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Figure 1. Fantastic applications of our proposed AnyDoor without any parameter tuning. Our model allows users to customize an image
by placing an object at specific locations, with optional shape controls (top row). It can be extended to handle multiple objects (middle
row) and also supports seamlessly editing the shape of the object or swapping objects within real scenes (bottom row).

Abstract

This work presents AnyDoor, a diffusion-based im-
age generator with the power to teleport target objects
to new scenes at user-specified locations with desired
shapes. Instead of tuning parameters for each object,
our model is trained only once and effortlessly general-
izes to diverse object-scene combinations at the inference
stage. Such a challenging zero-shot setting requires an
adequate characterization of a certain object. To this end,
we complement the commonly used identity feature with
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detail features, which are carefully designed to maintain
appearance details yet allow versatile local variations (e.g.,
lighting, orientation, posture, etc.), supporting the object in
favorably blending with different surroundings. We further
propose to borrow knowledge from video datasets, where
we can observe various forms (i.e., along the time axis) of
a single object, leading to stronger model generalizability
and robustness. Extensive experiments demonstrate the
superiority of our approach over existing alternatives as
well as its great potential in real-world applications, such
as virtual try-on, shape editing, and object swapping. Code
is released at github.com/ali-vilab/AnyDoor.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Image generation is flourishing with the booming advance-
ment of diffusion models [22, 37, 40, 41, 43, 62]. Humans
could generate favored images by giving text prompts,
scribbles, skeleton maps, or other conditions. The power
of these models also brings the potential for image editing.
For example, some works [5, 24, 63] learn to edit the
posture, styles, or content of an image via instructions.
Other works [53, 59] explore re-generating a local image
region with the guidance of text prompts.

In this paper, we investigate “object teleportation”,
which means accurately and seamlessly placing the target
object into the desired location of the scene image. Specif-
ically, we re-generate a box/mask-marked local region of a
scene image by taking the target object as the template. This
ability is a significant requirement in practical applications,
like image composition, effect-image rendering, poster-
making, virtual try-on, etc.

Although strongly in need, this topic is not well explored
by previous researchers. Paint-by-Example [56] and Ob-
jectstitch [47] take a target image as the template to edit
a specific region of the scene image, but they could not
generate ID (identity)-consistent contents, especially for
untrained categories. Customized synthesis methods [18,
27, 33, 34, 42] are able to conduct generations for the
new concepts but could not be specified for a location of
a given scene. Besides, most customization methods need
finetuning on multiple target images for nearly an hour,
which largely limits their practicability for real applications.

We address this challenge by proposing AnyDoor. Dif-
ferent from previous methods, AnyDoor is able to generate
ID-consistent compositions with high quality in zero-shot.
To achieve this, we represent the target object with identity-
and detail-related features, then composite them with the
interaction of the background scene. Specifically, we use
an ID extractor to produce discriminative ID tokens and
delicately design a frequency-aware detail extractor to get
detail maps as a supplement. We inject the ID tokens and
the detail maps into a pre-trained text-to-image diffusion
model as guidance to generate the desired composition.
To make the generated content more customizable, we
explore leveraging additional controls (e.g. user-drawn
masks) to indicate the shape/poses of the object. To
learn customized object generation with high diversities,
we collect image pairs for the same object from videos to
learn the appearance variations, and also leverage large-
scale statistic images to guarantee the scenario diversity.

Equipped with these techniques, AnyDoor demonstrates
extraordinary abilities for zero-shot customization. As in
Fig. 1, AnyDoor shows promising performance for the
synthesis of the new concept with shape controls (top row).
Besides, since AnyDoor owns the high controllability for
editing the specific local regions of the scene image, it is

easy to be extended to multi-subject composition (middle
row), which is a hot and challenging topic explored by many
customized generation methods [3, 19, 27, 34]. Moreover,
the high generation fidelity and quality of AnyDoor unlock
the possibilities for more fantastic applications like object
moving and swapping (bottom row). We hope that Any-
Door could serve as a foundation solution for various image
generation and editing tasks with image input, and act as the
basic ability to energize more fancy applications.

