to cluster patch tokens of
frames with similar region/instance representativeness, we
utilize the merged tokens to achieve “entity-to-region” visual-
semantic alignments for video action recognition.

3. Methodology
Our method proposes an “align before adapt” framework to
learn discriminative and transferable video representation.
The overview of our framework is illustrated in Fig. 2. The
framework has two main steps. First, we explore the entities-
to-regions alignment from a constructed text-corpus and
the region-aware image embeddings (Sec. 3.1). Then we
leverage the text embeddings of aligned entities to guide the
adaption to the video representation (Sec. 3.2).

3.1. Entitiy-to-Region Alignments

Text corpus of action-related entities. Drawing inspiration
from cognitive science and recent research [13, 30, 35, 75],
we believe that perceiving and leveraging intermediate
spatiotemporal-variated patterns, such as bodies, objects,

and scenes, can greatly mitigate the difficulty of understand-
ing activity concepts. Thanks to the VLP models, these
patterns can be linguistically expressed and perceived based
on their similarities with visual representations in the em-
bedding space. We construct a knowledge base for these
patterns, referred to as “text corpus”.

To generate a reusable text corpus, we first collect a set
of action labels from several recognition datasets including
[7, 29, 55]. The action-related text corpus is then generated
with our proposed automatic pipeline: (1) Extracting and ex-
panding entities from original action names by utilizing POS
(Nouns) tagging tools [4, 24] and prompting LLM [44]. (2)
Generating a set of descriptions for each entity by utilizing
WordNet [40] and LLM. (3) Employing word sense disam-
biguation techniques, including the Lesk algorithm [2] and
T5 language model [62], to filter out unrelated descriptions
of an entity to action. In addition, body parts, such as head
and feet are added to the corpus by default. They are in-
volved in most human activities. The details and utilized
prompts are provided in supplementary materials.

The text corpus, denoted as S = {si}Ki=1, consists of K
entities, where each entity si is represented by its entity name
and description: si = {uniti, descriptioni}. The text
embeddings for all the text entities can be denoted as S ∈
RK×d, where d represents the dimension of embeddings.
Region-aware image embeddings. To fully explore the
entity-to-region alignments, we need to perceive the region-
level image embeddings. With a CLIP-ViT, the frame input
is initially divided into N non-overlapping patches and pro-
jected to a sequence of d-dimension embeddings E0:

E0 = [ecls,0, e1,0, e2,0, ..., eN,0] + Epos, (1)

where each embedding en,0 corresponds to a patch. ecls,0
and Epos denote prepended [class] embedding and posi-
tion embeddings, respectively. However, the image patches
are too redundant to represent a region. We adopt token-
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Figure 3. Detailed network components: (a) The region-aware image encoder includes a ViT with plug-in token merging modules. MSA,
MLP, and LN indicate multi-head self-attention, multilayer perception, and layernorm, respectively. (b) The entity-to-region alignment
module obtains the aligned query in a softmax-weight-sum manner. and (c) shows the multi-modal video adapter, with each block containing
a stack of hybrid modules composed of attention layers and 1D temporal convolution.

merging [5] to aggregate patches. The token merging tech-
nique originally aimed to accelerate the ViT architecture. It
employs a soft bipartite matching algorithm to find the most
similar r pairs of embeddings (excluding [cls]). Each pair of
embeddings are merged into one, reducing the total number
by r. The token merging module is inserted into each trans-
former block, denoted by BLOCKToMe. The forward pass
of the modified transformer block can be formulated as:

El = BLOCKToMe(El−1), (2)

where l denotes the index of transformer blocks, and El ∈
R(N+1−l×r)×d reduces r patch embeddings compared with
El−1. After passing through L blocks (the second last layer
of ViT), the final image embeddings are represented by:

E = [ecls, e1, e2, ..., eN−L×r], (3)

where e1, e2, ..., eN−L×r are region-aware embeddings that
account for corresponding merged patches which have sim-
ilar visual representativeness. We visualize the merging
procedure along the transformer layers in Fig. 3a, where the
patches with the same color and border are merged into one
and form region-aware embeddings.
Entity-to-regions alignments. ALT aims to build the
entities-to-regions correspondences by matching the text em-
beddings of entities and the region embeddings of each frame.
As depicted in Fig. 3b, the process starts by calculating the
similarity matrix A between the visual embeddings E and
text entity embeddings S through Gumbel-Softmax [25, 39]
over S with Gumbel(0, 1) distributed samples γ, where:

Ai,j =
exp(⟨ei, sj⟩/(∥ei∥ · ∥sj∥) + γj)∑K

k=1 exp(⟨ei, sk⟩/(∥ei∥ · ∥sk∥) + γk)
. (4)

Note that ei ∈ Rd and sj ∈ Rd are ith and jth embeddings
of E and S, respectively.

