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Abstract

We present the pioneering Large Visual Motion
Model (LVMM), meticulously engineered to analyze the
intrinsic dynamics encapsulated within real-world imagery.
Our model, fortified with a wealth of prior knowledge
extracted from billions of image pairs, demonstrates
promising results in predicting a diverse spectrum of scene
dynamics. As a result, it can infuse any generic image with
authentic dynamic effects, enhancing its visual allure.

Project page: https://github.com/densechen/
LVMM .

1. Introduction
Recent progress in generative models [39], specifically

conditional diffusion models [11, 22], and large-scale mod-
els [39], have substantially enhanced our capability to rep-
resent complex and rich distributions. These models have
underscored the transformative potential of harnessing vast
data and intensive training [14], exhibiting unparalleled pro-
ficiency in comprehending and generating human-like text,
and creating visually rich and diverse images from textual
descriptions. This has facilitated a variety of previously
unachievable applications, such as text-conditioned gener-
ation of arbitrary, realistic image content [21]. The advent
of these models [5, 19, 24], propelled by the availability
of large-scale datasets [25] and advancements in training
methodologies [4, 20], has ignited interest in probing other
domains, including audio [38] and multimodal data [15].

In this paper, we present a novel Large Visual Motion
Model (LVMM), specifically designed to proficiently pre-
dict local motion embedded within a given scene, thereby
enhancing the dynamic appeal of a static image. The dy-
namism of the natural world is characterized by subtle
changes even in seemingly static landscapes, influenced by
various factors such as wind, water currents, and inherent
rhythms. When observing a still image, we can envisage
plausible motions that might have been occurring when the

(a) I0 (b) ẑ1,··· ,K (c) p̂1,··· ,K (d) X-t slices

(e) Capability to animate faces, generating natural and realistic smiles.

Figure 1. Beginning with a reference image I0 as depicted in
Fig. 1a, the Large Visual Motion Model (LVMM) estimates a
latent motion trajectory ẑ1,··· ,K as shown by the t-SNE plot in
Fig. 1b, utilizing the motion denoising model ϵθ . This trajectory
is subsequently processed by the Motion Decoder D, generating a
sequence of optical flows δ̂1,··· ,K (visualized in the left column of
Fig. 1c) and intention maps ω̂1,··· ,K (displayed in the right column
of Fig. 1c). Ultimately, the Neural Image Renderer R transforms
I0 into a series of novel images Î1,··· ,K , guided by optical flows
and intention maps. Fig 1d illustrates the resultant videos, employ-
ing space-time X-t slices across 300 frames (corresponding to the
scanline shown in Fig. 1a).

photograph was captured. This predictability is ingrained in
our human perception of real scenes, i.e., we can imagine a
distribution of natural motions conditioned on that image if
there could have been multiple possible motions. Given the
ease with which humans can envision these potential mo-
tions, an intriguing research question is to computationally
model this motion distribution with a large-scale model.

The proposed LVMM excels in associating salient vi-
sual and motion patterns, thereby accurately predicting lo-
cal motion trajectory, as shown in Fig. 1. It comprises two
components: the motion rendering model and the motion
diffusion model. The former extracts a latent motion vector
from the scene and reconstructs the target image. The latter
generates suitable motion trajectories from the given scene
and feeds them to the motion rendering model to produce
realistic dynamic effects.

Our primary contribution is the pioneering proposal and
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design of a large-scale model dedicated to visual motion,
the effectiveness of which has been empirically validated.

2. Overview
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(d) Train ϵθ .

Figure 2. Training phase. Modules denoted in gray or marked
with an asterisk (∗) in the upper right corner indicate that these
modules do not undergo parameter updates. Conversely, modules
highlighted in orange undergo parameter updates. The color of the
connecting lines directly corresponds to the color of the variables.

Given a single reference image I0, our goal is to synthe-
size a video sequence Î1,··· ,K of length K. This sequence is
designed to capture local dynamics such as the sway of veg-
etation or the flicker of candle flames under wind influence,
as well as human emotional expressions like joy, anger, sor-
row, and pleasure.

