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Abstract

The rebroadcasting of screen-recaptured document im-

ages introduces a significant risk to the confidential docu-

ments processed in government departments and commer-

cial companies. However, detecting recaptured document

images subjected to distortions from online social networks

(OSNs) is challenging since the common forensics cues,

such as moiré pattern, are weakened during transmission.

In this work, we first devise a pixel-level distortion model of

the screen-recaptured document image to identify the robust

features of color artifacts. Then, we extract a chromaticity

map from the recaptured image to highlight the presence

of color artifacts even under low-quality samples. Based

on the prior understanding, we design a chromaticity map

adapter (CMA) to efficiently extract the chromaticity map,

and feed it into the transformer backbone as multi-modal

prompt tokens. To evaluate the performance of the pro-

posed method, we collect a recaptured office document im-

age dataset with over 10K diverse samples. Experimental

results demonstrate that the proposed CMA method outper-

forms a SOTA approach (with RGB modality only), reducing

the average EER from 26.82% to 16.78%. Robustness eval-

uation shows that our method achieves 0.8688 and 0.7554

AUCs under samples with JPEG compression (QF=70) and

resolution as low as 534×503 pixels.

1. Introduction

Document images, such as certificates, contracts, and iden-

tity documents, are gaining popularity in e-business and

e-government applications, which brings both convenience

and threat to our applications. Traditionally, an organization

controls the distribution of hard-copy documents to guard
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Figure 1. Illustrations of the low-quality genuine (top row) and

recaptured (bottom row) samples and their transformed domain

representations. (a) Image patches in RGB space. The samples

are collected by Canon C3530 (4800×1200 DPI) printer, OnePlus

5T camera (resolution at 1280×960 pixels), Dell P2418D display

(resolution at 2560×1440 pixels, size 23.8 inches), and subject to

JPEG compression with a quality factor of 70. (b) LBP maps with

a radius 1 containing 8 elements [40]. (c) Amplitude spectrum in

the Fourier domain. (d) Chromaticity map extracted by Eq. (5) in

our work. The color artifacts highlighted in (d) show clear differ-

ences between the genuine and recaptured samples.

against the leakage of confidential information. Many of-

fice documents with confidential information can be viewed

on screen for a limited time but cannot be printed as hard

copies [29]. However, illegal users could acquire the gen-

uine document image shown on display with their smart-

phones and distribute the recaptured document image

without being noticed [2, 31]. Worse still, these images are

usually transmitted through online social networks (OSN),

e.g., WhatsApp, and WeChat, which introduces further dis-

tortions (compression, resizing, etc.) to the document im-

ages. Thus, there is a pressing need to develop a recaptured

document detection scheme robust to various distortions.

Existing works on recaptured image detection focus on

face and natural images. For instance, literature exploits

physical traces of distortion, e.g., specularity distribution

[52], color saturation [7], edge blurriness [45] and moiré
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texture [19, 57, 58] to identify the natural images that are re-

captured from LCD screens. Many state-of-the-art (SOTA)

face anti-spoofing (FAS) methods incorporate multi-modal

forensic data, e.g., depth-based cues [3] and remote pho-

toplethysmography signals [37], to improve the robustness

under challenging scenarios. There are significant limita-

tions in the existing approaches. For these methods based

on hand-crafted features [7, 45, 52, 57], the robustness is

not satisfactory under documents with various contents and

image qualities. For those multi-modal FAS approaches

[3, 37], the additional modalities do not apply to document

images [42, 55]. Specifically, there is no depth difference

between genuine and recaptured document images, and no

physiological signal is available in a document.

There are a few works on recaptured document detec-

tion. Recently, Chen et al. [9] proposed a DPAD scheme

by a side-by-side forensic similarity comparison between

the questioned document image and a genuine reference.

Many existing DPAD methods only consider limited types

of document contents [9, 28, 34]. To improve the gener-

alization performance across different content, Benalcazar

et al. [4] developed a synthetic document image gener-

ation scheme by overlaying moiré patterns extracted from

recaptured images to genuine document images. However,

as demonstrated in Appendix D, the performance of deep

models trained by synthetic moiré data from [4] is not ro-

bust in the samples transmitted by OSN. A similar draw-

back is found in our recent work [10]. This is because the

moiré patterns in the low-quality samples are removed dur-

ing the blurring and down-sampling process. As shown in

Fig. 1 (b) and (c), some common textural and spectral rep-

resentations of document images are not distinctive under

the OSN distortions.