To address the ambiguities of aligned semantics, we high-
light the most similar entity for each region by enforcing a
differentiable one-hot trick [60, 68]:

Â = one-hot(Aargmax) +A− detach(A), (5)

where detach stops the gradient. Â ∈ R(N+1−L×r)×K

only aligns the most correlated text entity for each frame-
level or region-aware embedding with dominating weights
while keeping differentiable. It is noteworthy that, to val-
idate the precision and interpretability of visual-semantic
alignments, in Fig. 4 left, we visualize the correspondence
between region-aware embeddings and text entities.

3.2. Video Representation Adapter

The video adapter aims to extract the most discriminative
information from multi-frame visual embeddings to a single
vector for action recognition. Previous methods utilize the
labels or the text embeddings of the action names to super-
vise the adapter, while our method can leverage the relevant
entities obtained from the entity-to-region alignments.

More specifically, we utilize the transformer-based archi-
tecture for the adapter. The queries, keys, and values are
reduced embeddings of matched entities and video frames.
Take one frame as an example: query q is calculated by first
summing the text embedding S weighted by the similarity
matrix Â then reducing to a vector by MLP. Meanwhile, key
and value are the same vector ê, obtained by processing the
image embedding E with another MLP:

q = MLP(ÂS), ê = MLP(E). (6)

Given a video with T frames [I1, I2, ..., IT ], the initial
queries Q0 to the adapter are query vectors of different
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frames, while the keys and values are Ê, which is the pro-
cessed image embeddings of input frames (Eq. 6):

Q0=[q1, ...,qT ], Ê=[ê1, ..., êT ], (7)

The structure of our adapter is illustrated in Fig. 3c. This
adapter includes a sequence decoding block that consists
of a 1D-convolution module, a self-attention (SA) module,
and a cross-attention (CA) module. The attention modules
function in the same way as the ones in the transformer [61].
The procedure of the video adapter can be formulated as:

Q′
m = SAm(Qm−1), Êm = Ê+ 1D-Convm(Ê),

Qm = CAm(Q′
m, Êm), m = 1, ...,M,

(8)

where m indicates the block index of the video adapter. The
SA module and the 1D-convolution module serve for tem-
poral interactions for Qm−1 and Ê, respectively. The CA
module utilizes evolved text embeddings as queries to aggre-
gate to the visual embeddings across the frames, preserving
the entity-level visual information during the adaption. The
output query after M blocks is QM . We obtain the final
video representation z by applying Average Pooling and
MLP layer over the QM sequentially along the temporal
dimension and the feature channel:

z = MLP(AvgPool(QM )). (9)

3.3. Training Details

Loss function. Our proposed network aims to maximize the
similarity between video representations and textual repre-
sentations of corresponding action labels. Specifically, we
utilize the frozen text encoder of CLIP to perform prompt
ensembling for action labels with a bunch of handcraft tem-
plates [43]. Given the representations of the ith action ci
and nth video zn (as described in Eq. (9)), the loss function
can be implemented by the cross-entropy loss:

L = − 1

N

N∑
n=1

I∑
i=1

yi,n log

(
exp(c⊤i zn)∑I
j=1 exp(c

⊤
j zn)

)
. (10)

The training set has N videos belonging to the I actions.
If the nth video belongs to the ith action, yi,n equals 1;
otherwise, yi,n equals 0.
Network training. The ViT backbone in the region-aware
image encoder is initialized by CLIP, while the token merg-
ing module is parameter-free with the reduction number r to
be 8. The number of blocks in the multi-modal video decoder
is set to 4 and 6 for ViT-B and ViT-L backbones, respectively.
We adopt an AdamW optimizer for network parameter train-
ing with initial learning rates of 8×10−6 for the ViT back-
bone and 8×10−5 for the remaining parts. The networks are
trained with 30 epochs (including a five-epoch warmup) and

a weight decay of 0.001 w.r.t. a cosine schedule. The in-
put video follows the main sparse sampling method [63] and
augmentation strategy [43] with a frame resolution 224×224.
Experiments are conducted with 8 32GB-V100-GPUs.