Our proposed framework consists of two components: a
motion rendering model (Sec. 3.1) and a motion diffusion
model (Sec. 3.2). The motion rendering model is a sophisti-
cated system comprising a neural image renderer R, a mo-
tion flow predictor P , and a motion encoder-decoder pair E
and D. The neural image renderer R transforms the refer-
ence image I0 into the target image Ik by utilizing the mo-
tion flow p predicted by P . A motion flow p is composed of
an optical flow δ and an intention map ω, which respectively
corresponds to low-frequency and high-frequency motion
dynamics. The motion encoder E maps p into a latent mo-
tion space, where even the most complex motion flows can
be represented by a motion vector z. The motion decoder D
then converts the motion vector back into the motion flow
space.

Through rigorous training, we discovered that the motion
vector z in the latent motion space demonstrates a higher
degree of regularity compared to motion flow space, as de-
picted in Fig. 1b. Intriguingly, the motion vector can en-
capsulate motion rules in two segments: those associated

with visual features v (visual segments) and those unre-
lated u (motion segments). By retaining the visual seg-
ments and replacing the motion segments with those from
different scenes, we can achieve cross-scene motion trans-
fer (Para. 3.2.1).

Exploiting this property, the motion diffusion model can
concentrate on learning motion segments u that are unre-
lated to visual features, thereby significantly simplifying the
task. The motion denoising model ϵθ, can generate a latent
motion trajectory û1,··· ,K based on the provided image I0,
thus producing dynamic image effects (Sec. 3.3).

3. Large Visual Motion Model
3.1. Motion Rendering Model

3.1.1 Neural Image Renderer and Motion Flow Predic-
tor

Our approach commences with the deployment of two im-
ages, namely the reference image I0 (Fig. 3a) and the driv-
ing image Ik (Fig. 3b). The concurrent training of the mo-
tion flow predictor P and the neural image renderer R is the
initial step. The aim is to steer the motion portrayed by the
motion flow such that the image Îk rendered from I0 closely
mirrors the actual driving image Ik. The training pipeline
is illustrated in Fig. 2a. This process can be mathematically
expressed as:

argmin
R,P

E[∥ Ik −R(I0|P(I0, Ik))︸ ︷︷ ︸
Îk

∥22] (1)

Design of Motion Flow Predictor P Our design incorpo-
rates a network architecture akin to that proposed by Siaro-
hin et al. [26]. We introduce two key modifications to en-
hance the estimation of a wide range of motion scenarios
across large-scale datasets.

Initially, the local similarity of optical flow can result in a
loss of generalization capability across different scenarios if
P is directly instructed to predict a motion flow p in a pixel-
wise manner. To avoid this, we downsample I0 and Ik by a
factor of 0.25 prior to feeding them to P , as follows:

p := P(I ′0, I
′
k) (2)

where I ′0, I
′
k ∈ RH

4 ×W
4 are the downsampled images. This

approach still produces satisfactory results, while signifi-
cantly reducing the computational overhead of the motion
flow predictor.

Secondly, the motion flow predictor P tends to assign an
optical flow δ with a non-negligible value to most station-
ary points in the background, as shown in the left column
of Fig. 1c. This tendency severely hinders the model’s abil-
ity to capture subtle local movements, as there will be a
large number of relatively stationary regions in image pair
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(a) I0 (b) Ik (c) R(I0|δx, δy) (d) F(I0|δx, δy , ω) (e) R(I0|δx, δy , ω) (f) R(I0|p̂k) (g) R∗(I0|p̂k).

Figure 3. Ablation study of the motion accretion model. For a detailed explanation, please refer to Sec. 4.4.

⟨I0, Ik⟩. Specifically, during backpropagation, these rela-
tively stationary regions contribute a large amount of gra-
dient that is not practically meaningful, preventing P from
learning more detailed local motion information, as shown
in Fig. 3c. To address this issue, we predict an intention
map ω ∈ RH

4 ×W
4 to represent the motion intention of each

region along with optical flow δ. When ω approaches zero,
it indicates that the current region tends to be stationary,
and its gradient will be reduced by ω during backpropaga-
tion, thereby avoiding gradient pollution. As shown in the
right column of Fig. 1c, the predicted intention map indi-
cates many high-frequency information, such as the con-
tour of the object, while the optical flow represents more
low-frequency information, such as the motion trend of the
main body.