In this work, we exploit a model of pixel-level screen-

recapture distortion to address the limitations of existing

methods, i.e., generalization and robustness. According to

our insight of the distortion model, the color artifacts are

identified along the character edges. As shown in Fig. 1 (d),

we aggregate the color artifacts of a document image into

the chromaticity map. There are two merits for the chro-

maticity map. First, the color features in the chromaticity

map are independent of the high-level semantic content of

the document images, which improves the generalization

performance. Second, the color artifacts are strong even in

recaptured images without a moiré pattern, allowing robust

detection of the low-quality recaptured samples.

Subsequently, we propose the chromaticity map adapter

(CMA) to incorporate the extracted chromaticity map as

multi-modal prompt tokens into the transformer backbones.

Cross-domain experimental results show that the proposed

CMA improves the performance of a SOTA approach (with

RGB modality alone) by, on average 37.71 % reduction of

EER or 10.04 percentage points (p.p.) improvement. Our

CMA also shows 0.8688 AUC under a JPEG compression

distortion with a quality factor of 70, which shows 0.1085

improvement in AUC over a generic ViT-based multi-modal

transformer with RGB and chromaticity inputs.

The main contributions of this work are as follows.

• We devise a pixel-level distortion model focusing on re-

sampling operations in the screen-recaptured document

images. This model reveals the underlying source and

robustness properties of the color artifacts.

• We extract the chromaticity map to highlight the color

artifacts in a document image and design a chromaticity

map adapter (CMA) to efficiently input the forensic cues

to a transformer backbone.

• We gather and share the Recaptured Office Document

(ROD) dataset, with 4860 genuine images and 6027 re-

captured images, which covers document images with

various acquisition devices, contents, and image qualities.

2. Literature

2.1. Works on Forensic Color Cues

Color has been an important forensic cue. Riess and An-

gelopoulou [43] proposed the inverse-intensity chromaticity

(IIC) space to estimate the illumination color. The illumina-

tion map based on IIC space is then employed in the manip-

ulation detection of digital images. Carvalho et al. [15] ex-

ploited the fact that objects of similar material show similar

color characteristics, which applies to the problem of face

manipulation detection in a photo with two or more people.

Hadwiger and Riess [24] learned a robust image splicing lo-

calization method for detecting image regions from differ-

ent images based on the contrastive loss of color features.

Li et al. [33] analyzed the residuals of color components

in HSV and YCbCr color spaces to distinguish the real and

deep network generated images.

However, existing methods on this topic are designed for

different forensics tasks, which are different from the re-

captured document detection task in our work. Compared

with image tampering localization, the recaptured docu-

ment detection task needs to identify the forensic discrep-

ancies across different samples instead of finding the image

regions with large intra-sample differences within an im-

age. Without a counterpart for comparison, the latter task

is more susceptible to variations in the questioned samples,

e.g., acquisition devices, contents, and image qualities.

As a side note, there have been many research efforts on

color constancy which is an important step in estimating the

illumination color. Color constancy is a fundamental low-

level computer vision task that has been studied for decades

[11, 23]. There is a growing interest in color constancy re-

search based on deep learning [32, 39, 41, 53, 56]. How-

ever, these works do not aim at forensic applications.
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Figure 2. The block diagram illustrates the collection of screen-recaptured document images with emphasis on the re-sampling operation

in pixels and sub-pixels. (a) The result of re-sampling covering bright blue sub-pixel along a dark edge. (b) The result of re-sampling

covering bright blue and green sub-pixels along a dark edge.

2.2. Works on Adapter in Transformers

An adapter adds new modules between layers of a pre-

trained network. Only the task-specific parameters are

added and trained for a new task. Houlsby et al. [27] first

introduced a bottleneck adapter structure within transformer

blocks, freezing the original backbone to rapidly adapt the

pre-trained model to downstream natural language process-

ing tasks, achieving performance comparable to fine-tuning.