4. Experiments
Datasets. Our proposed method is evaluated on four
widely used video action recognition datasets: Kinetics-
400 [28], Kinetics-600 [7], UCF-101 [55], HMDB-51 [29],
and Something Something V2 [20](see in supplementary
materials). Kinetics-400 consists of approximately 240k
training and 20k validation videos, covering 400 classes,
with each clip spanning around 10 seconds. Kinetics-600 is
an extension of Kinetics-400, including around 410k training
and 29k validation videos for 600 classes. UCF-101 con-
tains 13,320 video clips with 101 classes, and HMDB-51
consists of 7,000 videos with 51 classes. We conduct fully-
supervised experiments on Kinetics-400 and Kinetics-600.
Additionally, for Kinetics-600, UCF-101, and HMDB-51,
we perform few-shot and zero-shot experiments with models
pre-trained on Kinetics-400.

4.1. Fully Supervised Comparison

Settings. We conduct fully-supervised experiments on
Kinetics-400. Each video clip is sampled with 16 or 32
frames. Two variants of the network, namely ALT-B/16 and
ALT-L/14, employ ViT-B/16 and ViT-L/14, respectively. The
results on Kinetics-600 and Something-Something-v2 [20]
are exhibited in the supplementary materials.
Results. In Tab. 1, we compare with the state-the-of-art
methods on Kinetics-400 with the input resolution 224×224.
Taking 16 sampled frames of each video as input, ALT-
B/16 achieves 84.8% top-1 accuracy with only 657 GFLOPs.
When the input frames increase to 32, ALT-B/16 surpasses
the performance of ViViT-H/16 [1], which takes more than
30× computation cost (1308 vs. 48916 GFLOPs). By em-
ploying the larger backbone, ALT-L/14 achieves superior
performance with 88.1% top-1 accuracy among CLIP-400M
pretraining works and significant computational advantage (
0.4% higher than AIM [71] but 55% fewer GFLOPs). It is
noteworthy that the leading method MTV-H [70] adopts
larger-scale pretraining data (70M video-text pairs with
about 17B images) and consumes 9× GFLOPs. We at-
tribute the superiority and efficiency of ALT to the seamless
coupling of entity-to-region alignments token merging. As
shown in Fig. 4 right, we visualize the ‘performance v.s.
GFLOPs’ relationships of some representative works, where
ALT sets new Pareto frontiers.

4.2. Few-shot Comparisons

Settings. We evaluate our few-shot experiments on the
HMDB-51 and UCF-101 datasets, utilizing ALTs trained
on Kinetics-400 data and a text corpus. For the training set
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Method Pretrain Top-1 Top-5 GFLOPs Frames Views #Param.(M)

Methods with ImageNet or web-scale image pretraining
MViTv1-B [12] - 81.2 95.1 4095 64 3×3 36.6
Uniformer-B [32] IN-1k 83.0 95.4 3108 32 4×3 50.0
TimeSformer-L [3] IN-21k 80.7 94.7 7140 64 1×3 121.4
VideoSwin-L [38] IN-21k 83.1 95.9 7248 32 4×3 200.0
ViViT-H/16 [1] JFT-300M 84.9 95.8 48916 32 4×3 647.5

Methods with web-scale language-image pretraining
MTV-H/16 [70] WTS-17B* 89.1 98.2 45537 32 4×3 -
PromptingCLIP-B/16 [27] CLIP-400M 76.9 93.5 - 16 5×1 95.5
ActionCLIP-B/16 [64] CLIP-400M 83.8 97.1 16890 32 10×3 105.2
ViFi-CLIP [52] CLIP-400M 83.9 96.3 3372 16 4×3 124.7
ASU-B/16 [11] CLIP-400M 84.7 96.8 3444 16 4×3 132
ST-Adapter-L/14 [45] CLIP-400M 87.2 97.6 8248 32 3×1 -
EVL-L/14 [37] CLIP-400M 87.3 97.6 8088 32 3×1 357.9
AIM-L/14 [71] CLIP-400M 87.5 97.7 11208 32 3×1 341
X-CLIP-L/14 [43] CLIP-400M 87.1 97.6 7896 8 4×3 451.2
X-CLIP-L/14(336↑)† [43] CLIP-400M 87.7 97.4 37032 16 4×3 451.2