In summary, the motion flow p ∈ R3×H
4 ×W

4 can be
viewed as composed of two parts: the optical flow δ ∈
R2×H

4 ×W
4 along the x and y dimensions, respectively, and

an intention map ω ∈ RH
4 ×W

4 that represents the motion
tendency at each location.

Design of Neural Image Renderer R We denote our
neural image renderer as R. The initial step in the process
involves the construction of a multi-scale feature pyramid,
FI0 , for the image I0. Following this, a warp function F
is applied to each feature map within FI0 , leading to the
generation of a warped feature pyramid, F ′

I0
:

F ′
I0 = F(FI0 , δ

′)⊙ ω′ (3)

In the above equation, δ′, ω′ represent the interpolated op-
tical flow and the intention map respectively. These com-
ponents are specifically designed to align with the spatial
configuration of the feature in FI0 across multiple scales.
⊙ denotes an element-wise multiplication operation. In the
final phase, R generates an estimated driving image, Îk,
which is based on the warped feature pyramid F ′

I0
, rather

than FI0 .
The direct application of the motion flow to the feature

pyramid FI0 offers several benefits. Primarily, it signifi-
cantly reduces the likelihood of image distortion and degra-
dation that could potentially occur when the motion flow is
applied within the pixel space (Fig. 3d). Furthermore, the

neural image renderer can leverage the prior knowledge en-
capsulated within large-scale data to compensate for a vari-
ety of missing features, as depicted in Fig. 3e. Lastly, it can
generate more meaningful gradients across different scales,
thereby augmenting the learning capability of the motion
flow predictor.

3.1.2 Motion Variational Autoencoder (VAE)

In a formalized manner, our objective is to train a Motion
Variational Autoencoder (VAE) that minimizes the error as
defined in the equation below:

argmin
E,D

E[∥ pk −D ◦ E(pk) ∥22]︸ ︷︷ ︸
motion flow regularization

+E[∥ Ik − Îk ∥22]︸ ︷︷ ︸
pixel regularization

(4)

where, pk = P∗(I0, Ik), Îk = R∗(I0|D ◦ E(p)). ∗ denotes
that the model parameters are fixed at this stage. The train-
ing pipeline is depicted in Fig. 2b.

Eq. 4 comprises two constraints: motion flow regular-
ization and pixel regularization. The loss value of the for-
mer, also referred to as the reconstruction error of the VAE
network, ensures optimal accuracy in the encoding and de-
coding process. However, an exclusive emphasis on motion
flow regularization can lead to model collapse. Specifically,
motion flow does not possess a unique deterministic solu-
tion, implying that the motion flow between I0 and Ik is
not unique and can accommodate multiple plausible solu-
tions. Highly similar scenes may yield significantly differ-
ent predicted motion flows. Furthermore, as discussed in
Para. 3.1.1, P may generate a plethora of irrelevant mo-
tion features for points that are essentially stationary. Mo-
tion flow regularization necessitates the motion decoder D
to accurately reproduce the predicted motion flow, which
deviates from our primary objective. Our goal is to ensure
that the image Îk rendered by the neural image renderer
closely resembles Ik. The introduction of pixel regulariza-
tion, which directly imposes constraints on Îk, effectively
mitigates this issue, as demonstrated in Fig. 3f.
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3.1.3 Fine-tuning Neural Image Renderer (Optional)

To further alleviate the inherent reconstruction error in the
Variational Autoencoder (VAE), we propose an optional
step of fine-tuning the Neural Image Renderer. The train-
ing pipeline is illustrated in Fig. 2c. This is accomplished
by minimizing the following objective function:

argmin
R

E[∥ Ik −R(I0|D∗ ◦ E∗ ◦ P∗(I0, Ik)) ∥22] (5)

Based on our empirical observations, this fine-tuning step
might not be essential for scenarios with lower complexity.
Nevertheless, for scenes rich in local motion details, such as
those influenced by facial expressions, this additional fine-
tuning process can significantly improve the quality of the
reconstructed details, as demonstrated in Fig. 3g.