In the domain of computer vision, Li et al. [35] proposed

fine-tuning ViT [17] for object detection with minimal mod-

ifications. ViT-adapter [13] employed adapters to facilitate

the standard ViT in handling various downstream tasks. Liu

et al. [38] introduced the Explicit Visual Prompt (EVP)

technique, which integrates explicit visual prompts into the

adapter. Chen et al. [12] implemented adapters in the image

segmentation model SAM. For the face anti-spoofing task,

there are some novel adapter-based methods [5, 6, 14, 54].

Specifically, Cai et al. [6] proposed a novel S-Adapter to

adapt pre-trained ViT models, extracting statistical informa-

tion via token histograms to achieve better generalization

performance in FAS.

Inspired by the above literature, we design an adapter

that extracts discriminative forensic color cues for the task

of recaptured document image detection.

3. Proposed Method

This section introduces the color artifacts with insights from

the theoretical model and real samples. Then, we design the

chromaticity map adapter based on prior knowledge from

the color artifacts targeting the screen-recaptured document

image detection task.

3.1. Distortion Model of the Color Artifacts

In this part, we present the proposed distortion model of the

color artifact in screen-recaptured document images. Our

model focuses on the signal discretization steps, involving

pixelation (in display) and re-sampling (in imaging sensor)

distortions, which are the main reasons for color artifacts. It

reveals the origins of the color artifacts in screen-recaptured

document images. To ensure the tractability of our model,

we illustrate the distortion with the one-dimensional (1D)

color artifacts in the horizontal direction.

Fig. 2 illustrates the displaying process D[·]. An image

is rendered in pixels, each consisting of three sub-pixels in

red, green, and blue. Considering an ideal spatial light mod-

ulation process [25], we can model the unit-intensity output

from each sub-pixel as a rectangular function. That is

fc(x,∆xc) =

{

1, |x−∆xc| ≤
d
2

0, otherwise
. (1)

where x is the horizontal coordinate in the physical domain

(continuous), c ∈ {R,G,B} represents the color channels,

d denotes the width of each sub-pixel, and ∆xc represents

the central coordinate of a sub-pixel in the c channel within

a display pixel.

Each color channel operates independently. Thus, the

displayed content ID of the n-th pixel in a genuine image

IG can be formulated as a concatenation of the modulated

intensity of different color channels. That is

ID(x, n) = D [IG(n)] = g
[

∥
c

IcG(n) · fc(x,∆xc)
]

(2)

where ‘∥’ concatenates the results from different color chan-

nels, IcG(n) represents the intensity of c channel for the n-th
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Figure 3. The process of chromaticity map extraction and visualization with a real recaptured image (top row), a simulated screen-

recaptured image (top row) by theoretical distortion model in Sec. 3.1, and a real genuine image (bottom row). Obvious color artifacts can

be seen in real and simulated recaptured images (top row), while no such artifact is observed in the bottom row.

pixel. Moreover, g(·) = (·)−γ represents the gamma correc-

tion of a display [20], and γ is chose as 2.2 adapting to our

experimental configuration.

Based on the single-pixel formulation in Eq. (2), we de-

vise the 1D formula of the displayed content that consists of

N pixels by repeating Eq. (2) at the multiple widths of D,

which is

ID(x) = g
[

N
∑

n=1

∥
c

IcG(n) · fc
(

x− nD,∆xc

)

]

. (3)

In the recapturing process R[·], the 1D pixels in the dis-

played document image are captured by the 1D imaging

sensor. We focus on the blurring and re-sampling distor-

tion since they are the primary source of the color artifacts.

Following [8], the recaptured document image can be char-

acterized as the result of both blurring and re-sampling dis-

tortion, which is

IR(x) = R
[

ID(x)
]

= ID(x−∆R)⊗ Flp(x, α) ·
∑

kδ(x− kT ) (4)

where ∆R ∈ [0, D) represents the positional offset between

the imaging sensor and the displaying device during the re-

capturing process, δ(·) denotes the Dirac delta function, k

is the 1D index of the sensor pixel in the camera, and T

denotes the re-sampling period, i.e., the size of an imaging

pixel. The blurring distortion introduced during the imag-

ing process is also simulated by the low-pass filter Flp(·)
and its kernel diameter α = 1 pixel in our simulation.

