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Abstract

Person re-identification (re-ID) is a challenging task that
aims to learn discriminative features for person retrieval.
In person re-ID, Jaccard distance is a widely used dis-
tance metric, especially in re-ranking and clustering sce-
narios. However, we discover that camera variation has
a significant negative impact on the reliability of Jaccard
distance. In particular, Jaccard distance calculates the dis-
tance based on the overlap of relevant neighbors. Due to
camera variation, intra-camera samples dominate the rele-
vant neighbors, which reduces the reliability of the neigh-
bors by introducing intra-camera negative samples and ex-
cluding inter-camera positive samples. To overcome this
problem, we propose a novel camera-aware Jaccard (CA-
Jaccard) distance that leverages camera information to en-
hance the reliability of Jaccard distance. Specifically, we
design camera-aware k-reciprocal nearest neighbors (CK-
RNNs) to find k-reciprocal nearest neighbors on the intra-
camera and inter-camera ranking lists, which improves the
reliability of relevant neighbors and guarantees the con-
tribution of inter-camera samples in the overlap. More-
over, we propose a camera-aware local query expansion
(CLQE) to mine reliable samples in relevant neighbors by
exploiting camera variation as a strong constraint and as-
sign these samples higher weights in overlap, further im-
proving the reliability. Our CA-Jaccard distance is simple
yet effective and can serve as a general distance metric for
person re-ID methods with high reliability and low com-
putational cost. Extensive experiments demonstrate the ef-
fectiveness of our method. Code is available at https:
//github.com/chen960/CA-Jaccard/.

1. Introduction
Person re-identification (re-ID) aims to retrieve persons
across non-overlapping camera views. It has drawn wide
attention due to the growing demand for intelligent surveil-
lance systems. Thanks to the advancement of deep learning,
supervised re-ID methods [6, 25, 30, 33, 50] have achieved
remarkable performance. However, these methods rely on

Figure 1. (a) Illustration of the average proportion of intra-camera
and inter-camera samples in k-nearest neighbors of all samples.
Due to camera variation, the average proportion of intra-camera
samples in all samples’ k-nearest neighbors is significantly higher
than that of inter-camera samples. (b) Comparison of the fea-
ture spaces of using Jaccard distance and our CA-Jaccard distance.
Different colors represent different identities and different shapes
indicate different camera labels.

sufficient person identity annotations, limiting their appli-
cation in real world scenarios. Hence, recent studies have
focused on unsupervised re-ID, seeking to learn discrimina-
tive features using unlabeled data.

Recently, most state-of-the-art unsupervised re-ID meth-
ods, i.e. clustering-based re-ID methods [10, 13, 15, 44, 46],
generally employ a iterative two-stage training procedure:
1) generating pseudo labels based on the Jaccard distance
[51] between all training samples using a clustering algo-
rithm [3, 11, 23]; 2) training the re-ID model with the gener-
ated pseudo labels. Despite their effectiveness, these meth-
ods still suffer from label noise. To overcome the above
problem, numerous approaches [8, 14, 15, 17, 38, 43, 45]
have been proposed. These approaches focus on improving
or refining pseudo labels after clustering.

Moreover, there also have some re-ranking methods [24,
28, 51] are proposed to further improve the performance of
re-ID methods. K-reciprocal re-ranking [51] is a popular

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17532



re-ranking method, which utilizes Jaccard distance to re-
calculate the distance.

As mentioned above, Jaccard distance [51] is widely
used in person re-ID. However, Jaccard distance overlooks
the detrimental impact of camera variation (e.g. viewpoint,
illumination and background), which substantially con-
tributes to label noise in clustering scene and performance
degradation in re-ranking scene. Specifically, based on the
original distance matrix (i.e. Euclidean distance or cosine
distance), Jaccard distance measures the distance between
samples based on the overlap of their relevant neighbors,
which means the accuracy of relevant neighbors determines
the reliability of Jaccard distance. The relevant neighbors
are found by applying k-reciprocal nearest constraint and
encoded into a weighted unit vector called weighted neigh-
bors vector. Higher weights are assigned to closer neigh-
bors to reflect their greater contribution to the overlap cal-
culation. However, as shown in Fig. 1 (a), due to cam-
era variation, intra-camera samples dominate the k-nearest
neighbors, resulting high proportion and weight of intra-
camera samples in the weighted relevant neighbors vec-
tors. It undermines the reliability of Jaccard distance by
introducing many high weight intra-camera negative sam-
ples and hindering informative inter-camera positive sam-
ples into weighted relevant neighbors vectors. Moreover,
Jaccard distance utilizes local query expansion to expand
weighted relevant neighbors vector of a sample by averag-
ing the weighted relevant neighbors vectors of its k-nearest
neighbors. Since k-nearest neighbors mainly consist of
intra-camera samples, the proportion and weight of intra-
camera samples are further increased, while the reliability
of Jaccard distance is further decreased.