Our method
ALT-B/16 CLIP-400M 84.8 96.4 657 16 3×1 134.4
ALT-B/16 CLIP-400M 85.5 96.7 1308 32 3×1 134.4
ALT-L/14 CLIP-400M 87.8 97.6 2478 16 3×1 437.1
ALT-L/14 CLIP-400M 88.1 97.7 4947 32 3×1 437.1

Table 1. Comparison to state-of-the-art on Kinetics-400. Views are denoted with “temporal clips × spatial crops.” Parameters in text
encoders are not counted. * indicates pretraining with a video-text collection. † indicates the input frame size is 336×336.
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correspondence to text entities generated by the action label; Column (3) visualizes region-aware embeddings under ToMe; Column (4) and
(5) show the two of the fine-grained corresponding visual patterns to specific text entities, which are geometrically consistent with Column
(3). Right: Visualization of Accuracy v.s. FLOPs performance.

construction, we randomly sample 2, 4, 8, and 16 videos
from each class, and we set the frame number in each video
to either 8 or 32. Following the protocols of X-CLIP [43],
we use the first split of the test set for evaluation.
Results. Sec. 3.3 shows the performance comparison on K-
shot learning. Our method significantly outperforms image-
pretrained methods. For instance, when K=2, ALT-B/16
surpasses VideoSwin-B [38] by 43.4% on HMDB-51 and

39.9% on UCF-101. Among the approaches that leverage
image-language pretraining: In two-shot scenarios, ALT-
B/16 surpasses the previous state of arts by 7.1% and 9.2%
on HMDB-51 and UCF-101, respectively. The lead remains
consistent across 16-shot scenarios and continues to expand
when switching to ALT-L/14. This showcases the superior
generalization capabilities of our paradigm, which estab-
lishes reusable entity-to-region alignments.
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Method Frames GFLOPs HMDB-51 UCF-101
K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16

TSM [36] 32 - 17.5 20.9 18.4 31.0 25.3 47.0 64.4 61.0
TimeSformer [3] 32 238 19.6 40.6 49.4 55.4 48.5 75.6 83.7 89.4
VideoSwin-B [38] 32 321 20.9 41.3 47.9 56.1 53.3 74.1 85.8 88.7

ActionCLIP [64] 8 141 55.0 56.0 58.0 - 80.0 85.0 89.0 -
X-CLIP-B/16 [43] 32 658 53.0 57.3 62.8 64.0 76.4 83.4 88.3 91.4
X-Florence [43] 32 2822 51.6 57.8 64.1 64.2 84.0 88.5 92.5 94.8
ViFi-CLIP [52] 32 562 57.2 62.7 64.5 66.8 80.7 85.1 90.0 92.7
ALT-B/16 32 436 64.3 66.7 70.4 74.5 93.2 95.3 96.4 97.3
ALT-L/14 32 1649 68.1 69.7 73.8 79.1 96.0 97.4 98.0 98.1

Table 2. Few-shot
comparison: we com-
pare ALTs with previ-
ous SOTAs on HMDB-
51 and UCF-101. All
the models are trained
on Kinetics-400, with
top-1 accuracies(%) re-
ported under a single-
view inference.

Method HMDB-51 UCF-101

ASR [65] 21.8±0.9 24.4±1.0
ZSECOC [47] 22.6±1.2 15.1±1.7
UR [79] 24.4±1.6 17.5±1.6
TS-GCN [17] 23.2±3.0 34.2±3.1
ER-ZSAR [10] 35.3±4.6 51.8±2.9

ActionCLIP [64] 40.8±5.4 58.3±3.4
X-CLIP-B/16 [43] 44.6±5.2 72.0±2.3
ASU-B/16 [11] 48.1±2.8 75.0±3.7
ViFi-CLIP [52] 51.3±0.6 76.8±0.7
ALT-B/16 52.9±1.0 79.4±0.9
ALT-L/14 56.6±0.8 83.9±1.1

Method Top-1 Top-5

DEVISE [16] 23.8±0.3 51.0±0.6
ESZSL [53] 22.9±1.2 48.3±0.8
DEM [77] 23.6±0.7 49.5±0.4
GCN [19] 22.3±0.6 49.7±0.6
ER-ZSAR [10] 42.1±1.4 73.1±0.3