Our distortion model in Fig. 2 and Eq. (4) suggests that

an image pixel is obtained by re-sampling a local region of

the displayed content (i.e., some sub-pixels with different

offsets) covered by a blurring filter.

3.2. Color Artifacts in Recaptured Characters

Based on our model in Sec. 3.1, we elaborate on the color

artifacts around characters in a recaptured image. Accord-

ing to Fig. 2 and Eq. (4), an imaging device recaptures the

displayed pixels on a screen, where each pixel consists of

horizontally arranged red, green, and blue sub-pixels1. Due

to the misalignment between display and camera devices

(specified by parameter ∆R) and the choice of sampling pe-

riod (i.e., parameter T ), each imaging pixel seldom covers

the exact region of one or multiple display pixels. More

commonly, the alignment between display and camera pix-

els is not perfect. Each imaging pixel samples the intensity

values from a fraction of one or more pixels in the horizontal

direction. Consider a dark character on a white background,

such imperfect re-sampled image pixels collect unbalanced

emitting light from the red, green, and blue sub-pixels. As

shown in Fig. 2 (a), the image pixels along the left side of a

dark edge may consist of a higher intensity in the blue color

channel. Similarly, those along the right side of a dark edge

could cover the red sub-pixels. Thus, there are color arti-

facts along a dark edge in the recaptured document images,

as illustrated by pixels x2 and x4 in Fig. 3.

Generalization of the color artifacts: First, the color ar-

tifacts can be observed in different types of documents. Ac-

cording to our analysis, the color artifacts are pronounced

in edges with high contrast, such as dark characters on

light backgrounds. Second, the color artifacts explained by

Fig. 2 and Eq. (4) also apply to different channel variations,

e.g., RGB sub-pixel layouts, display, imaging resolutions,

and perspective distortion. Different hardware specifica-

tions and recapturing setups lead to variations of parameters

∆R, T , and ∆xc in our model, or even the need for a com-

plicated two-dimensional distortion model. However, the

camera pixels are commonly overlaid onto the display pix-

els without precise alignment. The re-sampling of display

pixels with misalignment leads to unbalanced RGB intensi-

ties in some directions. Thus, color artifacts always appear

1We first consider the common stripe layout of RGB sub-pixels on LCD

screens [25], while our observations apply to general layouts.
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Figure 4. The architecture of the proposed CMA consists of Ex-

traction and Tuning steps. The Extraction step extracts chromatic

features according to Eq. (5), while the tuning phase maps the

chromaticity patches into latent embedding.

in the recaptured document images.

3.3. Our Chromaticity Map Adapter

In this section, we design a chromaticity map adapter

(CMA) with layers for adapting Visual Prompt Tuning

(VPT) [30] pre-trained on ImageNet [16] to the screen-

recaptured document image detection task. CMA keeps

the backbone frozen and contains tunable parameters to

learn the chromatic features of color artifacts discussed in

Sec. 3.1.

An adaptor adapts the input data to a new task by incor-

porating new layers. These layers extract task-specific in-

formation (or data modality) from the input and allow effi-

cient multi-modal training for various tasks [12, 13, 27, 38].

The adapter outputs are then fed to the transformer back-

bone as prompt tokens. The vanilla Vision Transformer

(ViT) [17] backbone is utilized due to its proven effective-

ness [54]. As illustrated in the left part of Fig. 4, the CMA

is divided into Extraction and Tuning.

In Extraction, we enhance the chromatic information by

computing the chromaticity map. First, we divide an image

I ∈ R
H×W×3 into small patches Ip ∈ R

224×224×3 to fit

the input size of our network. Then, we devise our chro-

maticity map according to the analysis in Sec. 3.2 where

we identify that the color artifacts arise from the imbalance

of RGB color components. Inspired by the IIC space [44],

we enlarge the disparity in RGB color components by com-

puting the chromaticity map (a.k.a., the normalized RGB

values) C(x) of the input image (genuine or recaptured) as

Cc(x) = N

[

Ic(x)
∑

c I
c(x)

]

, c ∈ {R,G,B} (5)

where x is the 2D coordinate of image Ic(x) in color chan-

nel c, and N [·] denotes the Z-score normalization [21].