To address these problems, we propose camera-aware
Jaccard (CA-Jaccard) distance, a simple yet effective dis-
tance metric that enhances the reliability of the Jaccard
distance [51] with camera information for more accurate
pseudo label generation, which is shown in Fig. 1 (b). In
particular, our approach modifies the robust k-reciprocal
nearest neighbors (KRNNs) and local query expansion
(LQE) of Jaccard distance in a camera-aware manner to
increase the accuracy of relevant neighbors. We discover
that inter-camera samples have more information and re-
liability. Therefore, to include more inter-camera sam-
ples into relevant neighbors and restrain the proportion and
weight of intra-camera samples under camera variation, we
propose camera-aware k-reciprocal nearest neighbors (CK-
RNNs) for more accurate relevant neighbors. CKRNNs im-
pose the k-reciprocal nearest constraint separately for the
intra-camera and inter-camera ranking lists with different k
values, and then combine the neighbors obtained from both.
Additionally, to further improve the accuracy of relevant
neighbors, we propose camera-aware local query expansion
(CLQE) to obtain weighted expanded neighbors vectors by

averaging the weighted CKRNNs vectors of intra-camera
and inter-camera k-nearest neighbors. CLQE exploits cam-
era variation as a strong constraint to mine reliable sam-
ples that frequently appear in the relevant neighbors of both
intra-camera and inter-camera k-nearest neighbors, and en-
larges their weights for greater contribution in overlap.

Our contributions can be summarized as follows:
(1) We propose a novel camera-aware Jaccard (CA-

Jaccard) distance that leverages camera-aware k-reciprocal
nearest neighbors (CKRNNs) and camera-aware local
query expansion (CLQE) to enhance the reliability of Jac-
card distance.

(2) Our CA-Jaccard distance is simple yet effective, with
higher reliability and lower computational cost than Jaccard
distance, and can serve as a general distance metric for per-
son re-ID.

(3) Extensive experiments on different person re-ID sce-
narios demonstrate the effectiveness of our CA-Jaccard dis-
tance.

2. Related work
2.1. Clustering for Unsupervised Person Re-ID

In unsupervised person re-ID, datasets lack identity label
information. Many works utilize clustering [12, 13, 19, 21,
41, 42, 44] and k-nearest neighbors [32, 39, 52] to gener-
ate pseudo labels. Clustering-based methods [10, 13, 44]
demonstrate their superiority by achieving state-of-the-art
performance. They generally leverage the Jaccard distance
[51] to compute the distance matrix and then adopt the DB-
SCAN clustering [11] algorithm for pseudo label genera-
tion. However, the generated pseudo labels inevitably con-
tain label noise, which severely affects the performance.
Recent methods tackle this problem using robust clustering
techniques [15, 42], label refinement procedures[8, 17, 45],
co-teaching algorithms [14, 38, 43, 47]. Although these
methods strive to reduce label noise, they neglect the la-
bel noise caused by unreliable Jaccard distance. RIDES [7]
improves the original distance by reducing the distance of
reliable inter-camera sample pairs, which improves the ac-
curacy of relevant neighbors and the reliability of Jaccard
distance implicitly and limitedly. Different from [7], our
method enhances Jaccard distance directly, and improves
the accuracy of relevant neighbors significantly and stably.
In this paper, our method brings more reliable pseudo labels
in clustering scene.

2.2. Re-ranking for Person Re-ID

Re-ranking is a post-processing technique to improve the
original retrieval results by the information of near neigh-
bors. In [29], k-nearest neighbors are first used for re-
ranking. Many works [28, 40, 51] further discover more
potential information based on k-nearest neighbors. To re-
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Figure 2. Schematic diagram of CA-Jaccard distance. (a) Overview of CA-Jaccard distance computation. Given the original distance
matrix, find CKRNNs and encode them as vectors, then use CLQE to generate weighted expanded neighbors vectors. Finally, calculate
the overlap between these vectors to obtain the CA-Jaccard distance matrix. (b) CKRNNs. CKRNNs find reliable relevant neighbors
by applying the k-reciprocal nearest constraint on intra-camera and inter-camera ranking lists. (c) CLQE. CLQE averages the weighted
CKRNNs vectors of intra-camera and inter-camera k-nearest neighbors to obtain weighted expanded neighbors.

duce the false positives in the top-k of original ranking
lists, k-reciprocal nearest neighbors [18, 26] are introduced
into person re-ID by K-reciprocal(KR) re-ranking[51]. In-
spired by sparse contextual activation (SCA) encoding [1]
and average query expansion (AQE) [9], KR re-ranking [51]
searches k-reciprocal neighbors and computes the Jaccard
distance with k-reciprocal encoding and local query expan-
sion. ECN [28] improves the original pairwise distance
by aggregating the distances between expanded neighbors
of image pairs. These methods can not handle the large
camera variation in ranking lists well, which significantly
hinders the performance of re-ranking. To solve this prob-
lem, we attempt to aggregate the camera information into
re-ranking.

3. Methodology
In this section, we first revisit Jaccard distance. Then, we
elaborate on the details of our camera-aware Jaccard (CA-
Jaccard) distance, which enhances the Jaccard distance by
using camera-aware k-reciprocal nearest neighbors (CK-
RNNs) and camera-aware local query expansion (CLQE).

3.1. Preliminary

Our goal is to compute general and reliable distances be-
tween samples for different person re-ID scenarios. The
computation procedures of CA-Jaccard distance in the re-
ranking and clustering scene are very similar. Therefore,
for similarity, we introduce our CA-Jaccard distance within
the clustering scenario of clustering-based unsupervised re-

ID methods. In this case, we are provided with an unlabeled
re-ID training dataset X = {xi}Ni=1 with N images, where
xi denotes the i-th image. Each image xi is associated with
its camera label ci.