3.2. Motion Diffusion Model

Conceptually, we could train a motion diffusion model to
directly capture the distribution of motion flow p, as p sym-
bolizes the motion within the scene. However, we observe
that when two images exhibit no motion (i.e., I0 = Ik), pk is
significantly non-zero and fluctuates with different I0. This
implies that the predicted motion flow p not only encapsu-
lates motion information but also integrates visual features.

Although the amalgamation of motion information and
visual features might not present a substantial problem
on small-scale data, it considerably impairs the diffusion
model’s capacity to exploit the benefits of large-scale data.
This is attributed to the fact that when training on large-
scale data, the surplus visual features obstruct the model
from abstracting a unified motion law. Conversely, on a
small-scale dataset, the model is entirely capable of memo-
rizing all the information.

3.2.1 Decomposition of the Neural Motion Vector

The challenge of disentangling motion information from vi-
sual features in the motion flow space prompts us to investi-
gate potential solutions within the latent motion space. We
propose a hypothesis, devise a solution based on this hy-
pothesis, and subsequently verify the hypothesis through
rigorous experimentation.

Hypothesis We propose that the neural motion vector
zk = E ◦ P(I0, Ik) can be decomposed into zk =
uk + vk, where uk and vk denote the motion-related and
visual-related components, respectively. For any given pair
⟨I0, Ik⟩, our objective is to independently compute the com-
ponents uk and vk, which could be advantageous for subse-
quent applications.

Golden leaf
Brown leaf
Avocado

(a) t-SNE of z0,··· ,K .

Golden leaf
Brown leaf
Avocado

(b) t-SNE of {v0, · · · , vK + u′
K}.

(c) Golden leaf (source motion z′0,··· ,K ).

(d) Brown leaf (driven by z′0,··· ,K ).

(e) Avocado (driven by z′0,··· ,K ).

(f) Avocado (driven by {v0, v1 + u′
1, · · · , vK + u′

K}).

Figure 4. Cross-Scene Motion Transfer (For optimal understand-
ing, we recommend viewing the video provided on our homepage).

Solution We observe that for ⟨I0, I0⟩, z0 = u0 + v0. In
this scenario, the component u0 is absent, as there is no mo-
tion information for an image concerning itself. Therefore,
we deduce that v0 = z0. Moreover, we find that for a fixed
I0 and any Ik, as I0 remains constant, we can approximate
vk using v0 (since we are estimating local minor move-
ments, the visual feature disparity between Ik and I0 is not
significant). Consequently, we can compute uk = zk − v0.
In summary, we derive the following system of equations: zk = P(I0, Ik)

vk = z0
uk = zk − vk

(6)

Validation To validate our proposed hypothesis, we care-
fully constructed three distinct scenarios using computer
simulation. Each scenario involves different objects:
Golden leaf, Brown leaf, and Avocado, all of which follow
identical motion trajectories. Notably, the Golden leaf and
Brown leaf share the same geometric shapes but differ in
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their color textures. The hypothesis suggests that the neu-
ral motion vector z can be effectively decomposed into two
components: the motion-related component u (motion seg-
ment) and the visual-related component v (visual segment).
We assign the latent motion vector of the Golden leaf as
the source motion, and all variables related to it are marked
with a prime symbol in the upper right corner. Its actual
motion process is demonstrated in Fig. 4c1.

Initially, we present the latent motion trajectories under
the three scenarios in the form of a t-SNE plot, as depicted
in Fig. 4a. It is evident from the figure that these three tra-
jectories do not overlap. More specifically, we observe that
despite the Golden leaf and Brown leaf differing merely in
their texture maps, there is a slight difference between their
latent motion trajectories. The latent motion trajectory of
the Avocado significantly deviates from the other two. If we
attempt to directly drive the Brown leaf and Avocado using
z′1,··· ,K , the Brown leaf can still achieve a relatively good
animation effect (Fig. 4d). However, the Avocado will ex-
hibit noticeable deformation in the central core area, mak-
ing it appear shriveled and not plump (Fig. 4e). The up-
per pulp area also exhibits distortion and deformation. This
strongly suggests that the latent motion vector z encapsu-
lates not only motion information but also visual features.