To facilitate our understanding, we visualize the chro-

maticity map with a linear mapping to yield C ′(x) as

demonstrated in Fig. 3. A large value of a color channel

in C ′(x) indicates the dominating of such color component

in the document image I(x). Chromaticity value Cc(x) is

large when the denominator is small but the nominator is

large. As illustrated by the visualization of the chromatic-

ity map in Fig. 3, such a scenario occurs along the edges of

a dark character shown on a bright background in a recap-

tured document image, i.e., pixels x2 and x4. However, the

chromaticity values are small in a genuine document image

(see pixels x5 and x6). This is because the sampling rate

of a camera (∼300 dpi on an A4-size paper with a high-

resolution camera) is much smaller than that of the resolu-

tion of a printing device (as high as 1200 dpi).

In Tuning, adaptation is conducted across all layers effi-

ciently and effectively by considering the features derived

from the chromaticity map. The chromaticity map extracted

by Eq. (5) enhances the color artifacts mentioned in Sec. 3.2

and provides distinctive forensic clues for detecting recap-

tured documents. Traditional methods concatenate the data

from different modalities (i.e., RGB data and chromaticity

map) with a fully connected (FC) classifier. However, such

FC-based multi-modal methods tend to over-fit the train-

ing samples [22], and neglect the multi-modal features from

cross-modal tokens [54]. Motivated by the enhanced high-

frequency components in [38], we learn explicit prompts

from chromatic features with trainable linear layers. Specif-

ically, the linear layer Lcm projects the chromaticity patch

Cp into a m-dimension feature Fcm ∈ R
m, that is

Fcm = Lcm(Cp) (6)

where m is the product of the ViT-B16 embedding size and

the number of prompts (i.e., 10 in our implementation).

4. Dataset

1) ROD dataset : We have built a large-scale and practical

document image database named the ROD dataset, which

comprises 10,887 genuine and screen-recaptured document

images containing business information in offices. Consid-

ering the disparities in imaging quality and document con-

tent, we partitioned it into three subsets, i.e., ROD HQ,

ROD LQ, and ROD M&F. The database collection pro-

cess involves collecting genuine documents and recaptur-

ing them from document images. We summarize the ROD

dataset’s three subsets in Tab. 1.

Collecting genuine documents: The genuine documents

should be carefully chosen since they serve as the source

images in our dataset. Firstly, the content of the chosen

documents should be of practical significance. As illus-

trated in Fig. A2, the documents include Chinese and En-

glish contracts, sales orders, electronic invoices, etc. We
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Subsets

Types Genuine

(# imgs, Config.)

Recaptured

(# imgs, Config.)

HQ

(4032 × 3024)

548 images,

by 2 pairs of P-Cs

822 images,

by 6 pairs of D-Cs

LQ

(1280 × 960)

1096 images,

by 4 pairs of P-Cs

1096 images,

by 12 pairs of D-Cs

M&F

(4032 × 3024 &

1280 × 960)

3216 images,

from MP-DocVQA [46]

and “Find it again! [47]”

4109 images,

by 18 pairs of D-Cs

Table 1. Summary of different subsets in our ROD dataset. P-

C and D-C are the abbreviations for print-capture and display-

capture devices, respectively.

obtained 137 genuine documents for subsets ROD HQ and

ROD LQ. Secondly, we adopt 3,216 samples with rich tex-

tual content from the public datasets MP-DocVQA [46] and

“Find it again! [47]” as the genuine document images in

ROD M&F. The images in ROD M&F encounter common

distortions for document images in practice, such as bina-

rization, etc.