3.2. Revisit Jaccard Distance

The core idea of Jaccard distance is that if two images
are similar, their relevant neighbors should also be simi-
lar. Based on this assumption, Jaccard distance measures
the distance between samples according to the overlap of
their relevant neighbors. Jaccard distance incorporates the
robust k-reciprocal nearest neighbors (KRNNs) into rele-
vant neighbors and then expands them using local query
expansion (LQE). Since neighbors sets treat each neighbor
equally and overlap computation of sets is time-consuming,
Jaccard distance encodes the neighbors sets of samples into
weighted unit vectors and transforms set comparison prob-
lem into pure vector computation. The detailed calculation
steps of Jaccard distance are as follows.

Original distance computation. The original distance
matrix D is obtained by applying either the cosine or Eu-
clidean distance based on the features extracted by the
model fθ(·) from all samples.

Robust k-reciprocal nearest neighbors. For sample
xi, the ranking list Li = {xi

1, x
i
2, ..., x

i
N} can be obtained

by arranging samples according to the original distance be-
tween xi and all training samples. The k-nearest neighbors
N(xi, k) of xi are defined as the top-k samples of ranking
list Li:
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N(xi, k) = Li[1 : k]. (1)

Then the KRNNs R(xi, k1) can be found:
R(xi, k1) = {xj |xi ∈ N(xj , k1) ∧ xj ∈ N(xi, k1)}. (2)

To recall some positive samples may be excluded from the
KRNNs, robust KRNNs are computed as follows:

R∗(xi, k1)← R(xi, k1) ∪R
(
xj ,

1
2k1

)
s.t.

∣∣R(xi, k1) ∩R
(
xj ,

1
2k1

)∣∣ ≥ 2
3

∣∣R (
xj ,

1
2k1

)∣∣
∀xj ∈ R(xi, k1),

(3)

where | · | denotes the number of samples in the set. This
operation employs a strict constraint to ensure that most of
the recalled samples are positive samples.

Vectorization of neighbors. To reduce the compu-
tational complexity and increase the discriminability of
neighbors, the robust KRNNs of sample xi are encoded into
a weighted robust KRNNs vector Vi = [Vi,1, Vi,2, ..., Vi,N ],
where Vi is a N -dimension unit vector and Vi,j is computed
according to the original distance between xi and xj if xj is
within the robust k-reciprocal nearest neighbor of xi, other-
wise it is zero:

Vi,j =


e−Di,j∑

xl∈R∗(xi,k1)
e−Di,l

if xj ∈ R∗ (xi, k1)

0 otherwise,

(4)

where Di,j is the original distance between xi and xj .
Local query expansion. Considering similar samples

may share similar features and neighbors, LQE is adopted
to generate the weighted expanded neighbors vector V e

i by
averaging the weighted robust KRNNs vectors of xi’s k-
nearest neighbors:

V e
i =

1

|N(xi, k2)|
∑

xj∈N(xi,k2)

Vj , (5)

where k2 < k1 because there are noise in k-nearest neigh-
bors, Vj denotes the weighted robust KRNNs vector of xj .

Overlap computation. The Jaccard distance DJ
i,j be-

tween xi and xj are computed by vectorized overlap com-
putation:

DJ
i,j = 1−

N∑
l=1

min
(
V e
i,l, V

e
j,l

)
N∑
l=1

max
(
V e
i,l, V

e
j,l

) , (6)

where min and max can be regarded as the intersection and
union operation in vector form.

The Jaccard distance is widely used in many methods,
but it still has drawbacks. Camera variation makes it diffi-
cult for robust KRNNs and LQE to obtain reliable relevant
neighbors for overlap computation, which hinders the re-
liability of Jaccard distance. Therefore, the key motivation
of our method is to improve the reliability of relevant neigh-
bors. To achieve this goal, we propose CKRNNs and CLQE
to make efforts from different aspects.

3.3. Camera-aware K-reciprocal Nearest Neighbors

Although robust KRNNs utilize some constraints to find rel-
evant neighbors, the neighbors are still unreliable. Cam-
era variation causes intra-camera samples to have a high
proportion and low ranks in k-nearest neighbors. Con-
sequently, they have a high proportion in robust KRNNs.
Negative samples from the same camera are heavily in-
cluded in robust KRNNs vectors with large weight, while
informative and reliable inter-camera samples are hardly in-
cluded, reducing the reliability of the neighbors. To find
more inter-camera relevant samples and restrain the pro-
portion and weight of intra-camera samples, we propose
camera-aware k-reciprocal nearest neighbors (CKRNNs),
as shown in Fig. 2(b).

For sample xi, we obtain the intra-camera ranking list
Lintra
i and inter-camera ranking list Linter

i :
Lintra
i = {xi intra

1 , xi intra
2 , ...xi intra

Nci
}, (7)

Linter
i = {xi inter

1 , xi inter
2 , ...xi inter

N−Nci
}, (8)

where xi intra
j and xi inter

j represent the j-th sample in the
intra-camera and inter-camera ranking list, and Nci means
the number of samples share the same camera label ci as xi.