2. Related Work
Local image editing. Most of the previous works focus
on editing local image regions with text guidance. Blended
Diffusion [2] conducts multi-step blending in the masked
region to generate more harmonized outputs. Inpaint
Anything [59] involves SAM [26] and Stable Diffusion [41]
to replace any object in the source image with text described
target. Paint-by-Example [56] uses CLIP [39] image
encoder to convert the target image as an embedding for
guidance, thus painting a semantic consistency object on the
scene image. ObjectStitch [47] proposes a similar solution
with [56], which trains a content adaptor to align the
outputs of the CLIP image encoder to the text encoder to
guide the diffusion process. However, those methods could
only give coarse guidance for generation and often fail to
synthesize ID-consistent results for untrained new concepts.
Customized image generation. Customized or termed
subject-driven generation aims to generate images for spe-
cific objects given several target images and relevant text
prompts. Some works [9, 18, 42] fine-tune a “vocabulary”
to describe the target concepts. Cones [33] finds the
corresponding neurons for the referred object. Although
they could generate high-fidelity images, the user could not
specify the scenario and the location of the target object.
Besides, the time-consuming finetuning impedes them from
being used in large-scale applications. Recently, BLIP-
Diffusion [28] leverages BLIP-2 [29] to align images and
text for zero-shot customization. Fastcomposer [52] binds
the image representation with certain text embeddings to do
multiple-person generation. Some concurrent works [30,
58, 61] also explore using one reference image to customize
the generation results but fail to keep the fine details.
Image harmonization. A classical image composition
pipeline is cutting the foreground object and pasting it on
the given background. Image harmonization [7, 14, 20, 48]
could further adjust the pasted region for more reasonable
lighting and color. DCCF [55] designs pyramid filters to
better harmonize the foreground. CDTNet [15] leverages
dual transformers. HDNet [8] proposes a hierarchical
structure to consider both global and local consistency and
reaches the state-of-the-art. Nevertheless, these methods
only explore the low-level changes, editing the structure,
view, and pose of the foreground objects, or generating the
shadows and reflections are not taken into consideration.
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Figure 2. Overall pipeline of AnyDoor, which is designed to teleport an object to a scene with the desired location and shape. A
segmentation module first removes the object background, followed by an ID extractor to obtain its identity information (Sec. 3.1). We then
apply high-pass filters to the “clean” object, stitch the resulting high-frequency map (HF-Map) with the scene at the desired location, and
concatenate the collage and shape mask. A detail extractor is designed to complement the ID extractor with appearance details (Sec. 3.2).
Finally, the ID tokens and detail maps are injected into a pre-trained diffusion model to produce the final synthesis, where the target object
favorably blends with its surroundings (Sec. 3.3). Flames and snowflakes refer to learnable and frozen parameters, respectively.

3. Method

The pipeline of AnyDoor is demonstrated in Fig. 2. Given
the target object, the scene, and the location, AnyDoor
generates the object-scene composition with high fidelity
and diversity. The core idea is representing the object
with identity- and detail-related features, and recomposing
them in the given scene by injecting those features into
a pre-trained diffusion model. To learn the appearance
changes, we leverage large-scale data including both videos
and images for training.