Recapturing from document images: We accounted for

the diverse range of real-world display devices and imag-

ing configurations in our data collection. We took into

account the variations in imaging configurations found in

practical settings. Our dataset encompasses 24 differ-

ent print/display-imaging device combinations, including 1

printing device, 3 screen devices, and 6 imaging devices, re-

sulting in 4860 genuine images and 6027 screen-recaptured

images of varying quality. These devices cover a diverse

range of hardware parameters. During the printing or dis-

playing of document images, we resize the document con-

tent to cover the A4 size paper or the whole screen, respec-

tively. Regarding imaging devices, there are 2 smartphones

with high imaging resolution (at 4032×3024 pixels) and

4 smartphones with lower resolution (at 1280×960 pixels,

achieved by a third-party App, Open Camera [1]). The pro-

cess of collecting recaptured document images follows the

rules outlined in [9], except that we adjusted the capturing

distance to accommodate different document sizes. More

details of the ROD dataset are presented in Appendix A.

2) DLC2021 [18]: The Document Liveness Detection

Dataset (DLC2021) dataset comprises 1,424 video clips

of various identity documents, captured at resolutions of

1080×1920 and 2160×3840 pixels, and frame rates of 30

fps and 60 fps, illustrating original and screen-recaptured

documents. The latter exhibit moiré patterns, sourced from

displays of office desktops and laptops. To enhance im-

age quality and mitigate video compression artifacts, the

FFmpeg [? ] library was used to extract six intra-coded

frames (I-frames) from each clip. The refined dataset con-

tains 1,740 genuine and 2,400 screen-recaptured samples,

serving as a testing set in our experiment.

5. Experiment

5.1. Experimental Protocols

Our preliminary results show that all models achieve AUCs

of 1.0 in the intra-dataset experiment. Therefore, we focus

on two practical and challenging cross-domain experimen-

tal protocols.

1) Cross-Dataset Experiment: The training and test-

ing sets contain the same document types but are col-

lected by acquisition devices of high and low imaging

quality, respectively. Specifically, experimental protocol

ROD HQ→ROD LQ is carried out. The model trained

by ROD HQ learns the chromatic features from high-

quality devices and is evaluated in low-quality samples from

ROD LQ.

2) In-the-Wild Experiment: In this experiment, two pro-

tocols (ROD HQ→ROD M&F and ROD HQ→DLC2021)

are executed to test the model under various conditions.

These protocols involve training and testing sets that in-

clude different types of documents, and the testing set fea-

turing samples with varying distortions (e.g., binarization,

blurring, compression).

5.2. Experimental Results

5.2.1 Cross-Dataset Results

In this protocol, genuine and screen-recaptured document

images have identical content but differ in imaging quality.

We utilize ROD HQ as the training set and ROD LQ for

testing. Within the training set, 20% of samples are reserved

for validation.

In the experiment, we consider SOTA approaches for de-

tecting screen-recaptured natural images [51] and ID doc-

ument images [4]. These methods [4, 51] propose data

augmentation methods by overlaying the moiré patterns ex-

tracted from screen-recaptured images onto some genuine

samples to produce synthesized recaptured samples. Benal-

cazar et al. utilizes a generic CNN-based backbone, Mo-

bileNetV2 in [4]. To allow an extensive comparison, we in-

corporate the moiré patterns synthesis strategy [4, 51] into

more CNN-based models (ResNet50 [26], ResNeXt101

[50]) and Transformer-based models (ViT-B16 [17] and

VPT [30]). To further contextualize our proposal with re-

cent advancements in the field, we extend our comparisons

to include LTC-PE [58] and CNN + ViT [19]. The settings

for these models are consistent with those presented in [4].

All methods process patches and implement majority vot-

ing to aggregate the patch-level decisions into image-level

ones. Performance is evaluated using the Area Under the

ROC Curve (AUC) and Equal Error Rate (EER) metrics.

For the single-modality approaches, the networks receive

input patches of size 224×224 pixels. They are trained us-

ing an Adam optimizer with a batch size of 32. The training
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Distortions

Methods

RGB only RGB+Chromaticity

ViT VPT ViT CMA (ours)