ActionCLIP [64] 66.7±1.1 91.6±0.3
X-CLIP-B/16 [43] 65.2±0.4 86.1±0.8
ASU-B/16 [11] 67.6±0.2 87.2±0.3
ViFi-CLIP [52] 71.2±1.0 92.2±0.3
ALT-B/16 72.7±0.6 91.7±0.4
ALT-L/14 74.9±0.4 92.2±0.3

Table 3. Zero-shot com-
parison between ALTs
with representative im-
age & image-language
pretraining methods on
HMDB-51 & UCF-101
(left) and Kinetics-600
(right). Pretrained on
Kinetics-400, the accura-
cies(%) are reported un-
der a single-view infer-
ence.

4.3. Zero-shot Comparisons

Settings. For zero-shot evaluation, we train ALTs on
Kinetics-400 data and corpus, following the protocol out-
lined in the [43]: For HMDB-51 and UCF-101, we con-
ducted experiments using the three provided splits. Regard-
ing Kinetics-600, the test set is constructed by randomly
selecting 160 categories, three times, from 220 categories
that are distinct from those in Kinetics-400. We report results
in the format of “average accuracy ± standard deviations.”
Results. We present the zero-shot results in Tab. 3. ALT-
B/16 outperforms ViFi-CLIP by 1.6%, 2.6%, and 1.5%
in terms of top-1 accuracy on HMDB-51, UCF-101, and
Kinetics-600, respectively. It is noteworthy that our approach
requires 22% fewer GFLOPs and ViFi-CLIP unfreezes the
CLIP text encoder in the pretraining stage. We attribute
the superiority to the utilization of the text corpus, whose
factorized and reusable semantics mitigate the difficulty of
adapting our model to a new scenario.

4.4. Ablation Study

We employ ALT-B/16 to conduct detailed ablation experi-
ments. By default, the fully-supervised experiments are eval-
uated on Kinetics-400 with 8 frames per video clip. Taking
32 frames per sample as input, The few-shot and zero-shot
experiments are conducted on the first split of HMDB-51
and UCF-101, respectively. With 32 frames per video clip,
we report results under a single-view inference.

Component analysis. We investigate the effectiveness of
the proposed components and report the results in Tab. 4:
(a) We consider X-CLIP-B/16 [43] (without text prompts)
as the baseline. It incorporates a cross-frame module within
the CLIP image encoder and follows the “align then adapt”
approach. The top-1 accuracy on Kinetics-400 is 81.7%.
(b) Then we enhance the baseline with our framework but
only using the text embedding of the action name rather
than the corpus of entities in Eq.4. The improvement re-
veals the effectiveness of the proposed video adapter, which
utilizes text embedding to guide the adaption from image
embeddings to the final video embedding. (c) When we
replace the action name with the corpus of entities, the re-
sults further increase especially in the few/zero-shot scenar-
ios. The phenomenon indicates using the relevant entities
can achieve a better generalization ability in action recog-
nition. (d) We further change the global visual image to
region-aware embeddings in the alignment(Eq.4), fulfilling
the ‘entities-to-regions’ alignment. Our approach finally im-
proves the baselines by 0.9%, 11.3%, and 7.4%, respectively.

Video adapter component analysis. One important func-
tion of our proposed video adapter is to enable modality
interactions of established alignments through the cross-
attention (CA) modules. To examine its effects, in Tab. 5:
(a) we initially set up a baseline by substituting the video
adapter with four self-attention layers. (b) Then we evaluate
the performance with a CA-only video adapter, which im-
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Align. Corpus. Region. Fully. 2-shot 0-shot

a. 81.7 53.0 72.0
b. 82.0 55.2 74.4
c. 82.2 58.1 76.9
d. 82.8 64.3 79.4

Table 4. Effect of proposed components. Align: ‘Alignment’ before
adaptation step; Corpus: Utilize action-related text corpus; Region:
Empowered by region-aware visual embeddings. 2-shot and 0-shot
are evaluated on HMDB-51 and UCF-101, respectively.