3.1. Identity Feature Extraction

We leverage the pre-trained visual encoders to extract
the identity information of the target object. Previous
works [47, 56] choose CLIP [39] image encoder to embed
the target object. However, as CLIP is trained with text-
image pairs with coarse descriptions, it could only embed
semantic-level information but struggles to give discrimi-
native representations that preserve the object identity. To
overcome this challenge, we make the following updates.
Background removal. Before feeding the target image
into the ID extractor, we remove the background with a
segmentor and align the object to the image center. The
segmentor model could be either automatic [26, 38] or
interactive [11, 12, 32]. This operation has proven helpful
in extracting more neat and discriminative features.
Self-supervised representation. In this work, we find the
self-supervised models show a strong ability to preserve
more discriminative features. Pretrained on large-scale
datasets, self-supervised models are naturally equipped
with the instance-retrieval ability and could project the
object into an augmentation-invariant feature space. We

choose the currently strongest self-supervised model DI-
NOv2 [36] as the backbone of our ID extractor, which
encodes image as a global token T1×1536

g , and patch tokens
T256×1536

p . We concatenate the two types of tokens to
preserve more information. We find that using a single
linear layer as a projector could align these tokens to the
embedding space of the pre-trained text-to-image UNet.
The projected tokens T257×1024

ID are noted as our ID tokens.

3.2. Detail Feature Extraction

Considering that the ID tokens are represented in low
resolution (16× 16) , it would be hard for them to maintain
the low-level details adequately. Thus, we need extra
guidance for the detail generation in complementary.
Collage representation. Inspired by [6, 44], using collage
as controls could provide strong priors, we attempt to stitch
the “background removed object” to the given location
of the scene image. With this collage, we observe a
significant improvement in the generation fidelity, but the
generated results are too similar to the given target which
lacks diversity. Facing this problem, we explore setting an
information bottleneck to prevent the collage from giving
too many appearance constraints. Specifically, we design
a high-frequency map to represent the object, which could
maintain the fine details yet allow versatile local variants
like the gesture, lighting, orientation, etc.
High-frequancy map. We extract the high-frequency map
of the target object with

Ih = (Igray ⊗Kh + Igray ⊗Kv)⊙ I⊙Merode, (1)

where Kh,Kv denote horizontal and vertical Sobel [23]
kernels, acting as high-pass filters. ⊗,⊙ refer to convo-
lution and Hadamard product. Given an Image I, we first
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Figure 3. Visualization of the focus region of ID extractor and
detail extractor. “Attention” refers to the attention map of the
ID extractor backbone (DINOv2 [36]), while “HF-Map” refers to
the high-frequency map used in the detail extractor. These two
modules focus on global and local information in complementary.

extract the high-frequency regions using these high-pass
filters, then extract the RGB colors using the Hadamard
product. We also add an eroded mask Merode to filter out
the information near the outer contour of the target object.

As visualized in Fig. 3, the tokens produced by DINOv2
focus more on the overall structure, leaving it hard to
encode the fine details like the logos of the backpack in the
first row. In contrast, the high-frequency map could help
take care of these details as a complementary.
Shape control. We use a shape mask to indicate the object’s
gestures. To simulate the user input, we downsample the
ground truth masks with different ratios and apply random
dilation/erosion to remove the details. To keep the ability
to tackle a single box input, we set a probability of 0.3 to
use the inner box region as the mask. During training, the
object counter would be aligned with the shape mask. Thus,
the users could control the target object’s shape by drawing
coarse shape masks during inference.

After getting the collage and the contour map, we con-
catenate them and feed them into the detail extractor. The
detail extractor is a ControlNet-style [62] UNet encoder,
which produces a series of detail maps with hierarchical
resolutions.

3.3. Feature Injection

After getting the ID tokens and detail maps, we inject them
into a pre-trained text-to-image diffusion model to guide the
generation. We pick Stable Diffusion [41], which projects
the images into latent space and conducts the probabilistic
sampling using a UNet. We note the pre-trained UNet as x̂θ,
it starts denoising from an initial latent noise ϵ ∼ U([0, 1])
and takes the text embedding c as the condition to generate
new image latent zt = αtx̂θ(ϵ, c) + σtϵ. The training
supervision is a mean square error loss as:

Ex,c,ϵ,t(∥x̂θ(αtx+ σtϵ, c)− x∥22). (2)

…

Frame i Mask i Frame j Mask j

Target Object Scene + Location Supervision

Figure 4. Data preparation pipeline for videos. Given a clip, we
first sample two frames and get the masks for the instances within
each frame. Then, we select an instance from one frame as the
target object and treat the same instance on the other frame as the
supervision (i.e., the desired model output).