AUC EER AUC EER AUC EER AUC EER

Origin 0.7669 35.64% 0.7883 30.14% 0.7714 34.63% 0.8991 20.79%

Resize (0.9) 0.7351 37.99% 0.7438 35.61% 0.7391 37.39% 0.8410 27.31%

Resize (0.8) 0.7163 39.26% 0.7232 37.30% 0.7289 39.07% 0.7900 33.24%

Resize (0.7) 0.6954 41.01% 0.6908 41.54% 0.7080 40.86% 0.7554 36.52%

Compress (90) 0.7531 35.71% 0.7680 32.83% 0.7605 35.06% 0.8888 22.07%

Compress (80) 0.7489 37.07% 0.7592 35.68% 0.7784 33.90% 0.8731 23.51%

Compress (70) 0.7402 38.13% 0.7536 36.79% 0.7603 35.96% 0.8688 24.62%

Blur (1) 0.6582 40.69% 0.6356 39.35% 0.6990 43.09% 0.7450 29.85%

Blur (2) 0.5973 43.17% 0.6017 41.84% 0.6487 46.32% 0.6861 34.28%

Blur (3) 0.5509 45.40% 0.5680 43.92% 0.6230 47.78% 0.6282 39.69%

Table 2. Comparisons of different approaches under ROD HQ→ROD LQ protocol with dif-

ferent post-processing, i.e., resizing, JPEG compression, and Gaussian blur. The best per-

formance under each case is boldfaced. “Origin” denotes the experimental protocol without

distortions. The numbers in parentheses denote the resizing ratio, JPEG quality factor, and

variances of Gaussian blur kernels, respectively.

ViT

ViT

VPT

CMA (Ours)

Top:

RGB only

Bottom:

RGB+

Chromaticity

Genuine Recaptured

Figure 5. The patch-level responses

of different approaches for a sample in

ROD M&F. Under the ideal case, re-

sponses should contain no red patch.

spans 20 epochs with a learning rate of 1 × 10−4. For the

multi-modal CNNs, we process the RGB and chromatic-

ity data, respectively, with the same CNN backbones and

employ the cross-modal focal (CMF) loss [22] in merging

information from different modalities. For the multi-modal

ViT-based backbone, we divide the chromaticity map into

patches according to [54]. These patches are then flattened

and fed to the backbone with a trainable linear projection.

ROD HQ → ROD LQ: As shown in Tab. C1, methods re-

lying on a single modality do not achieve satisfactory per-

formance. Due to missing moiré patterns and blurriness of

font edges in low-quality samples, many important foren-

sic features are lost. Therefore, the performance of RGB-

modality methods relying on texture, such as LTC-PE and

CNN + ViT is compromised. Methods using only chro-

maticity data also underperformed on ROD LQ, indicating

reliance solely on RGB or chromaticity data for image-level

decisions is unreliable. In contrast, by integrating RGB and

chromaticity data, our multi-modal CMA model achieved

superior performance with an AUC of 0.8991 and an EER

of 20.79%. More details are shown in Appendix C.

Ablation Study: An ablation study of our method can be

performed by comparing the performance of multi-modality

ViT and our CMA (both with and without the chromaticity

map extraction step). The difference between these methods

lies in the way that chromaticity maps are input to the back-

bone. The chromaticity maps are fed to the ViT backbone as

with linear embedding layers, while they are extracted by an

adapter by our CMA method. The CMA (w/o Ext.) method

removes the chromaticity extraction layers in our CMA, and

it degrades to a single modality approach with RGB data

only. As shown in Tab. C1, both the multi-modality ViT and

CMA (w/o Ext.) suffer from significant performance loss

compared to the proposed CMA method. On the one hand,

the limited multi-modal fusion capability in the ViT model

[54] leads to poor performance of 34.63% EER (an incre-

ment of 13.84 p.p.) with the direct input of multi-modalities

data. On the other hand, the missing chromaticity map in

CMA (w/o Ext.) leads to a significant degradation of gen-

eralization performance (a reduction of 0.0952 in AUC and

an increment of 12.61 p.p. in EER) compared to our CMA.

Thus, our CMA is more robust under low-quality samples.

Robustness Experiment: Transformer-based models pre-

trained on ROD HQ were assessed under three image dis-

tortions (image resizing, JPEG compression, and Gaussian

blur) which reflect common distortions under Online So-

cial Network (OSN) transmissions. As shown in Tab. 2,

our findings indicate that the proposed CMA model demon-

strated superior robustness across all tested distortions, par-

ticularly under JPEG compression, where it shows small

performance degradation even under a JPEG quality factor

of 70. More details are shown in Appendix D.