CA SA 1D-Conv Fully. 2-shot 0-shot

a. 81.1 55.0 68.3
b. 81.8 61.3 74.6
c. 82.5 62.7 76.3
d. 82.3 62.1 76.1
e. 82.8 64.3 79.4

Table 5. Effect of components in the video adapter: CA: cross atten-
tion module; SA: Self attention module; 1D-Conv: 1D convolution
module. Top-1 Acc. are reported in a single view. 2-shot and 0-shot
are evaluated on HMDB-51 and UCF-101, respectively.

Method
Top-1

Acc.(%) GFLOPs
Param.

(M)
Tunable

Param.(M)

a. Frozen 81.4 110 134 38
b. S-adapter [71] 81.7 116 138 42
c. SM-adapter [71] 81.8 123 141 45
d. STM-adapter [71] 82.5 163 145 49
e. Finetune 82.8 110 134 134

Table 6. Effect of different training strategies on the image encoder.
S: spatial; M: MLP; T: temporal; Param.: # parameters. We report
Top-1 Acc. on Kinetics-400 under fully-supervised settings.

Method
Tunable

Param.(M) 2-shot 8-shot 16-shot

a. STM-adapter [71] 49 58.1 66.9 71.0

b. V-Finetune 125 64.3 70.4 74.5

c. VL-prompt* [52] 0.15(+63) 63.0 69.6 72.0

d. ALT+VL-prompt 0.15+38.4 65.3 71.1 74.2

Table 7. Analysis on different finetune strategies in HMDB-51
few-shot learning. The base model is ALT-B except * employs ViFi-
CLIP, which additionally pretrains the text encoder(63M paramters).

proves the baseline significantly, validating the effectiveness
of ‘entity-to-region’ alignments. (c)-(e) Additionally, we
investigated the effects of 1D-convolution and self-attention
(SA) modules which enable spatiotemporal signal communi-
cation. The results reveal that both modules are beneficial
and compatible with each other.
Training strategy and efficiency of image encoder. Our
method finetunes the pre-trained image encoder, which in-
fluences the final performance as shown in Tab. 6: (a) when
freezing the image encoder during training, fewer tunable pa-
rameters are required while the accuracy decreases to 81.4%.
(b)-(d) Based on the ‘frozen’ setting, we leverage approaches
proposed by AIM [71], which introduces adapters into the
image encoder. The performances are improved by stack-
ing spatial, temporal, and MLP adapters in the transformer
blocks. It is noteworthy that the STM method (d) computes
the attention layers twice, therefore significantly increasing
the computational complexity of our framework (e) by 48%.
Finetune strategy in few-shot scenarios. We investigate
different finetuning strategies in few-shot learning, and the
results are shown in Tab. 7: (a) STM-adapter [71] can
significantly improve the frozen model baseline (52.5%)
with a small number of training parameters, (b) Finetun-
ing the whole visual branch further improves performance
without overfitting. (c) The recent prompt tuning method,
VL-prompt∗ [52], demonstrates impressive performance in
few-shot learning. (d) We adopt the technique in ALT by
freezing the backbone and adding ten learnable tokens to
each layer of the image & text encoders. This modification
leads to improved accuracies when dealing with lower shots.
Linear evaluation on learned representations. To assess

Dataset Split 1 Split 2 Split 3 Average Benchmark [57]

UCF-101 95.6 95.8 96.1 95.83 96.1
HMDB-51 73.8 73.5 74.0 73.77 73.3

Table 8. Linear evaluation on ALT-B/16 (Kinetics-400 pretrained)
with Top-1 Acc. reported under a single view. Benchmark denotes
VideoMAE that fully trained on Kinetics-400 and target datasets.

the quality of the video representations obtained, we conduct
linear probe experiments on UCF101 and HMDB-51 datasets
with a frozen ALT-B/16. Specifically, the representations of
ALT are fixed and fed into a tunable linear classification layer
with one-hot label supervision. The top-1 accuracies are pre-
sented in Tab. 8 and compared with VideoMAE [57], which
adopts video reconstruction supervision to learn powerful
representations and achieve impressive recognition perfor-
mance. Notably, our linear-probed results are comparable to
a fully-trained VideoMAE, underscoring the discrimination
and generalization capabilities of our approach.

