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Abstract

How to effectively explore multi-scale representations of
rain streaks is important for image deraining. In contrast
to existing Transformer-based methods that depend mostly
on single-scale rain appearance, we develop an end-to-end
multi-scale Transformer that leverages the potentially use-
ful features in various scales to facilitate high-quality im-
age reconstruction. To better explore the common degra-
dation representations from spatially-varying rain streaks,
we incorporate intra-scale implicit neural representations
based on pixel coordinates with the degraded inputs in a
closed-loop design, enabling the learned features to facili-
tate rain removal and improve the robustness of the model
in complex scenarios. To ensure richer collaborative rep-
resentation from different scales, we embed a simple yet ef-
fective inter-scale bidirectional feedback operation into our
multi-scale Transformer by performing coarse-to-fine and
fine-to-coarse information communication. Extensive ex-
periments demonstrate that our approach, named as NeRD-
Rain, performs favorably against the state-of-the-art ones
on both synthetic and real-world benchmark datasets. The
source code and trained models are available at https:
//github.com/cschenxiang/NeRD-Rain.

1. Introduction
Recent years have witnessed significant progress in image
deraining due to the development of numerous deep con-
volutional neural networks (CNNs) [15, 22, 51, 60, 63].
However, as the basic operation in CNNs, the convolution
is spatially invariant and has limited receptive fields, which
cannot effectively model the spatially-variant property and
non-local structures of clear images [49, 62]. Moreover,
simply increasing the network depth to obtain larger recep-
tive fields does not always lead to better performance.

To alleviate this problem, several recent approaches uti-
lize Transformers to solve single image deraining [5, 8, 20,
55, 56, 62], since Transformers can model the non-local in-
formation for better image restoration. Although these ap-
proaches achieve better performance than most of the CNN-

∗Corresponding author.

INR

INR

(a) Coarse-to-fine (b) Multi-patch (c) Ours

Figure 1. Illustration of the proposed approach and the currently
existing multi-scale solutions. (a) coarse-to-fine scheme [22, 63];
(b) multi-patch scheme [61]; (c) our method. Compared to previ-
ous approaches, the method one integrates implicit neural repre-
sentations (INR) into our bidirectional multi-scale model to form
a closed-loop framework, which allows for better exploration of
multi-scale information and modeling of complex rain streaks.

based ones, they mostly explore feature representations at a
fixed image scale (i.e., a single-input single-output archi-
tecture), while ignoring potentially useful information from
other scales. As the rain effect decreases significantly at
coarser image scales, exploring the multi-scale representa-
tion would facilitate the rain removal.

To this end, several approaches introduce the coarse-to-
fine mechanism [12, 47] or multi-patch strategy [61] into
deep neural networks to exploit multi-scale rain features.
As shown in Figure 1, the decoder’s feature or derained im-
age is initially estimated at a coarse scale and then used as
the input at a finer scale for guidance. Although impres-
sive performance has been achieved, these methods are less
effective when handling complex and random rain streaks
because these rain streaks cannot be removed by down-
sampling operations and inaccurate estimation of a coarser
scale will result in suboptimal restoration performance at
finer scales. Despite the spatially-varying rain streaks ex-
hibit a variety of scale properties (e.g., size, shape, length,
and density), the degraded rainy images tend to share some
similar visual degradation characteristics (i.e., common rain
degradation representation) [52, 53, 56]. However, existing
methods do not effectively model the common degradation
as they usually rely on traditional representation forms that
are sensitive to the input variation rather than capturing un-
derlying implicit functions, which limits their performance
on complex scenarios. Thus, it is of great interest to learn
the underlying correlations among features to encode rain
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appearance information from spatially-varying rain streaks.
Furthermore, we note that most existing multi-scale ar-

chitectures [22, 26, 30, 47] utilize the features from coarser
scales to facilitate the feature estimation at finer scales.
However, if the features are not estimated correctly at
coarser scales, the errors would affect the feature estimation
at subsequent scales. Therefore, it is necessary to introduce
a feedback mechanism to solve this problem.