Then, we calculate the visual component v0,K for each
scenario. After that, we use Eq. 6 to replace the visual com-
ponent u′

k in z′0,··· ,K , which results in a new latent mo-
tion trajectory, {v0, v1 + u′

1, · · · , vK + u′
K}. In Fig. 4b,

we illustrate the t-SNE graph of these new three trajecto-
ries. When compared with the trajectory of the Golden leaf,
they show notable consistency, particularly for the Avocado.
Afterwards, we try to animate the Avocado scenario using
{v0, v1 + u′

1, · · · , vK + u′
K} (See Fig. 4f). It’s clear that

the core of the avocado remains full throughout the motion
process, and the avocado as a whole doesn’t experience any
illogical deformation. This strongly indicates that our pro-
posed method can effectively separate visual features and
motion information.

3.2.2 Background on Diffusion Models

The foundation of our proposed motion diffusion model
is built upon the denoising diffusion probabilistic models
(DDPM) [11, 28, 31].

The forward process in DDPM generates a Markov
chain x1, . . . ,xT by progressively incorporating Gaussian
noise into x0, a sample drawn from the data distribution.
This process follows a variance schedule β1, . . . , βT , as de-
picted below:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) , (7)

1We strongly recommend observing the motion process through the
video provided on our homepage

In this equation, the variances βt are kept constant. When
βt is minimal, the posterior q(st−1|xt) can be precisely
approximated by a diagonal Gaussian [18, 28]. Moreover,
if the length of the chain T is sufficiently large, xT can
be closely approximated by a standard Gaussian N (0, I).
These insights suggest that the actual posterior q(xt−1|xt)
can be estimated by pθ(xt−1|xt), defined as follows:

pθ(xt−1|xt) = N (xt−1;µθ(xt), σ
2
t I) , (8)

where the variances σt are also constants.

The Reverse Procedure of DDPM The sampling pro-
cess, also referred to as the reverse procedure of Denois-
ing Diffusion Probabilistic Models (DDPM), is initiated
by generating samples x0 ∼ pθ(x0) from Gaussian noise
xT ∼ N (0, I). This is followed by a progressive reduction
of noise through a Markov chain of xT−1,xT−2, . . . ,x0

utilizing the learned pθ(xt−1|xt).
To train pθ(xt−1|xt), Gaussian noise ϵ is added to x0 to

generate samples xt ∼ q(xt|x0). Subsequently, a model ϵθ
is trained to predict ϵ using the mean-squared error loss as
follows:

argmin
ϵθ

Et∼U(1,T ),x0∼q(x0),ϵ∼N (0,I)[||ϵ− ϵθ(xt, t)||2] , (9)

Here, the time step t is uniformly sampled from
{1, . . . , T}. The µθ(xt) in Eq. 8 can be derived from
ϵθ(xt, t) to model pθ(xt−1|xt) [11].

The denoising model ϵθ is typically implemented via a
time-conditioned U-Net [23] with residual blocks [9] and
self-attention layers [33]. The time step t is conveyed to ϵθ
by the sinusoidal position embedding [33]. For conditional
generation, i.e., sampling x0 ∼ pθ(x0|y), a y-conditioned
model ϵθ(xt, t, y) can be learned [18, 22].

3.2.3 Motion Diffusion Model

We commence by encoding the input video clips I0,··· ,K
into z0,··· ,K using a proficiently trained motion render-
ing model. As discussed in Para. 3.2.1, directly setting
x0 = cat[z0, · · · , zK ] as the training target for the motion
diffusion model would necessitate the simultaneous memo-
rization of the visual segment and motion segment, thereby
complicating the training process. We discovered that using
vk as supplementary information and concatenating it with
zk for input while still directly predicting zk yields superior
results compared to directly predicting the motion compo-
nent by setting x0 = cat[u0, · · · , uK ]. Concurrently, other
additional information is converted into the condition vector
y via a feature encoder, such as CLIP [19] or ImageBind [8].
In this scenario, we chose to employ ImageBind to encode
I0 and the optional text into y.

x0 is progressively transformed into a standard Gaussian
noise volume n ∼ N (0, I) by integrating Gaussian noise
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via the DDPM forward process. Conditioned on y, the de-
noising model ϵθ(xt, t, y) is trained to predict the added
noise ϵ in xt based on a conditional 3D U-Net [7] with the
subsequent loss:

argmin
ϵθ

Et∼U(1,T ),x0∼q(z1,··· ,K),ϵ∼N (0,I)[||ϵ− ϵθ(xt, t, y)||2] ,

(10)
where the time step t is uniformly sampled from

{1, . . . , T}. ϵθ is further employed in the DDPM reverse
sampling process to output x̂0 = cat[ẑ0, · · · , ẑ1]. The train-
ing pipeline is depicted in Fig. 2d.