Table 1. Statistics of datasets used for training. “Variation”
refers to whether an object enjoys local variations (e.g., lighting,
viewpoint, posture, etc.) within a data entry, while “quality”
particularly refers to image resolution.

Dataset Type # Samples Variation Quality

YouTubeVOS [54] Video 4,453 ✓ Low
YouTubeVIS [57] Video 2,883 ✓ Low

UVO [51] Video 10,337 ✓ Low
MOSE [17] Video 1,507 ✓ High
VIPSeg [35] Video 3,110 ✓ High
BURST [1] Video 1,493 ✓ Low

MVImgNet [60] Multi-view Image 104,261 ✓ High
VitonHD [13] Multi-view Image 11,647 ✓ High

FashionTryon [64] Multi-view Image 21,197 ✓ High

MSRA-10K [4] Single Image 10,000 ✗ High
DUT [49] Single Image 15,572 ✗ High

HFlickr [14] Single Image 4,833 ✗ High
LVIS [21] Single Image 118,287 ✗ High

SAM (subset) [26] Single Image 100,864 ✗ High

x is the ground-truth image latent, t is the diffusion
timestep, αt, σt are denoising hyperparameters.

In this work, we replace the text embedding c as our ID
tokens, which are injected into each UNet layer via cross-
attention. For the detail maps, we concatenate them with
UNet decoder features at each resolution. During training,
we freeze the pre-trained parameters of the UNet encoder to
preserve the priors and tune the UNet decoder to adapt it to
our new task.

3.4. Training Strategies

Image pair collection. The ideal training samples are
image pairs for “the same object in different scenes”,
which are not directly provided by existing datasets. As
alternatives, previous works [47, 56] leverage single images
and apply augmentations like rotation, flip, and elastic
transforms. However, these naive augmentations could not
well represent the realistic variants of the poses and views.

To deal with this problem, in this work, we utilize video
datasets to capture different frames containing the same
object. The data preparation pipeline is demonstrated in
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Figure 5. Qualitative comparison with reference-based image generation methods, including Stable Diffusion [41], IP-Adapter [58],
Paint-by-Example [56], and Graphit [16], where our AnyDoor better preserves the identity of the target object. Note that all approaches do
not fine-tune the model on the test samples.

Fig. 4, where we leverage video segmentation/tracking data
as examples. For a video, we pick two frames and take
the masks for the foreground object. Then, we remove the
background for one image and crop it around the mask as
the target object. This mask could be used as the mask
control after perturbation. For the other frame, we generate
the box and remove the box region to get the scene image,
and the unmasked image could serve as the training ground
truth. The full data used is listed in Tab. 1, which covers a
large variety of domains like nature scenes, virtual try-on,
saliency, and multi-view objects.

Adaptive timestep sampling. Although the video data
would be beneficial for learning the appearance variation,
the frame qualities are usually unsatisfactory due to the
low resolution or motion blur. In contrast, images could
provide high-quality details and versatile scenarios but lack
appearance changes. To take advantage of both video data
and image data, we develop adaptive timestep sampling to
make different modalities of data to benefit different stages
of denoising training. The original diffusion model [41]
evenly samples the timestep (T) for each training data.
However, it is observed that the initial denoising steps
mainly focus on generating the overall structure, the pose,
and the view, and the later steps cover the fine details
like the texture and colors. Thus, for the video data,
we increase the possibility by 50% of sampling early
denoising steps (500-1000) during training to better learn
the appearance changes. For images, we increase 50%
probabilities of the late steps (0-500) to learn how to cover
the fine details.