In this paper, we develop an effective bidirectional multi-
scale Transformer with implicit neural representations to
better explore multi-scale information and model complex
rain streaks. Considering that the rain effect varies at dif-
ferent image scales, we construct multiple unequal Trans-
former branches each for learning the scale-specific features
for image deraining. Motivated by the recent success of im-
plicit neural representations (INRs) that are able to encode
an image as a continuous function, we further incorporate
the INR between adjacent branches to learn common rain
degradation representations from diverse degraded inputs
so that the learned features are robust to complex and ran-
dom rain streaks. To facilitate representing rain appearance
at various scales, we employ two distinct coordinate-based
multi-layer perceptrons (MLPs) (i.e., one coarse and one
fine feature grid) in INR for adaptively fitting complex rain
characteristics. Furthermore, to improve the modeling ca-
pacity of the INR, we propose an intra-scale shared encoder
to form a closed-loop framework. Note that the above men-
tioned two types of representation (i.e., scale-specific and
common rain ones) are able to complement each other.

To better build the interactions among features of differ-
ent scales in a collaborative manner, we introduce a simple
yet effective inter-scale bidirectional feedback mechanism
into our proposed multi-scale Transformer. This enables the
network to flexibly exchange information in both coarse-to-
fine and fine-to-coarse flows, resulting in better robustness
to variations in image content, such as changes in scale. Fi-
nally, we formulate the intra-scale INR branch and the inter-
scale bidirectional branch into an end-to-end trainable im-
age deraining network, named as NeRD-Rain. Experimen-
tal results demonstrate that our approach achieves favorable
performance against state-of-the-art ones on the benchmark
datasets, especially on real-world benchmarks.

The main contributions are summarized as follows:
• We design an effective multi-scale Transformer to gen-

erate high-quality deraining results with exploitation
and utlization of multi-scale rain information.
• We introduce implicit neural representations to better

learn common rain degradation features and show that
it can help facilitate rain removal and enhance the ro-
bustness of the deraining model in complex scenes.
• We integrate a simple yet effective bidirectional feed-

back propagation operation into our multi-scale Trans-
former for better feature interaction across scales.

• Experimental results on both synthetic and real-world
benchmarks demonstrate that our approach performs
favorable performance against state-of-the-art ones.

2. Related Work
Single image deraining. Since the image deraining prob-
lem is ill-posed, conventional algorithms typically seek to
impose some handcrafted priors [19, 24, 32, 35, 52, 64] on
the clear images and rain components to make this problem
well-posed. However, these methods fail to remove rain
on complex real scenes when the assumptions do not hold.
Afterwards, deep learning-based approaches [1, 7, 9] have
outperformed early traditional algorithms and demonstrated
decent restoration performance. As the development of this
field, a wide array of network architectures and designs have
been effectively explored to significantly boost the capac-
ity of end-to-end model learning, e.g., multi-scale [22, 30],
multi-stage [31, 61], or multi-branch [53, 63] strategy.

Recently, researchers have made efforts to replace CNNs
with Transformers as the fundamental structure for vision
tasks [9, 13]. Driven by the great success of vision Trans-
former in modeling the non-local information, Transformer-
based frameworks [5, 62] have emerged for better rain re-
moval. For example, Xiao et al. [56] proposed an image de-
raining Transformer using spatial-based and window-based
self-attention modules. Chen et al. [8] put forward a sparse
Transformer to retain the most useful self-attention values
for image reconstruction. Unfortunately, these approaches
depend mostly on single-scale rain appearance, which lim-
its their ability to fully explore multi-scale rain information.
In this work, we investigate multi-scale representations in
Transformer backbone for better boosting image deraining.
Multi-scale representations. The presence of rain streaks
exhibits a noticeable degree of self-similarity, whether it is
within the same scale or across different scales. This in-
herent property allows for the utilization of correlated fea-
tures across scales in order to better represent rain informa-
tion [9, 22, 30, 63]. In the context of CNNs, multi-scale
representations have been explored for improving the im-
age restoration performance, such as image pyramid [16],
feature pyramid [37], coarse-to-fine mechanism [12, 47],
and multi-patch scheme [61]. Recently, some studies [14]
have investigated enforcing multi-scale design strategies to
vision Transformers (ViT). For example, Chen et al. [3] for-
mulated a cross-attention multi-scale Transformer for image
classification. Lin et al. [33] developed a scale-aware mod-
ulation Transformer. In this work, we formulate a bidirec-
tional multi-scale Transformer to solve image deraining.
Implicit neural representation. Implicit neural represen-
tation (INR) has emerged as a new compelling technique to
represent continuous domain signals via coordinate-based
multi-layer perceptrons (MLPs). Unlike explicit representa-
tions, which define the signal values at each point explicitly,
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Figure 2. Overall architecture of the proposed bidirectional multi-scale Transformer with implicit neural representations (NeRD-Rain),
which consists of intra-scale flows (i.e., INR branch and unequal Transformer branch) and inter-scale flows (i.e., coarse-to-fine and fine-to-
coarse bidirectional branches). The proposed INR branch consists of two coordinated-based MLPs with coarse and fine feature grids. We
construct an intra-scale shared encoder in the Transformer branch and INR branch, where two types of representation (i.e., scale-specific
and common rain ones) are able to complement each other. We formulate all the branches to form a closed-loop network architecture.