Then we find k-nearest neighbors in both ranking lists to
obtain intra-camera k-nearest neighbors N intra(xi, k

intra
1 )

and inter-camera k-nearest neighbors N inter(xi, k
inter
1 ):

N intra(xi, k
intra
1 ) = Lintra

i [1 : kintra1 ], (9)

N inter(xi, k
inter
1 ) = Linter

i [1 : kinter1 ], (10)

where kintra1 and kinter1 mean different k are used in intra-
camera and inter-camera ranking lists.

Next, we impose the k-reciprocal nearest constraint
on both intra-camera and inter-camera k-nearest neigh-
bors, and union the obtained neighbors as CKRNNs
Rc(xi, k

intra
1 , kinter1 ), which can be formulated as:

Rc(xi, k
intra
1 , kinter1 ) =

{xj |xi ∈ N intra(xj , k
intra
1 ) ∧ xj ∈ N intra(xi, k

intra
1 )}

∪ {xj |xi ∈ N inter(xj , k
inter
1 ) ∧ xj ∈ N inter(xi, k

inter
1 )}.

(11)
By using a smaller kintra1 , we can include only intra-camera
positive samples and exclude intra-camera negative sam-
ples. We discover that inter-camera samples are more infor-
mative and reliable in overlap computation. Thus, we use a
large kinter1 to find more inter-camera samples, increasing
the proportion of inter-camera samples in CKRNNs. When
CKRNNs are encoded into a weighted CKRNNs vector, al-
though the weight of each intra-camera sample is relatively
large due to their small original distance, a large amount
of inter-camera samples in CKRNNs ensure the proportion
and total weight of inter-camera samples, which enhances
the reliability of neighbors.
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Note that we do not use recall operation which has a
great positive effect on the reliability of robust KRNNs
and Jaccard distance. This is because the key of the recall
operation is to recall more inter-camera positive samples,
which is explicitly achieved in CKRNNs by applying the
k-reciprocal nearest constraint on the inter-camera ranking
list.

3.4. Camera-aware Local Query Expansion

LQE is used in Jaccard distance to incorporate more sam-
ples from the robust KRNNs of k-nearest neighbors and re-
assign weights of neighbors by averaging weighted robust
KRNNs vectors of k-nearest neighbors. Due to camera vari-
ation, most k-nearest neighbors are intra-camera samples,
which also have a high proportion of intra-camera samples
with high weights in their weighted robust KRNNs vectors.
As a result, LQE reassigns higher weights to intra-camera
negative samples which frequently occur in robust KRNNs
of k-nearest neighbors, while reassigning lower weights to
inter-camera positive samples which have low proportion
but are informative and reliable. In this case, the unreliabil-
ity of relevant neighbors is further exacerbated.

Unlike LQE which reduces the reliability of neighbors,
we propose camera-aware local query expansion (CLQE) to
boost the reliability of neighbors in a clever way. As shown
in Fig. 2(c), CLQE averages the weighted CKRNNs vec-
tors of intra-camera and inter-camera k-nearest neighbors
to obtain weighted expanded neighbors:

V e
i =

1

|N intra(xi, kintra2 )|+ |N inter(xi, kinter2 )|
×

(
∑

xj∈Nintra(xi,kintra
2 )

Vj +
∑

xl∈Ninter(xi,kinter
2 )

Vl),

(12)
where kintra2 and kinter2 are the k number of k-nearest
neighbors we select from intra-camera and inter-camera
ranking lists, Vj and Vl are the weighted CKRNNs vectors
of xj and xl respectively. CLQE regards camera variation
as a strong constraint to mine reliable samples in neighbors
and enlarge their weights. Specifically, CLQE averages the
weighted CKRNNs vectors of samples from multiple cam-
eras. Due to the existence of camera variation, the reliability
of a sample increases with its frequency of occurrence in the
CKRNNs of samples from multiple cameras, indicating that
it is more likely to be a positive sample. In this way, CLQE
assigns reliable samples that have high frequency in the CK-
RNNs of intra-camera and inter-camera k-nearest neighbors
higher weight.

3.5. Camera-aware Jaccard Distance

We name the proposed distance metric camera-aware Jac-
card (CA-Jaccard) distance, which improves the reliabil-
ity of Jaccard distance by replacing the robust KRNNs and

LQE with CKRNNs and CLQE. We utilize CKRNNs to in-
crease the proportion and total weight of inter-camera sam-
ples which are informative and exclude the intra-camera
samples beyond relevant neighbors, enhancing the relia-
bility of neighbors. Meanwhile, we utilize CLQE to as-
sign high weights to reliable samples, which further im-
proves the reliability of relevant neighbors. Our CA-Jaccard
distance is a simple but effective distance metric, offering
lower computational complexity and higher reliability than
Jaccard distance. The detailed steps of CA-Jaccard distance
computation are presented in Fig. 2(a).

4. Experiments

4.1. Datasets and Evaluation Protocols

We evaluate the proposed method on two person re-ID
datasets (Market1501 [48], MSMT17 [35]) and one vehi-
cle re-ID dataset (VeRi-776 [22]). We adopt mean Average
Precision (mAP) [2] and Cumulative Matching Characteris-
tic (CMC) [16] to evaluate performance.