3.3. LVMM Inference
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Figure 5. Inference pipeline. Starting with a given reference image
I0, a series of video frames Î1,··· ,K is ultimately rendered through
neural image renderer R.

As demonstrated in Fig. 5, given an image I0, we ini-
tially compute the corresponding latent motion z0 := E ◦
P(I0, I0) and condition y, which subsequently produces
v0 = z0 and vk = v0 from Eq. 6. Conditioned on y, a
volume of randomly sampled Gaussian noise n is progres-
sively denoised by ϵθ through the DDPM reverse sampling
process to generate the latent motion sequence ẑ1,··· ,K .
Following this, a video clip Î1,··· ,K can be rendered via
Îk = R(I0|D(ẑk)). It is important to note that the optical
flow predictor P and motion encoder E are only employed
once to compute z0, and are not used in subsequent steps.

4. Experiments
4.1. Pretraining of Large Visual Motion Model

We have successfully trained two high-performing pre-
trained models, namely “LVMM-General” and “LVMM-
Facial”, on the WebVid10M [2] and CelebV-HD [40]
datasets respectively. The experiments were deployed on 32
A100-80GB GPUs, and to ensure the stability of the train-
ing, we utilized 32-bit floating-point numbers.

Specifically, the “LVMM-General” model was initially
trained on the WebVid10M dataset. We dedicated approxi-
mately one week each to complete Phase- 2a and Phase- 2b
of the training. Given the presence of watermarks in the
WebVid10M data, we randomly selected a subset of data
from the HDVILA-100M [37] dataset for Phase- 2c train-
ing to eliminate this prior in the Neural Image Renderer R.

This process took roughly 12 hours. Before the training of
the notion denoising model, we precomputed the required
training data, i.e., the latent motion trajectories z0,··· ,K . We
utilized 128 V100-32GB GPUs and spent over a week pre-
processing the data. Ultimately, it took us two weeks to
complete Phase- 2d training.

To enhance the LVMM’s capability of modeling facial
motion features, we retrained the “LVMM-General” param-
eters on the CelebV-HD facial dataset. Specifically, we
spent approximately two weeks completing all computa-
tions and training, including data processing, to obtain the
“LVMM-Facial” model.

For more detailed information on the experimental setup,
model parameters, computational efficiency, etc., please re-
fer to the supplementary materials.

4.2. Quantitative Evaluation

In this section, we validate two aspects through rele-
vant evaluation metrics: a) the superiority of the LVMM
model architecture, and b) the significant performance gain
brought by large-scale data training.

Dataset. We conducted experiments primarily on three
specific task datasets, namely MUG [1], MHAD [6], and
NATOPS [30]. The MUG Facial Expression Dataset com-
prises 1,009 videos featuring 52 subjects, each exhibiting
one of seven distinct expressions: anger, disgust, fear, hap-
piness, neutral, sadness, and surprise. The MHAD Human
Action Dataset includes 861 videos of 27 actions performed
by 8 subjects, covering a wide range of human movements,
such as sports actions, hand gestures, daily activities, and
training exercises. The NATOPS Aircraft Handling Signal
Dataset consists of 9,600 videos of 20 subjects performing
24 body-and-hand gestures used for communication with
U.S. Navy pilots.