5. Conclusion

In this paper, we propose a novel method with the “align be-
fore adapt” paradigm for video action recognition. By lever-
aging the alignments between local visual appearance and
action-related entity semantics, we conduct a better video
representation adaption with improved interpretability and
generalizability. Our method demonstrates superior perfor-
mance especially in zero-shot and few-shot scenarios while
maintaining low computational costs.
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[60] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu.
Neural discrete representation learning. In NIPS, pages 6306–
6315, 2017. 4

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, pages
5998–6008, 2017. 5

[62] Jan Philip Wahle, Terry Ruas, Norman Meuschke, and Bela
Gipp. Incorporating word sense disambiguation in neural
language models. arXiv preprint arXiv:2106.07967, 2021. 3

[63] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin,
Xiaoou Tang, and Luc Van Gool. Temporal segment networks:
Towards good practices for deep action recognition. In ECCV
(8), pages 20–36, 2016. 1, 2, 5

18697



[64] Mengmeng Wang, Jiazheng Xing, and Yong Liu. Action-
clip: A new paradigm for video action recognition. CoRR,
abs/2109.08472, 2021. 1, 2, 6, 7

[65] Qian Wang and Ke Chen. Alternative semantic repre-
sentations for zero-shot human action recognition. In
ECML/PKDD (1), pages 87–102, 2017. 7

[66] Zhaoqing Wang, Yu Lu, Qiang Li, Xunqiang Tao, Yandong
Guo, Mingming Gong, and Tongliang Liu. CRIS: clip-driven
referring image segmentation. In CVPR, pages 11676–11685,
2022. 2

[67] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning:
Speed-accuracy trade-offs in video classification. In ECCV
(15), pages 318–335, 2018. 1, 2

[68] Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon,
Thomas M. Breuel, Jan Kautz, and Xiaolong Wang. Groupvit:
Semantic segmentation emerges from text supervision. In
CVPR, pages 18113–18123. IEEE, 2022. 4

[69] Jiarui Xu, Sifei Liu, Arash Vahdat, Wonmin Byeon, Xiaolong
Wang, and Shalini De Mello. Open-vocabulary panoptic
segmentation with text-to-image diffusion models. CVPR,
abs/2303.04803, 2023. 2

[70] Shen Yan, Xuehan Xiong, Anurag Arnab, Zhichao Lu, Mi
Zhang, Chen Sun, and Cordelia Schmid. Multiview trans-
formers for video recognition. In CVPR, pages 3323–3333,
2022. 1, 5, 6

[71] Taojiannan Yang, Yi Zhu, Yusheng Xie, Aston Zhang, Chen
Chen, and Mu Li. AIM: adapting image models for efficient
video action recognition. CoRR, abs/2302.03024, 2023. 1, 2,
5, 6, 8

[72] Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe
Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin Jiang, and
Chunjing Xu. FILIP: fine-grained interactive language-image
pre-training. In ICLR. OpenReview.net, 2022. 3

[73] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung,
Mojtaba Seyedhosseini, and Yonghui Wu. Coca: Con-
trastive captioners are image-text foundation models. CoRR,
abs/2205.01917, 2022. 1, 2

[74] Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella,
Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong Huang,
Boxin Li, Chunyuan Li, Ce Liu, Mengchen Liu, Zicheng Liu,
Yumao Lu, Yu Shi, Lijuan Wang, Jianfeng Wang, Bin Xiao,
Zhen Xiao, Jianwei Yang, Michael Zeng, Luowei Zhou, and
Pengchuan Zhang. Florence: A new foundation model for
computer vision. CoRR, abs/2111.11432, 2021. 2

[75] Jeffrey M. Zacks, Barbara Tversky, and Gowri Iyer. Perceiv-
ing, remembering, and communicating structure in events.
Journal of experimental psychology: General, page 29, 2001.
3

[76] Yan Zeng, Xinsong Zhang, and Hang Li. Multi-grained vision
language pre-training: Aligning texts with visual concepts. In
ICML, pages 25994–26009. PMLR, 2022. 2

[77] Li Zhang, Tao Xiang, and Shaogang Gong. Learning a deep
embedding model for zero-shot learning. In CVPR, pages
3010–3019, 2017. 7

[78] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Tor-
ralba. Temporal relational reasoning in videos. In ECCV (1),
pages 831–846, 2018. 1, 2

[79] Yi Zhu, Yang Long, Yu Guan, Shawn D. Newsam, and Ling
Shao. Towards universal representation for unseen action
recognition. In CVPR, pages 9436–9445, 2018. 7

18698