4.2. Implement Details

Our proposed CA-Jaccard distance can be applied in the
clustering and re-ranking scenes of person re-ID. Therefore,
to fully verify the effectiveness of our CA-Jaccard distance,
we conduct experiments in both scenes. CA-Jaccard dis-
tance can be applied with marginal modification. Specifi-
cally, only the Jaccard distance needs to be replaced with
CA-Jaccard distance, while all other settings remain un-
changed. In CA-Jaccard distance, we set the kintra1 and
kinter1 to 5 and 20 in Eq. (11). The kintra2 and kinter2 are
set to 2 and 4 respectively in Eq. (12).

4.3. Performance Improvement in Clustering Scene

In Tab. 1, We verify the effectiveness of our CA-Jaccard
distance by applying it in state-of-the-art unsupervised per-
son re-ID methods (e.g. CAP [34], CC [10], ICE[4] and
PPLR [8]). We can observe that when the CA-Jaccard dis-
tance is applied for clustering, the performance of these
methods gains significant improvement. Especially when
applying our CA-Jaccard distance to a more powerful
method PPLR [8], we achieve 86.1%/94.4% mAP/Rank-1
on Market1501, 44.3%/75.1% mAP/Rank-1 on MSMT17,
and 45.3%/90.4% mAP/Rank-1 on VeRi-776, which sur-
passes all unsupervised person re-ID methods by a large
margin. Moreover, we can find that CA-Jaccard dis-
tance can bring greater performance improvement on the
MSMT17 and VeRi-776 datasets with larger camera vari-
ation compared to Market1501, demonstrating that CA-
Jaccard distance effectively solves the problem of unreliable
Jaccard distance caused by camera variation. The results
show the effectiveness and generalization of our method.

17536



Table 1. Comparison with the state-of-the-art unsupervised re-ID methods on Market1501, MSMT17 and VeRi-776. The best results are
in bold and the second-best results are in underline. CC* denotes our results with the official CC code without hard instance memory
updating mechanism and generalized mean (GeM) pooling [27]. “CAJ” represents CA-Jaccard distance.

Methods Reference Market1501 MSMT17 VeRi-776
mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10

MMCL [32] CVPR’20 45.5 80.3 89.4 92.3 11.2 35.4 44.8 49.8 - - - -
HCT [41] CVPR’20 56.4 80.0 91.6 95.2 - - - - - - - -
GCL [5] CVPR’21 66.8 87.3 93.5 95.5 21.3 45.7 58.6 64.5 - - - -
IICS [37] CVPR’21 72.9 89.5 95.2 97.0 26.9 56.4 68.8 73.4 - - - -
SpCL [15] NeurIPS’20 73.1 88.1 95.1 97.0 19.1 42.3 55.6 61.2 36.9 79.9 86.8 89.9
RLCC [45] CVPR’21 77.7 90.8 96.3 97.5 27.9 56.5 68.4 73.1 39.6 83.4 88.8 90.9

OPLG-HCD [49] ICCV’21 78.1 91.1 96.4 97.7 26.9 53.7 65.3 70.2 - - - -
MCRN [36] AAAI’22 80.8 92.5 – - 31.2 63.6 - - - - - -
Secret [17] AAAI’22 81.0 92.6 - - 31.3 60.4 - - - - - -

CC [10] ACCV’22 82.6 93.0 97.0 98.1 33.3 63.3 73.7 77.8 42.5 87.7 91.4 93.1
RESL [20] AAAI’22 83.1 93.2 96.8 98.0 33.6 64.8 74.6 79.6 - - - -
RIDE [7] SCIS’23 84.0 93.0 97.3 - 39.5 68.4 79.6 - - - - -
ISE [46] CVPR’22 84.7 94.0 97.8 98.8 35.0 64.7 75.5 79.4 - - - -
CAP [34] AAAI’21 79.2 91.4 96.3 97.7 36.9 67.4 78.0 81.4 40.4 86.8 90.8 92.7

CAP [34]+CAJ - 80.4 91.7 96.4 97.7 39.9 70.0 80.5 83.7 43.4 90.4 93.4 95.1
CC* [10] ACCV’22 81.0 91.1 96.2 97.4 31.1 60.2 71.3 75.7 38.1 80.3 85.1 87.5

CC* [10]+CAJ - 84.8 93.6 97.6 98.4 42.8 72.3 82.2 85.6 43.1 90.1 92.8 95.0
ICE [4] ICCV’21 82.3 93.8 97.6 98.4 38.9 70.2 80.5 84.4 42.5 87.5 91.5 93.2

ICE [4]+CAJ - 82.7 93.8 97.7 98.4 43.0 74.1 83.8 86.9 44.5 91.0 93.6 95.0
PPLR [8] CVPR’22 84.4 94.3 97.8 98.6 42.2 73.3 83.5 86.5 43.5 88.3 92.7 94.4

PPLR+CAJ - 86.1 94.4 97.9 98.7 44.3 75.1 84.3 87.3 45.3 90.4 93.9 95.2

4.4. Peformance Improvement in Re-ranking Scene

Table 2. Comparison with the state-of-the-art re-ranking methods
for person re-ID on Market1501, MSMT17 and VeRi-776. The
best results are in bold.