INR encodes the signal by learning a mapping from coordi-
nates to signal values [44]. During the early period, it has
been widely applied in various 3D vision tasks, e.g., shape
modeling [11], structure rendering [2], and scene recon-
struction [21]. As a well-known approach, neural radiance
fields (NeRF) [38] employs neural networks to represent
complex 3D scenes by modeling the volumetric density and
color at each point in space. Recent studies attempt to ex-
plore the potential of INRs for 2D images, e.g., image com-
pression [45], image reconstruction [39, 57], and arbitrary-
scale image super-resolution [6, 10]. More recently, Yang
et al. [58] utilized the controllable fitting capability of INR
for low-light image enhancement problem. Quan et al. [41]
proposed an INR-based inverse kernel prediction network
to solve image defocus deblurring. Our work is inspired by
this rapidly growing field and further demonstrates how to
use implicit representation to better facilitate rain removal.

3. Proposed Method
To better explore multi-scale information and model com-
plex rain streaks, we elaborately develop an effective bidi-
rectional multi-scale Transformer with implicit neural rep-
resentations (called NeRD-Rain), comprising an intra-scale
INR branch and an inter-scale bidirectional branch. The for-
mer learns the underlying degradation representations from
diverse rainy images, while the latter enables richer collabo-
rative representations across different scales. Figure 2 sum-
marizes the architecture of NeRD-Rain.

3.1. Intra-scale INR branch
Given a rainy image Irain ∈ RH×W×3, where H ×W rep-
resents the spatial resolution of the input image, our method
first uses bilinear interpolation to downsample the input im-

age into multi-scale versions (i.e., 1/2 and 1/4). From the
coarsest to the finest image scales, we designate the rescaled
image at each scale as S1, S2, and S3, respectively. Differ-
ent from previous multi-scale methods [22, 30, 47] that as-
sign equal importance to the subnetworks of various scales,
our approach incorporates the networks at finer scales with
deeper architectures to handle spatially-varying rain streaks.
At each scale, we propose unequal Transformer branches to
perform deep feature extraction and generate a set of scale-
specific outputs. Specifically, the NeRD-Rain at each scale
(from S1 to S3) is equipped with one, two, and three UNets,
respectively. Each UNet consists of a sequence of Trans-
former blocks [62]. Here, these UNets share the same net-
work architecture but have independent weights [26].

In order to capture common rain degradation features,
we further integrate an intra-scale INR branch into our
multi-scale Transformer, which trains a multi-layer percep-
tron (MLP) by learning the following mapping function:

fθ : R2 → R3, (1)

where the input dimensions correspond to the (x, y) spa-
tial coordinates of each pixel, while the output dimensions
correspond to the (R,G,B) color channels of the pixels.

Specifically, we insert INRs between the inputs of ad-
jacent Transformer branches to synchronously achieve rain
reconstruction. Firstly, the input image Irain is transformed
to a feature map E ∈ RH×W×C with a spatial resolution
of H ×W pixels and C channels. Different from the INR
in [58] which utilizes a separate encoder, we construct a
shared encoder that interacts with the Transformer branch
to form a compact closed-loop architecture, where these
two types of representation (i.e., scale-specific and common
rain representation) can be utilized complementary to each
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other. In addition, the position of each pixel from spatially-
varying rain streaks is recorded in a relative coordinate set
X ∈ RH×W×2, where the value ‘2’ represents horizontal
and vertical coordinates. As suggested in [29, 38], we also
adopt periodic spatial encoding to project the pixel coor-
dinates X into a higher dimensional space R2L for better
recovering high-frequency details. The encoding procedure
is formulated as:

X′ = γ(X),

γ(x) =
[
sin(x), cos(x), . . . , sin

(
2L−1x

)
, cos

(
2L−1x

)]
,

(2)

where γ(·) represents a spatial encoding function. x ∈ R2L

is the coordinate value of X, and it is normalized to lie
within the range of [−1, 1]. L is a hyperparameter for deter-
mining dimension values. We set L = 4 in our experiments.