Baseline. We benchmark LVMM against four competitive
baseline models, namely the GAN-based I2V model ImaG-
INator [35], video diffusion models VDM [12], a variant
of image latent diffusion models LDM [36], and the latent
flow diffusion models LFDM. We maintain the same ex-
perimental configuration as in LFDM for a fair comparison.
For sampling, we employ a 1000-step DDPM for LDM and
LFDM. Given the slow DDPM sampling in the large latent
space of VDM (40 × 64 × 64 × 3), we utilize a 200-step
DDIM [29] to expedite the sampling process. The training
image resolution for LVMM is 512 × 512, and the gener-
ated latent motion trajectory is 40 × 16 × 16 × 4. We use
a 250-step DDIM sampling strategy for LVMM, and any
potential additional text conditions will be encoded through
ImageBind and concatenated with the features of I0. In the
experiments, we thoroughly trained each model on the cor-
responding dataset to ensure convergence.
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I2V-GenXL

Gen-2

LVMM

𝑰𝟎

(a) Samples generated through training on the SHM dataset.

I2V-GenXL

Gen-2

LVMM

𝑰𝟎

(b) Samples generated through training on the FMM dataset.

Figure 6. Qualitative comparison between I2V-GenXL and Gen-2. In the lower left corner of Fig. 6a and Fig. 6b, we have plotted the
similarity of CLIP features between each frame in the video sequence generated by each method and the given reference image I0. This
clearly demonstrates that LVMM is capable of stably generating video sequences highly relevant to the given content.

Evaluation Metrics Consistent with preceding research
[10,12,13,27], we utilize the Fréchet Video Distance (FVD)
[32] to evaluate the visual quality, temporal coherence, and
sample diversity of videos synthesized by various meth-
ods. To quantify the extent to which a synthesized video
aligns with the class condition y (condition accuracy) and
the provided image I0 (subject relevance), we also adapt
two FVD variants, as proposed in [3]: class conditional
FVD (cFVD) and subject conditional FVD (sFVD). Both
cFVD and sFVD calculate the distance between the feature
distributions of real and synthesized videos under identical
class conditions y or subject images I0, respectively. We
initially compute the cFVD and sFVD for each condition y
and image I0 and subsequently report their mean and vari-
ance as the final results.

Quantitative Results Table 1 presents quantitative com-
parisons between our method and the baselines on our test
set of unseen video clips. As we maintain the same experi-
mental settings as LFDM, we directly use the data from that

paper in the table. In our experimental setup, to ensure an
accurate estimation of the feature distributions, we generate
10,000 videos for LVMM under consideration to compute
our statistics. The data in the table demonstrates that even
when training LVMM directly from scratch on the rele-
vant dataset, our method can achieve superior results, which
fully illustrates the superiority of the LVMM structure de-
sign. Moreover, the model obtained by fine-tuning based on
”LVMM-Facial” significantly outperforms previous single-
image animation baselines in terms of both image and video
synthesis quality. This suggests that the videos generated
with the assistance of the pre-trained model are more realis-
tic and temporally coherent. Visual comparison results can
be found in the supplementary material.

4.3. Qualitative Visualization

In this section, we aim to further elucidate the profi-
ciency of the Local Visual Motion Model (LVMM) in de-
ducing local motion from visual features. Despite the ex-
tensive pre-training of LVMM on large-scale datasets, the
existing datasets, be it WebVid10M or CelebV-HD, do not
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Model MUG MHAD NATOPS
FVD↓ cFVD↓ sFVD↓ FVD↓ cFVD↓ sFVD↓ FVD↓ cFVD↓ sFVD↓

ImaGINator [35] 170.73 257.46±62.88 319.37±95.23 889.48 1406.56±260.70 1175.74±327.99 721.17 1122.13±150.74 1042.69±416.16
VDM [12] 108.02 182.90±69.56 213.59±97.70 295.55 531.20±104.25 398.09±121.16 169.61 410.71±105.97 350.59±125.03
LDM [22] 123.88 196.49±66.99 236.26±76.08 280.26 515.29±125.70 427.03±112.31 251.72 506.40±125.08 491.37±231.85
LFDM [17] 27.57 77.86±20.27 108.36±39.60 152.48 339.63±52.88 242.61±28.50 160.84 376.14±106.13 324.45±116.21
LVMM † 23.47 70.32±19.45 102.78±38.45 143.67 315.72±45.34 235.89±23.40 157.92 365.78±104.25 305.67±113.89
LVMM ‡ 15.34 54.63±16.13 84.23±27.12 124.56 275.89±34.21 204.75±19.76 144.46 305.12±99.53 277.78±105.07

Table 1. Quantitative comparison. “†” denotes training model from scratch, “‡” signifies fine-tuning the “LVMM-Facial” weights.

offer scenes with distinct motion patterns, thereby imped-
ing the training of high-caliber model parameters. As a re-
sult, models trained on these datasets merely serve as pre-
training parameters and lack direct applicability.