Methods Market1501 MSMT17 VeRi-776
mAP R1 R5 mAP R1 R5 mAP R1 R5

BoT [25] 85.9 94.5 98.2 50.7 74.0 85.6 76.2 95.5 98.1
+KR [51] 94.2 95.4 97.9 66.9 79.4 86.6 78.7 95.8 97.2

+ECN [28] 94.4 95.9 97.8 69.0 80.5 86.3 79.5 96.8 97.3
+CAJ 94.5 96.2 98.1 74.1 86.2 90.5 81.4 97.6 98.3

CC* [10] 81.0 91.1 96.2 31.1 60.2 71.3 38.1 80.3 85.1
+KR [51] 89.7 93.2 95.5 42.6 65.3 73.4 39.0 80.0 81.6

+ECN [28] 90.0 93.4 95.0 43.9 65.3 71.8 40.0 81.1 82.4
+CAJ 90.2 93.7 95.9 45.3 68.9 75.3 42.5 88.6 91.1

We apply CA-Jaccard to re-ranking the retrieval results
of pre-trained models of supervised and unsupervised com-
monly used baselines (BoT [25] and CC [10]). For a fair
comparison, we also apply the state-of-the-art re-ranking
methods i.e. KR [51], and ECN [28]. The experiment re-
sults are reported in Tab. 2. We can observe that our method
improves the performance of BoT and CC by a large mar-
gin. Meanwhile, our method consistently brings greater per-
formance improvement than the state-of-the-art re-ranking
methods. These results demonstrate the effectiveness and

superiority of our method.

4.5. Ablation Studies

In this section, we conduct extensive experiments on
Maret1501 and MSMT17 in clustering and re-ranking
scenes to validate the effectiveness of each component in
our method. We select CC with instance memory updating
mechanism and average pooling as the baseline for cluster-
ing scene and BoT as the baseline for re-ranking scene. We
present the results of the baselines and three variants of our
CA-Jaccard distance in Tab. 3. Then we analyze each com-
ponent of our method respectively.

Effect of CKRNNs. To verify the effectiveness of CK-
RNNs, we replace the robust KRNNs in Jaccard distance
with CKRNNs. The results in Tab. 3 demonstrate a sig-
nificant performance improvement compared to the base-
lines. Specifically, in the clustering scene, applying CK-
RNNs brings 1.4% mAP and 1.8 % Rank-1 improvement
on Market1501, and 4.0% mAP and 5.1% Rank-1 improve-
ment on MSMT17. In the re-ranking scene, CKRNNs con-
sistently improve the performance of BoT+KR. Especially
on the challenging MSMT17 datasets, it brings 6.2%/4.6%
mAP/Rank-1 improvement. These results validate the ef-
fectiveness of the CKRNNs.

Effect of CLQE. To validate the necessity of CLQE, we
incorporate CLQE into the Jaccard distance. The experi-
mental results, presented in Tab. 3, show that CLQE pro-
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Figure 3. (a) average inter-camera proportion, (b) average inter-camera total weight and (c) average neighbor accuracy of all training
samples’ weighted expanded neighbors vectors over different epochs from baseline, CKRNNs, CLQE and CAJ in clustering scene.

Table 3. Ablation study on individual components in the clustering
and re-ranking scenes. “CAJ” represents CA-Jaccard distance.

Method Market1501 MSMT17
mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

Clustering scene
CC* [10] 81.0 91.1 96.2 31.1 60.2 71.3

+CKRNNs 82.4 92.9 97.1 35.1 65.3 75.8
+CLQE 83.5 92.6 97.0 40.4 70.1 81.2
+CAJ 84.8 93.6 97.6 42.8 72.3 82.2

Re-ranking scene
BoT [25] 85.9 94.5 98.2 50.7 74.0 85.6

BoT+KR[51] 94.2 95.4 97.9 66.9 79.4 86.6
+CKRNNs 94.4 95.7 97.9 73.1 84.0 90.3

+CLQE 94.3 95.7 98.0 72.0 85.5 90.2
+CAJ 94.5 96.2 98.1 74.1 86.2 90.5

vides a significant performance improvement in both sce-
narios. CLQE improves the mAP and Rank-1 by 2.5% and
1.5% on Market1501, and 9.3% and 9.9% on MSMT17 re-
spectively in the clustering scenario. Meanwhile, in the re-
ranking scene, mAP/Rank-1 are improved when CLQE is
applied. These results underscore the importance of CLQE
in effectively mining reliable samples and increasing the
weights of reliable samples.

Neighbors analysis. To further investigate the effective-
ness of CKRNNs and CLQE, we plot three line charts in
Fig. 3, which represent the average inter-camera propor-
tion, average inter-camera total weight, and average neigh-
bor accuracy of all training samples’ weighted expanded
neighbors vectors over different epochs from baseline, CK-
RNNs, CLQE and CA-Jaccard distance in clustering scene.
As shown in Fig. 3 (a) and (b), we can observe that CK-
RNNs and CLQE improve the average proportion and total
weight of inter-camera samples in the weighted expanded
neighbors vectors. However, the combination of CKRNNs
and CLQE results in a subtle difference in proportion and
weight compared to using CKRNNs alone. This can be at-

tributed to the fact that most of the inter-camera samples
brought by CLQE are already included in CKRNNs. There-
fore, when CKRNNs and CLQE are used together, CK-
RNNs mainly focus on improving the proportion and total
weight of inter-camera samples in relevant neighbors, while
CLQE focuses more on improving the weights of reliable
samples. Moreover, Fig. 3 (c) demonstrates that the simul-
taneous use of CKRNNs and CLQE leads to better average
neighbor accuracy compared to using either one alone. This
suggests that CA-Jaccard distance maximizes the reliability
of relevant neighbors and distance, resulting in performance
improvement.