Afterwards, a decoder is employed to predict RGB val-
ues of the output image by combining both E and X′. Here,
our decoder consists of three-layer MLPs, with each layer
having 256 hidden dimensions. Note that fitting an INR to
reconstruct an image requires finding a set of parameters for
the MLP fθ of a small size [43]. As a result, diverse types of
rain streaks yield different sets of parameters, and it in turn
means the MLP is adaptive to the common characteristics
of all the degraded images. Similar to [10, 58], we calculate
a weighted average of the predictions from the surrounding
grids to obtain the RGB value (s ∈ R3) of the final recon-
structed image, which can be viewed as an implicit neural
interpolation process [6, 46]. This process is expressed as:

z = E(Irain),

s =
∑
j∈J

wjfθ (zj ,x) ,
(3)

where z is a feature vector; E represents a shared encoder;
J ∈ Z4 is a set indices for four nearset (Euclidean dis-
tance) latent codes j around x; wj denotes the local ensem-
ble weight [29], satisfying

∑
j wj = 1.

In experiments, we further find that this process can natu-
rally facilitate rain removal without requiring any additional
operations. Likewise, some studies [4, 25] also point out the
low-pass filtering characteristics in INR. Due to the strong
reflections caused by rain effect, pixels affected by rain tend
to exhibit high intensity values, i.e., white rain streaks [52].
Therefore, we attribute the deraining ability of INR to a ba-
sic fact that the intensity values of rain-affected pixels tend
to surpass those of their neighboring non-rain pixels [52].

Instead of representing the image using INR at a fixed
scale [6], we present a cascaded scale image representation
for INR. Inspired by [18], our network trains two distinct
MLPs, i.e., one coarse and one fine feature grid. Through
this sequential coarse-to-fine training, INR achieves more
effective information transmission, naturally sharing infor-
mation across scales. With all the above-mentioned designs,
our INR branch can better learn common rain degradation

features so that the learned features are robust to complex
and random rain streaks. These designs we consider yield
performance improvements as we shall see in Section 5.

3.2. Inter-scale bidirectional branch
Although the intra-scale INR branch performs feature esti-
mation from coarse to fine scales, it would affect the fea-
ture estimation for the subsequent scale when the features
from the coarser scales are not estimated correctly. To over-
come this problem, we introduce an inter-scale bidirectional
branch into multi-scale Transformer, enabling both coarse-
to-fine and fine-to-coarse feature propagation. Specifically,
unlike using the complex and time-consuming LSTM [41],
we formulate a simple yet effective bidirectional feedback
propagation unit (BFPU) without adding much cost. Each
BFPU takes the bottleneck layer features (Fa and Fb) of
two UNets at the current fine scales as inputs. The output of
BFPU Fout is delivered to the bottleneck layer of the UNet
at the previous coarse scale. In this way, the proposed BFPU
can be formulated by:

Fmid = S (Conv3×3 (Fa)⊗ Conv3×3 (Fb)) ,

Fout = [Fa + Fmid ⊗ Fa, Fb + Fmid ⊗ Fb],
(4)

where Conv3×3 is a 3× 3 convolution layer, S denotes the
Sigmoid function,⊗ is the element-wise multiplication, and
[·] represents the channel-wise concatenation.

With this design, the inter-scale bidirectional branch of-
fers three-fold advantages: (1) it can make use of the com-
plementary information from the subsequent (finer) scales
to help image restoration at the current (coarser) scale, (2)
it can perform feature propagation flow earlier without wait-
ing for the derained results from previous scales, (3) it can
be robust to variations in image content, such as changes in
scale. We will show its effectiveness in Section 5.