4. Experiments
4.1. Implementation Details
Hyperparameters. We choose Stable Diffusion V2.1 [41]
as the base generator. During training, we process the image
resolution to 512 × 512. We choose Adam [25] optimizer
with an initial learning rate of 1e−5. We train two versions
of models, the original version only takes the box to indicate
the location, and the plus version tasks shape masks. In this
paper, if not specified with a shape mask, the results are
produced by the original version.
Zoom-in strategy. During inference, given a scene image
and a location box, we expand the box into a square with an
amplifier ratio of 2.0. Then, we crop the square and resize
it to 512 × 512 as the input for our diffusion model. Thus,
we could deal with scene images with arbitrary aspect ratios
and boxes for extremely small or large areas.
Benchmarks. For quantitative results, we construct a
new benchmark with 30 new concepts provided by Dream-
Booth [42] for the target images. For the scene image, we
manually pick 80 images with boxes in COCO-Val [31].
Thus we generate 2,400 images for the object-scene com-
binations. We also make qualitative analysis on VitonHD-
test [13] to validate the performance for virtual try-on.
Evaluation metrics. On our constructed DreamBooth
dataset, we follow DreamBooth [42] to calculate the CLIP-
Score and DINO-Score, as these metrics could reflect the
similarity between the generated region and the target
object. In addition, we organize user studies with a group
of 15 annotators to rate the generated results from the
perspective of fidelity, quality, and diversity.
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Figure 6. Qualitative comparisons with existing alternatives for multi-subject composition, including DreamBooth [42], Custom
Diffusion [27], Cones [33], and Paint-by-Example [56], where our AnyDoor better preserves the object identity and harmoniously blends
into the surroundings without any parameter tuning.

4.2. Comparisons with Existing Alternatives

Reference-based methods. In Fig. 5, we present the vi-
sualization results compared with previous reference-based
methods. Paint-by-Example [56] and Graphit [16] support
the same input format as ours, and they take a target image
as input to edit a local region of a scene image without
parameter tuning. IP-Adapter [58] is a universal method
supporting image prompt, and we use its inpainting model
for comparison. We also compare Stable Diffusion [41],
which is a text-to-image model, and we use its inpainting
version and give detailed text descriptions as the condition
to conduct the generation for the text-described target.

Results show that previous reference-based methods
could only keep the semantic consistency with distinguish-
ing features like the dog face on the backpack, and coarse
granites of patterns like the color of the sloth toy. However,
as those new concepts are not included in the training
category, their generation results are far from ID-consistent.
In contrast, our AnyDoor shows promising performance for
zero-shot image customization with highly-faithful details.
Tuning-based methods. Customized generation is exten-
sively explored. Previous works [10, 18, 33, 42, 45] usually
fine-tune a subject-specific text inversion to present the
target object, thus making generations with arbitrary text
prompts. They could better preserve the fidelity compared
with previous reference-based methods, but have the fol-
lowing drawbacks: first, the fine-tuning usually requires 4-5

Table 2. User study on the comparison between our AnyDoor
and existing reference-based alternatives. “Quality”, “Fidelity”,
and “Diversity” measure synthesis quality, object identity preser-
vation, and object local variation (i.e., across four proposals),
respectively. Each metric is rated from 1 (worst) to 4 (best).

Quality (↑) Fidelity (↑) Diversity (↑)

Paint-by-Example [56] 2.71 2.10 3.04
Graphit [16] 2.65 2.11 2.84
AnyDoor (ours) 3.04 3.06 2.88

target images and takes nearly an hour; second, they could
not specify the background scene and target locations; third,
when it comes to multi-subject composition, the attributes
of different subjects often mix together.