4.6. Parameter Analysis

In CA-Jaccard distance, four parameters are introduced, in-
cluding kintra1 , kinter1 for CKRNNs and kintra2 , kinter2 for
CLQE. We conduct experiments to analyze the impact of
each parameter on Market1501 and MSMT17 datasets in
both clustering and re-ranking scene. CC and BoT are the
baselines for clustering and re-ranking scene. The mAP re-
sults are presented in Fig. 4.

Impact of kintra1 and kinter1 in CKRNNs. In Fig. 4 (a)
and (b), we investigate the impact of kintra1 and kinter1 . We
observe that the performance remains stable when kintra1 is
within the range from 1 to 20 and kinter1 is within the range
from 15 to 30. This is because CLQE decreases the impact
of kintra1 and kinter1 in CKRNNs by emphasizing reliable
samples in weighted expanded neighbors vectors. However,
when kinter1 is set to 5, there is a significant decrease in per-
formance. Conversely, setting kintra1 to 1, meaning that the
intra-camera neighbors of samples only include themselves,
still achieves high performance. This finding validates that
inter-camera samples have more information and reliability
than intra-camera samples. Moreover, we find that setting
kintra1 or kinter1 with too large values will bring too many
noise samples and hinder the performance. Therefore, con-
sidering the performance on two datasets, we set kintra1 to
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Figure 4. Parameter analysis of kintra
1 , kinter

1 and kintra
2 /kinter

2 on Market1501 and MSMT17.

Figure 5. The t-SNE visualization of 10 persons’ features ex-
tracted by the models of (a) CC and (b) CC+CAJ. Different colors
and shapes indicate different identities and camera labels.

5 and kinter1 to 20.
Impact of kintra2 and kinter2 in CLQE. Due to intra-

camera and inter-camera k-nearest neighbors being noisy,
we follow [51] and limit the sum of kintra2 and kinter2 to
6. In Fig. 4 (c), we vary kintra2 /kinter2 from 1/5 to 5/1.
A smaller kintra2 and a larger kinter2 lead to the disregard of
intra-camera information, thereby limiting the performance.
Meanwhile, too large kintra2 and too small kinter2 weaken
the mining ability of CLQE for reliable samples and lead to
a decrease in performance. These experimental results lead
us to set kintra2 = 2 and kinter2 = 4.

4.7. Visualizations

To better understand the effect of our CA-Jaccard distance,
we conduct visualizations to qualitatively analyze the im-
pact of CA-Jaccard distance.

Clustering scene. We make t-SNE visualization [31] on
Market1501. As illustrated in Fig. 5, our method compacts
the samples of same person from different cameras (e.g. red
circle and blue circle in Fig. 5), indicating that our CA-
Jaccard distance helps generate more accurate pseudo labels
that guide the model learning camera-invariant features.

Re-ranking scene. Ranking results of BoT, BoT+KR,
BoT+CAJ on Market1501 are represented in Fig. 6. Com-
pared to KR re-ranking that uses Jaccard distance for re-
ranking, CA-Jaccard distance achieves better ranking re-
sults, which indicates the superiority of our method.

Figure 6. Ranking results of a probe produced by BoT, BoT+KR
and BoT+CAJ respectively.

4.8. Computational Complexity Analysis

We replace the robust KRNNs and LQE in the Jaccard dis-
tance with CKRNNs and CLQE, while keeping other parts
consistent. The computation of CKRNNs includes sorting
and applying k-reciprocal nearest constraint. Thus the com-
putational complexity of CKRNNs is O(N2logN), which
is comparable to that of KRNNs. However, robust KRNNs
still have a recall operation which is a time-consuming set
operation. The computational complexity of CLQE stays
the same as LQE. In summary, CA-Jaccard distance has
lower computational complexity and more reliable distance
than the Jaccard distance.

5. Conclusion
In this paper, we propose a novel CA-Jaccard distance for
person re-ID that overcomes camera variation and enhances
the reliability of Jaccard distance through the use of CK-
RNNs and CLQE. CKRNNs improve reliability by incorpo-
rating informative inter-camera positive samples while ex-
cluding intra-camera negative samples in neighbors. CLQE
mines reliable samples in CKRNNs and assigns higher
weights to them to further enhance the reliability. Exten-
sive ablation studies and experiment results validate the ef-
fectiveness and robustness of our method. The low com-
putational complexity and effectiveness of our CA-Jaccard
distance make it a general distance metric for person re-ID.
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[27] Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-
tuning cnn image retrieval with no human annotation. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
41(7):1655–1668, 2018. 6

[28] M Saquib Sarfraz, Arne Schumann, Andreas Eberle, and
Rainer Stiefelhagen. A pose-sensitive embedding for per-
son re-identification with expanded cross neighborhood re-
ranking. In CVPR, pages 420–429, 2018. 1, 2, 3, 6

[29] Xiaohui Shen, Zhe Lin, Jonathan Brandt, Shai Avidan, and
Ying Wu. Object retrieval and localization with spatially-
constrained similarity measure and k-nn re-ranking. In
CVPR, pages 3013–3020, 2012. 2

[30] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin
Wang. Beyond part models: Person retrieval with refined
part pooling (and a strong convolutional baseline). In ECCV,
pages 480–496, 2018. 1