3.3. Loss function
In order to jointly learn UNet-based traditional representa-
tions and INR-based continuous representations in a multi-
scale manner, our network is trained end-to-end with a hy-
brid loss function. Following [12, 48], we employ the Char-
bonnier loss Lchar [61], the frequency loss Lfreq [23] and
the edge loss Ledge [22] to constrain scale-specific learning.
Furthermore, we also employ a L1-norm to avoid color shift
during the prediction of RGB by INR. Based on one coarse
and one fine feature grid, the total INR-related losses are
calculated as follows:

Linr =
2∑
s=1

‖Is −Ts‖1 , (5)

where Is and Ts denote s-scale reconstructed image of INR
and s-scale target ground-truth image. The proposed loss
function Ltotal for network training is defined as:
Ltotal = Lchar + α1Lfreq + α2Ledge + α3Linr, (6)

where the scalar weights α1, α2 and α3 are empirically set
to 0.01, 0.05 and 0.1, respectively.
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Table 1. Quantitative evaluations of the proposed approach against state-of-the-art methods on five commonly used benchmark datasets.
Our NeRD-Rain achieves higher quantitative results, especially advances state-of-the-art by 1.04 dB on the real benchmark, SPA-Data.

Datasets Rain200L [59] Rain200H [59] DID-Data [63] DDN-Data [15] SPA-Data [51]
Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Prior-based methods DSC [35] 27.16 0.8663 14.73 0.3815 24.24 0.8279 27.31 0.8373 34.95 0.9416
GMM [32] 28.66 0.8652 14.50 0.4164 25.81 0.8344 27.55 0.8479 34.30 0.9428

CNN-based methods

DDN [15] 34.68 0.9671 26.05 0.8056 30.97 0.9116 30.00 0.9041 36.16 0.9457
RESCAN [31] 36.09 0.9697 26.75 0.8353 33.38 0.9417 31.94 0.9345 38.11 0.9707
PReNet [42] 37.80 0.9814 29.04 0.8991 33.17 0.9481 32.60 0.9459 40.16 0.9816
MSPFN [22] 38.58 0.9827 29.36 0.9034 33.72 0.9550 32.99 0.9333 43.43 0.9843
RCDNet [50] 39.17 0.9885 30.24 0.9048 34.08 0.9532 33.04 0.9472 43.36 0.9831
MPRNet [61] 39.47 0.9825 30.67 0.9110 33.99 0.9590 33.10 0.9347 43.64 0.9844
DualGCN [17] 40.73 0.9886 31.15 0.9125 34.37 0.9620 33.01 0.9489 44.18 0.9902
SPDNet [60] 40.50 0.9875 31.28 0.9207 34.57 0.9560 33.15 0.9457 43.20 0.9871

Transformer-based methods

Uformer [55] 40.20 0.9860 30.80 0.9105 35.02 0.9621 33.95 0.9545 46.13 0.9913
Restormer [62] 40.99 0.9890 32.00 0.9329 35.29 0.9641 34.20 0.9571 47.98 0.9921

IDT [56] 40.74 0.9884 32.10 0.9344 34.89 0.9623 33.84 0.9549 47.35 0.9930
DRSformer [8] 41.23 0.9894 32.17 0.9326 35.35 0.9646 34.35 0.9588 48.54 0.9924
NeRD-Rain-S 41.30 0.9895 32.06 0.9315 35.36 0.9647 34.25 0.9578 48.90 0.9936
NeRD-Rain 41.71 0.9903 32.40 0.9373 35.53 0.9659 34.45 0.9596 49.58 0.9940

4. Experimental Results
We first discuss the experimental settings of our proposed
NeRD-Rain. Then we evaluate the effectiveness of our ap-
proach on both synthetic and real-world datasets. More re-
sults are included in the supplemental material.

4.1. Experimental settings
Datasets and metrics. We evaluate our approach on four
commonly used synthetic benchmarks (i.e., Rain200L [59],
Rain200H [59], DID-Data [63], and DDN-Data [15]), and
two recent real-world datasets (i.e., SPA-Data [51] and RE-
RAIN [9]). We follow the protocols of these benchmarks
for training and testing. To evaluate the quality of each de-
rained image, we use PSNR [40] and SSIM [54] as the eval-
uation metrics when the ground truth images are available,
and calculate them based on the Y channel of the YCbCr
color space, following the previous works [8, 9].