In Fig. 6, we include tuning-based methods for com-
parisons and also use Paint-by-Example [56] as the rep-
resentative for previous reference-based methods. Results
show that Paint-by-Example [56] performs well for trained
categories like dog and cat (in row 3) but performs poorly
for new concepts (row 1-2). DreamBooth [42], Custom
Diffusion [27], and Cones [33] give better fidelity for new
concepts but still suffer from the problem of “multi-subject
confusion”. In contrast, AnyDoor owns the advantages
of both reference- and tuning-based methods, which could
generate high-fidelity results for mult-subject composition
without the need for parameter tuning.
User study. We organize a user study to compare Paint-
by-Example [56], Graphit [16], and our model. We let 15
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Target w/o DINO w/o HF-Map w/o ATS Full Model

Figure 7. Qualitative ablation studies on the core components
of AnyDoor. “HF-Map” stands for the high-frequency map in the
detail extractor, while “ATS” refers to adaptive timestep sampling.

annotators rate 30 groups of images. For each group, we
provide one target image and one scene image, and make
each of the three models generates four predictions. We
prepare detailed regulations and templates to rate the im-
ages for scores of 1 to 4 from three perspectives: “Fidelity”,
“quality”, and “diversity”. “Fidelity” measures the ability
of ID preserving, and “Quality” counts for whether the
generated image is harmonized without considering fidelity.
As we do not encourage “copy-paste” style generation, we
use “diversity” to measure the differences among the four
generated proposals. The user-study results are listed in
Tab. 2. It shows that our model owns obvious superiorities
for fidelity and quantity, especially for fidelity. However,
as [16, 56] only keeps the semantic consistency, but our
methods preserve the instance identity. They naturally have
a larger space for diversity. In this case, AnyDoor still gets
higher rates than [16] and competitive results with [56],
which verifies the effectiveness of our method.

4.3. Ablation Studies

We carry out extensive ablation studies to verify the ef-
fectiveness of our designs. We first validate the core
components, then we dive into the details of the ID extractor
and detail extractor to give an in-depth analysis.
Core components. As demonstrated in Fig. 7, given the
same target object, scene, and location, we analyze the gen-
erated results with different model designs. We demonstrate
the generation results of AnyDoor in the last column and
remove each core component individually to observe the
influences. We first change the backbone of our ID extractor
from the DINOv2 [36] to CLIP image encoder [39], which
is widely used in previous counterparts like [47, 56]. We
find the generated results lose the identity features, and
could only keep the semantic consistency. Then, we set
the collage region from the high-frequency map to an all-
zero map like the inpainting baselines [41, 62]. We find
that the fine details degenerate compared with our full
model (last column), like the logo of the bag (row 1), and
the eye shape of the toy sloth (row 2). It shows that our
frequency map effectively guides the generation of fine

VGG CLIPTarget DINOv2 DINOv2*

Figure 8. Qualitative analysis of using different backbones for
the ID extractor. “DINOv2*” refers to removing the background
of the target object with a frozen segmentation model before
feeding it into the DINOv2 model.

Table 3. Quantitative analysis of using different backbones for
the ID extractor. Here, “G” refers to the global token, “P” refers
to patch tokens, and “Seg” refers to removing the background of
the target object with a frozen segmentation model.

CLIP Score (↑) DINO Score (↑)