17540



[31] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of Machine Learning Research, 9
(11), 2008. 8

[32] Dongkai Wang and Shiliang Zhang. Unsupervised person re-
identification via multi-label classification. In CVPR, pages
10981–10990, 2020. 2, 6

[33] Haochen Wang, Jiayi Shen, Yongtuo Liu, Yan Gao, and Ef-
stratios Gavves. Nformer: Robust person re-identification
with neighbor transformer. In CVPR, pages 7297–7307,
2022. 1

[34] Menglin Wang, Baisheng Lai, Jianqiang Huang, Xiaojin
Gong, and Xian-Sheng Hua. Camera-aware proxies for un-
supervised person re-identification. In AAAI, pages 2764–
2772, 2021. 5, 6

[35] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian.
Person transfer gan to bridge domain gap for person re-
identification. In CVPR, pages 79–88, 2018. 5

[36] Yuhang Wu, Tengteng Huang, Haotian Yao, Chi Zhang,
Yuanjie Shao, Chuchu Han, Changxin Gao, and Nong Sang.
Multi-centroid representation network for domain adaptive
person re-id. In AAAI, pages 2750–2758, 2022. 6

[37] Shiyu Xuan and Shiliang Zhang. Intra-inter camera similar-
ity for unsupervised person re-identification. In CVPR, pages
11926–11935, 2021. 6

[38] Fengxiang Yang, Ke Li, Zhun Zhong, Zhiming Luo, Xing
Sun, Hao Cheng, Xiaowei Guo, Feiyue Huang, Rongrong
Ji, and Shaozi Li. Asymmetric co-teaching for unsuper-
vised cross-domain person re-identification. In AAAI, pages
12597–12604, 2020. 1, 2

[39] Hong-Xing Yu, Wei-Shi Zheng, Ancong Wu, Xiaowei Guo,
Shaogang Gong, and Jian-Huang Lai. Unsupervised person
re-identification by soft multilabel learning. In CVPR, pages
2148–2157, 2019. 2

[40] Rui Yu, Zhichao Zhou, Song Bai, and Xiang Bai. Divide and
fuse: A re-ranking approach for person re-identification. In
BMVC, 2017. 2

[41] Kaiwei Zeng, Munan Ning, Yaohua Wang, and Yang Guo.
Hierarchical clustering with hard-batch triplet loss for person
re-identification. In CVPR, pages 13657–13665, 2020. 2, 6

[42] Yunpeng Zhai, Shijian Lu, Qixiang Ye, Xuebo Shan, Jie
Chen, Rongrong Ji, and Yonghong Tian. Ad-cluster: Aug-
mented discriminative clustering for domain adaptive person
re-identification. In CVPR, pages 9021–9030, 2020. 2

[43] Yunpeng Zhai, Qixiang Ye, Shijian Lu, Mengxi Jia, Ron-
grong Ji, and Yonghong Tian. Multiple expert brainstorming
for domain adaptive person re-identification. In ECCV, pages
594–611, 2020. 1, 2

[44] Xinyu Zhang, Jiewei Cao, Chunhua Shen, and Mingyu You.
Self-training with progressive augmentation for unsuper-
vised cross-domain person re-identification. In ICCV, pages
8222–8231, 2019. 1, 2

[45] Xiao Zhang, Yixiao Ge, Yu Qiao, and Hongsheng Li. Refin-
ing pseudo labels with clustering consensus over generations
for unsupervised object re-identification. In CVPR, pages
3436–3445, 2021. 1, 2, 6

[46] Xinyu Zhang, Dongdong Li, Zhigang Wang, Jian Wang, Er-
rui Ding, Javen Qinfeng Shi, Zhaoxiang Zhang, and Jing-

dong Wang. Implicit sample extension for unsupervised per-
son re-identification. In CVPR, pages 7369–7378, 2022. 1,
6

[47] Fang Zhao, Shengcai Liao, Guo-Sen Xie, Jian Zhao, Kai-
hao Zhang, and Ling Shao. Unsupervised domain adap-
tation with noise resistible mutual-training for person re-
identification. In ECCV, pages 526–544, 2020. 2

[48] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-
dong Wang, and Qi Tian. Scalable person re-identification:
A benchmark. In ICCV, pages 1116–1124, 2015. 5

[49] Yi Zheng, Shixiang Tang, Guolong Teng, Yixiao Ge, Kai-
jian Liu, Jing Qin, Donglian Qi, and Dapeng Chen. On-
line pseudo label generation by hierarchical cluster dynamics
for adaptive person re-identification. In ICCV, pages 8371–
8381, 2021. 6

[50] Zhedong Zheng, Xiaodong Yang, Zhiding Yu, Liang Zheng,
Yi Yang, and Jan Kautz. Joint discriminative and generative
learning for person re-identification. In CVPR, pages 2138–
2147, 2019. 1

[51] Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li. Re-
ranking person re-identification with k-reciprocal encoding.
In CVPR, pages 1318–1327, 2017. 1, 2, 3, 6, 7, 8

[52] Zhun Zhong, Liang Zheng, Zhiming Luo, Shaozi Li, and Yi
Yang. Invariance matters: Exemplar memory for domain
adaptive person re-identification. In CVPR, pages 598–607,
2019. 2

17541