Implementation details. In our proposed NeRD-Rain,
each Transformer-based UNet adopts a 3-level encoder-
decoder architecture. From level-1 to level-3, the number
of Transformer blocks is set to [2, 3, 3], the number of self-
attention heads in [62] is set to [1, 2, 4], and the number
of channels is set to [48, 96, 192]. We introduce another
variant, NeRD-Rain-S, by modifying the number of feature
channels to [32, 64, 128]. We implement our method based
on the PyTorch framework and train it from scratch using a
machine with one NVIDIA GeForce RTX 3090 GPU. Dur-
ing the training, we use the Adam optimizer [27]. The patch
size is set to be 256 × 256 pixels and the batch size is
set to be 1. We train the SPA-Data dataset for 10 epochs,
the DID-Data and DDN-Data datasets for 200 epochs, and
the Rain200L and Rain200H datasets for 600 epochs. The
same data augmentation method [36] is adopted. For train-
ing on the Rain200H dataset, the learning rate is initiallized

as 2× 10−4, while for other benchmarks, it is initialized as
1 × 10−4. The final learning rate is gradually decreased to
1× 10−6 using a cosine annealing scheme [34].

4.2. Comparisons with the state of the art
We compare our method with prior-based methods (DSC
[35] and GMM [32]), CNN-based approaches (DDN [15],
RESCAN [31], PReNet [42], MSPFN [22], RCDNet [50],
MPRNet [61], DualGCN [17] and SPDNet [60]), and recent
Transformer-based methods (Uformer [55], Restormer [62],
IDT [56], and DRSformer [8]).

Evaluations on synthetic datasets. Table 1 summarizes
the quantitative evaluation results on the above-mentioned
synthetic datasets [15, 59, 63], where the derained images
by our method have higher PSNR and SSIM values. For
example, the PSNR values of our approach is at least 0.48
dB higher than DRSformer [8] on the Rain200L benchmark.

We further show some visual results on the Rain200H
dataset in Figure 3. The CNN-based methods [17, 22, 50,
60, 61] do not recover clear images in heavy rainy scenarios.
The Transformer-based methods [8, 55, 56, 62] are able to
model the global contexts for image deraining. However,
some main structures, e.g., slender cable, are not recov-
ered well. Compared to existing Transformer-based meth-
ods that depend on single-scale rain appearance, our devel-
oped multi-scale Transformer is able to explore multi-scale
representations of rain streaks, and generates clearer images
with fine details and structures.

Evaluations on real-world datasets. We further evaluate
our method on the challenging SPA-Data dataset [51]. As
provided in the last column of Table 1, our method outper-
forms the DRSformer method [8] by 1.04 dB on the SPA-
Data dataset. This indicates that our method can effectively
deal with diverse types of spatially-varying real rain streaks.
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(a) Rainy input (b) Ground truth (c) MSPFN [22] (d) RCDNet [50] (e) MPRNet [61] (f) DualGCN [17]

(g) SPDNet [60] (h) Uformer [55] (i) Restormer [62] (j) IDT [56] (k) DRSformer [8] (l) Ours

Figure 3. Derained results on the Rain200H dataset [59]. Compared with the derained results in (c)-(k), our method recovers a high-quality
image with clearer details. Zooming in the figures offers a better view at the deraining capability.

(a) Rainy input (b) Ground truth (c) SPDNet [60] (d) Restormer [62] (e) IDT [56] (f) DRSformer [8] (g) Ours

Figure 4. Derained results on the SPA-Data [51] dataset. Compared with the derained results in (c)-(f), our method recovers clearer images.

Table 2. Comparisons of model complexity against state-of-the-art
methods. The size of the test image is 256×256 pixels. “#FLOPs”
and “#Params” represent FLOPs (in G) and the number of train-
able parameters (in M), respectively.

Methods MSPFN [22] IPT [5] Uformer [55] Restormer [62]
#FLOPs (G) 595.5 1188 45.9 174.7
#Params (M) 13.35 115.5 50.88 26.12

Methods IDT [56] DRSformer [8] Ours-S Ours
#FLOPs (G) 61.9 242.9 79.2 156.3
#Params (M) 16.41 33.65 10.53 22.89

Figure 4 shows some visual comparisons of the evalu-
ated methods, where our method generates better derained
images. In contrast, the recovery results of other methods
still contain some undesired rain streaks residual.

We also evaluate our method using real captured rainy
images from the RE-RAIN dataset [9], where ground truths
are not available. Figure 5 shows that most deep models
are sensitive to spatially-long rain streaks and leave behind
residual rain effect. On the contrary, our method effectively
removes random rain streaks and achieves better recovery
results, indicating its ability to generalize well on real data.
Model complexity. We evaluate the model complexity of

our method and state-of-the-art ones in terms of FLOPs and
model parameters. Table 2 shows that our model, NeRD-
Rain-S, has lower FLOPs value and fewer parameters while
achieving competitive performance as shown in Table 1.