To rectify the issue of training data, we strive to develop
new datasets encapsulating precise and distinct motion in-
formation apt for optical flow estimation. We have devised
the Simple Harmonic Motion dataset (SHM), targeting the
omnipresent simple harmonic motion in nature, and the Fa-
cial Muscle Movements dataset (FMM), concentrating on
muscle motion during facial expression alterations. The
SHM encompasses numerous close-up, high-definition im-
ages of flora swaying in the wind, with objects persistently
visible throughout the motion, thereby facilitating superior
optical flow computation. The dataset ultimately includes
approximately 1500 videos ranging from a few seconds to
several minutes. Conversely, the FMM comprises high-
definition short videos featuring frontal human portraits.
Apart from a rich assortment of facial expressions, all other
parts of the videos, including the background, remain as
static as possible. This dataset eventually includes video
clips of approximately 100 distinct individuals. It is worth
noting that scenes with severe appearance alterations during
motion are omitted from these two datasets. Supplementary
material provides additional information.

Our work is primarily juxtaposed with other large-
scale data-trained video generation models, namely I2V-
GenXL [16, 34] and Gen-2. I2V-GenXL is currently the
sole publicly available video generation model, for which
we utilized the official project code 2 to generate videos. For
Gen-2, we employed their provided API service 3 for video
generation. Since both models utilize undisclosed training
data and other implementation details remain unknown, we
solely provide a visual comparison of the videos generated
by different methods herein.

We fine-tuned “LVMM-General” and “LVMM-Facial”
on SHM and FMM for approximately one week, respec-
tively, as depicted in Fig. 6a and Fig. 6b. As can be dis-
cerned, compared to directly predicting video streams, our
video generation approach by predicting latent motion tra-
jectory can more accurately adhere to the given image con-

2https://modelscope.cn/models/damo/Image-to-Video
3https://research.runwayml.com/gen2

tent and generate more detailed and controllable motion
processes, thereby fully demonstrating the superiority of
our algorithm.

4.4. Ablation Study

We visually demonstrate the role of each component in
the Motion Rendering Model, primarily corroborating the
viewpoints discussed in Section 3.1. Given the input refer-
ence image I0 (Fig. 3a), we aim for the Neural Image Ren-
derer R to render some features not visible in I0, such as the
clear teeth shown in Fig. 3b. If we attempt to predict only
the optical flow δx,y , we find that this results in a notice-
able image blur (Fig. 3c). If we predict the intention map
ω but directly use the warp function F for image rendering,
this can generate some motion effects on the input image
but fails to accomplish complex motion information, such
as opening the subject’s mouth (Fig. 3d). Our final result is
shown in Fig. 3e. With rendering based on the neural image
renderer, we can achieve more complex facial feature trans-
formations, such as opening the mouth or closing the eyes.
Our Motion Encoder and Decoder structure can compress
the optical flow into a latent motion vector with impercepti-
ble errors (Fig. 3f). By further fine-tuning the Neural Image
Renderer R (based on the reconstructed optical flow p̂), we
can enhance our image rendering capabilities. As shown in
Fig. 3g, the teeth features in the subject’s lip area become
noticeably clearer (note: these teeth are not visible in the
input image I0). This effectively demonstrates the neces-
sity of each component within the LVMM architecture. The
samples are sourced from the CelebV-HQ dataset [41].

5. Discussion and Conclusion

Limitations Although a generalized Motion Diffusion
Model has been trained, it is yet incapable of directly pro-
ducing high-quality motion trajectories encompassing arbi-
trary motion forms in a zero-shot manner.

Conclusion We have introduced the Large Visual Mo-
tion Model (LVMM), empowering it to learn from large-
scale prior data. LVMM exhibits the capability of captur-
ing local motion trends across various real-world scenarios,
generating high-quality motion trajectories from provided
images, and rendering realistic dynamic effects.
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