VGG 71.7 27.7
CLIP (G+P) 73.8 31.5
DINOv2 (G) 73.1 35.4
DINOv2 (G+P) 81.0 64.1
DINOv2 (G+P) + Seg 82.1 67.8

structural details. We also make ablation for our adaptive
timestep sampling (ATS) strategy. We replace ATS with an
even distribution sampler and find the results present better
diversity but are inferior for both image quality and fidelity.
ID extractor. We explore the key factors for designing the
ID extractor. In Fig. 8, we compare VGG [46], CLIP [39]
and DINOv2 [36] to extract the ID tokens. We conclude
that DINOv2 [36] shows a dominant superiority for keeping
the target identity. We also verify that it is significant to
filter out the background information for the target object,
and DINOv2 could extract cleaner and more discriminative
features. Quantitative results are listed in Tab. 3, which are
consistent with our visual analysis.
Detail extractor. We make multiple explorations for the
collaged image. The CLIP and DINO scores are reported
in Tab. 4, compared with non-collage, all these collaging
methods bring notable improvements. To make better
comparisons, we give visualization results in Fig. 9, which
shows comparisons for no collage, pasting of the original
target object, the noised inversion of the target object, the
shuffled patches, and our high-frequency map. We observe
a trade-off between fidelity and diversity. “Original image”
presents the highest fidelity for both the robot and the dog,
but the generated images seem like a copy-paste of the
target. “None” shows the best diversity for the poses of the
dog, but it lacks details like the badge of the dog and the
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Figure 9. Qualitative analysis of using different collages to
extract details. “None” means stitching the surroundings with an
all-zero map. “Origin”, “Noise”, “Shuffle”, and “HF-Map” refer
to the original image with no background, noised image, patch-
shuffled image, and the high-frequency map, respectively.

Table 4. Quantitative analysis of using different collages to
extract details. It is noteworthy that, even the “Original Image”
strategy best preserves the object identity, the object is with highly
limited variation (i.e., almost with the same form as the target) in
the synthesis. Hence, we pick HF-map as our standard setting.

Strategy CLIP Score (↑) DINO Score (↑)

None (i.e., all-zero map) 80.4 63.2
Original Image 82.2 68.8
Noise Image 81.6 68.1
Patch-shuffled Image 82.0 66.9
High-frequency Map 82.1 67.8

whole shape of the robots. Among those methods, the high-
frequency map shows a satisfactory trade-off, which keeps
the majority of the details but adjusts the dog and robot with
proper poses and views.

4.4. More Applications

Virtual try-on. As shown in Fig. 10, without task-specific
tuning, AnyDoor could give satisfactory performance for
virtual try-on on VitonHD-test [13] and real-world scenar-
ios for human with different sexes, ages, and races. Besides,
AnyDoor supports users to draw coarse contour maps to
control the style like tuck in or untuck (second row left) and
shows strong generalization abilities for real-life scenarios
with complex backgrounds.
Extensible controls. As demonstrated in Fig. 11, it is easy
to extend AnyDoor to realize more fantastic functions like
object moving, swapping, and reshaping. When taking a
pose skeleton map as an additional control, AnyDoor could
even serve as a strong baseline for human pose transfer.

The pipeline of object moving, swapping, and reshaping
incorporates an additional inpainting model [41] and an
interactive segmentation model [26]. We first get the mask

Figure 10. Performance of AnyDoor on virtual try-on on
VitonHD-test [13] and real-life scenarios. AnyDoor could pre-
serve the color, texture, and patterns of the target clothes and
customize the garment shape (bottom left) with mask control.

Object Moving Object Swapping Shape Editing

Human Pose Transfer

Figure 11. Demonstrations for more applications of AnyDoor,
such as object moving, object swapping, shape editing, and human
pose transfer. In row 2, the reference images and the novel poses
are presented on the left with the generated results on the right.

of the object by clicking. Then, we use the inpainting model
to fill the object’s original position according to the scene
background and apply the AnyDoor to re-generate it at the
new location with optional shape control.

In the second row of Fig. 11, when conducting human
pose transfer, we add an extra ControlNet-copy on AnyDoor
to control the human pose. Then, we train the model
with the same configuration of Disco [50], a state-of-the-
art human pose transfer method. The results are impressive
that AnyDoor keeps the identity well for both the human
faces and garments.

5. Conclusion
We present AnyDoor for object teleportation. The core idea
is to use a discriminative ID extractor and a frequency-
aware detail extractor to characterize the target object.
Trained on a large combination of video and image data,
we composite the object at the specific location of the scene
image with effective shape control. AnyDoor provides
a universal solution for general region-to-region mapping
tasks and could be profitable for various applications.
Limitations. AnyDoor shows impressive results for keep-
ing the object identification. However, it still struggles
with fine details like the small characters or logos. This
issue might be solved by collecting related training data,
enlarging the resolution, and training better VAE decoders.
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