5. Analysis and Discussion
To better understand how the proposed approach solves im-
age deraining, we examine the effect of the main component
by conducting ablation studies. We train our method and all
the alternative baselines using the same settings for fairness.

Effect of multi-scale configuration. Our developed multi-
scale Transformer focuses on incorporating finer scales with
deeper architectures to better remove spatially-varying rain
streaks. To demonstrate the effectiveness of this formula-
tion, we analyze the effect of different multi-scale configu-
rations on the Rain200L dataset. As shown in Table 4, these
variants differ in the number of UNets at different scales
while sharing the same network architecture for the UN-
ets. Compared to treating each scale equally (i.e., M222),
our method (i.e., M123) can better reconstruct scale-specific
feature and improve potential image restoration quality.
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(a) Rainy input (b) SPDNet [60] (c) Uformer [55] (d) Restormer [62] (e) IDT [56] (f) DRSformer [8] (g) Ours

Figure 5. Derained results on a real-world rainy image from [9]. Compared with the derained results in (b)-(f), our method removes most
rain streaks and recovers a clearer image. Zooming in the figures offers a better view at the deraining capability.

Table 3. Ablation analysis on different variants of INR in our method, including four aspects: position, feature-grid, operation, and feature
encoder. Here, all ablation models adopt the backbone of bidirectional multi-scale Transformer (BMT).

Methods
Implicit Neural Representation (INR) Backbone MetricsPosition Feature grid Operation Feature encoder

Within branch Adjacent branch Fixed-scale Multi-scale Position encoding Interpolation Shared encoder Separate encoder BMT PSNR SSIM
(a) % % % % % % % % " 41.40 0.9896
(b) " % % " " " % " " 41.51 0.9897
(c) % " % " " " " % " 41.71 0.9903
(d) % " " % " " " % " 41.47 0.9897
(e) % " % " % " " % " 41.50 0.9899
(f) % " % " " % " % " 41.58 0.9900
(g) % " % " " " % " " 41.62 0.9901

Table 4. Ablation analysis on the multi-scale configuration using
different numbers of UNets. Here, S1, S2, and S3 represent 1/4,
1/2 and full image scale, respectively.

Methods S1 S2 S3 PSNR SSIM
M222 2 2 2 41.42 0.9896
M321 3 2 1 40.70 0.9882
M023 0 2 3 41.63 0.9901

M123 (Ours) 1 2 3 41.71 0.9903

Effectiveness of INR branch. To analyze the effectiveness
of INR branch, we conduct ablation experiments based on
different variants in Table 3. All variants are trained on the
Rain200L dataset. We compare with the baseline without
using INR (i.e., model (a)). In contrast, our model (c) ex-
hibits better performance, especially in real scenes where
the capability for effective rain removal is more pronounced
(Figure 6(b) and (d), see the supplemental material for more
examples). The approach without INR is sensitive to rain
streaks of different scales, while our method successfully
removes diverse rain streaks. This confirms that the learned
representations from our INR better facilitates rain removal.

To understand the effect of such INR, we first visualize
the output of INR from our network, and pixel value dis-
tribution of images. In Figure 8, we find that INR reduces
the high intensity pixel values of rainy images and generates
rain-free images. As mentioned in Section 3.1, we attribute
this natural ability to the fact that INR tends to bias towards
learning low-frequency image contents [29], while rain oc-
cupies the high-frequency part of the image.

Then, we further analyze the effect of implicit interpola-
tion and position encoding in INR. Figure 7(b) shows that

(a) Rainy input (b) w/o INR (c) w/o SE (d) Ours

Figure 6. Ablation qualitative comparison on a real-world rainy
image. “SE” denotes a shared encoder in our method.

INR fails to remove undesired high-frequency rain streaks
without using implicit interpolation operations. Meanwhile,
the output of INR without using position encoding are prone
to losing background details, as shown in Figure 7(c). All
in all, the former aims to find the local latent embedding to
reconstruct RGB values of the clear image, while the latter
focuses on encoding coordinates with the frequency infor-
mation to recover fine-grained background details.

Next, we also evaluate the effect of the position of INR in
our framework. Compared to embedding the INR within the
Transformer branch (i.e., model (b) in Table 3), our method
inserts INR between adjacent scales to naturally shares in-
formation across scales, thereby improving quantitative and
qualitative results (Figure 7(d)). Furthermore, we note that
our method with multi-scale feature grid boosts the repre-
sentation capacity of INR, which benefits from observing
rain appearance at different resolutions (Figure 7(e) and (f)).

Finally, we demonstrate the effectiveness of shared en-
coder on image deraining. Here, we construct separate en-
coders for each INR as a comparison. For fair comparison,
we set the same network architecture for these encoders as
our method. By comparing model (c) and (g) in Table 3,
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(a) Rainy input (b) w/o Interpolation (c) w/o PE (d) w/ Within branch (e) w/ Fixed scale (f) Ours

Figure 7. Visual quality comparison of output results of INR in different variants. Our INR branch generates a clearer image using all the
designs we consider, which further provides better guidance for the input of the next scale. “PE”denotes the position encoding operation.
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Figure 8. Comparions between the input images and the results of
INR. One can see that INR reduces the high intensity pixel values
of white rain streaks and reconstructs the latent rain-free images.

our method achieves higher quantitative results with fewer
network parameters. Figure 6(c) and (d) also demonstrate
that using the shared encoder generates much clearer im-
ages. In contrast, the method with the separate encoder still
has residual rain streaks in the recovery results. This fur-
ther indicates that our formulation is robust to complex real-
world scenarios. The utilization of shared encoders forms a
more compact closed-loop framework, enabling the learned
degradation representations to better facilitate rain removal.

Effectiveness of bidirectional branch. The BFPU in the
bidirectional branch is used to better explore bidirectional
information in our multi-scale Transformer for better image
restoration. To demonstrate the effectiveness of this branch,
we remove this component and investigate its influence in
Table 5. We note that the BFPU achieves a PSNR gain of
0.10 dB over unidirectional propagation (i.e., w/o BFPU) on
the Rain200H dataset. Compared to direct feature concate-
nation, our bidirectional branch can dynamically aggregate
richer features to facilitate image restoration. Figure 9 also
shows that our method generates much clearer details.

Extension to various architectures.. We extend our net-
work architecture to CNN-based U-Net to demonstrate the
scalability of the proposed framework. Here, we choose the
U-Net module in MPRNet [61] as the baseline. Table 6 re-
ports the results trained on the Rain200L benchmark. Our
method still achieves competitive performance, indicating
the effectiveness of our method in various architectures.

Limitations and failure cases. Although our NeRD-Rain
achieves favorable performance on several image deraining

Table 5. Ablation quantitative comparison on the proposed BFPU.

Methods w/o BFPU w/ Concat w/ BFPU (Ours)
PSNR / SSIM 32.30 / 0.9346 32.31 / 0.9360 32.40 / 0.9373

Table 6. Extension to CNN-based U-Net [61] in our NeRD-Rain.

Methods MPRNet [61] DRSformer [8] Ours
PSNR / SSIM 39.47 / 0.9825 41.23 / 0.9894 41.34 / 0.9893

(a) Rainy patch (b) w/o BFPU (c) w/ Concat (d) Ours

Figure 9. Ablation qualitative comparison on the proposed BFPU.

benchmarks, its training time is relatively longer compared
to other multi-scale architectures. This is mainly due to the
time-consuming optimization process involved in INR. Fu-
ture work will apply the model pruning or early stopping
scheme to improve training speed while maintaining per-
formance [28]. Furthermore, our method fails to handle the
veiling effect (i.e., mist) in complex rainy environments.

6. Concluding Remarks
We have presented an effective multi-scale Transformer net-
work for single image deraining. To better explore common
rain degradation features, we incorporate coordinated-based
implicit neural representation between adjacent scales, en-
abling the learned features can better facilitate rain removal
and improve the robustness of the model in complex scenar-
ios. To enhance the interactions among features of different
scales in a collaborative manner, we also introduce a simple
yet effective bidirectional feedback propagation operation
into our multi-scale Transformer by performing coarse-to-
fine and fine-to-coarse information communication. By for-
mulating the proposed method into an end-to-end trainable
model, we show that it performs favorably against the state-
of-the-art methods on both synthetic and real benchmarks.
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