5.2.2 In-the-Wild Results

In this protocol, all methods and training strategies remain

consistent with those in Sec. 5.2.1.

ROD HQ → ROD M&F: Genuine and recaptured docu-

ment images differ in content, and recaptured samples cover

a range of imaging qualities. ROD HQ is used as the train-

ing set and ROD M&F for testing. It is noted that there

are equal amounts of low and high-quality samples in the

ROD M&F dataset.

The models with only RGB data receive poor perfor-

mance in the ROD M&F testing set, while methods us-

ing only chromaticity data maintain stable performance
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ROD HQ → ROD M&F ROD HQ → DLC2021

Method AUC EER AUC EER

Single modality: RGB only

LTC-PE [58] 0.6116 46.14% 0.6272 42.87%

CNN + ViT [19] 0.7406 33.60% 0.7836 29.08%

ResNet50 0.6634 38.18% 0.6770 39.41%

ResNeXt101 0.7585 36.32% 0.6880 39.73%

MobileNetV2 [4] 0.8094 26.27% 0.7235 33.96%

ViT 0.7546 33.27% 0.7356 32.23%

VPT [30] 0.7967 28.45% 0.7547 30.89%

CMA (w/o Ext.) 0.8282 27.39% 0.7765 27.04%

Single modality: Chromaticity Map only

ResNet50 0.7281 40.91% 0.5596 44.64%

ResNeXt101 0.8035 32.19% 0.5796 46.20%

MobileNetV2 0.7274 32.88% 0.5768 44.04%

ViT 0.7304 29.26% 0.6221 41.50%

VPT 0.7499 32.20% 0.6805 36.24%

Multi-modalities: RGB + Chromaticity

ResNet50 0.6892 40.65% 0.7051 35.49%

ResNeXt101 0.7767 29.85% 0.7114 35.93%

MobileNetV2 0.8051 27.40% 0.7400 33.48%

ViT 0.8094 28.22% 0.7651 33.22%

CMA (ours) 0.9475 12.77% 0.8489 25.82%

All networks: Trained by the moiré augmentation strategy in [4].

Single modality methods:

LTC-PE, CNN+ViT: recent approaches from [58], [19], respectively;

ViT: the Vanilla Vision Transformer [17]; VPT: Visual Prompt Tuning with ViT [30];

CMA (w/o Ext.): Our CMA method without chromaticity map extraction step.

Multi-modalities methods:

CNNs: fusion by the CMF loss [22];

ViT: ViT backbone with RGB and chromaticity input tokens;

CMA: ViT with RGB tokens and chromaticity prompts processed by our adapter.

Table 3. Comparisons of different approaches under in-the-wild

experiment. The best performance under each protocol is bold-

faced. By efficiently incorporating a chromaticity map, our CMA

achieves the best performance under both protocols.

compared to the performance under the ROD LQ testing

set. This is because the chromaticity map is insensitive to

changes in document content, as demonstrated by examples

shown in Appendix B. For multi-modality cases, the pro-

posed model exhibits SOTA performance under this proto-

col with an AUC of 0.9475 and an EER of 12.77%.

Notably, there are significant performance improvements

for the proposed CMA (0.0484 in AUC and 8.02 p.p.

in EER) under the ROD M&F compared to that under

the ROD LQ. This is because the document images in

ROD M&F are with black text and white background, as

illustrated in Fig. A2 in the supplementary material. Some

of the document images adopted from MP-DocVQA [46]

have been post-processed by a binarization algorithm for

quality enhancement. Such content with high contrast facil-

itates the observation of the color artifacts as demonstrated

in Fig. 3. Thus, our CMA achieves better performance in

ROD M&F than that in ROD LQ though the former is more

challenging for the other methods.

The above findings are further supported by network re-

sponses in Fig. 5. By comparing the patch-level responses

from different methods, we confirm that both the robust

chromaticity map and the efficient chromaticity adapter

contribute to the improvement of generalization perfor-

mance in our CMA approach. The t-SNE visualization

demonstrates similar results as shown in Appendix E. The

latent spaces of our CMA method show a clear separation

of the genuine and screen-recaptured samples.

ROD HQ → ROD DLC2021: In this protocol, ROD HQ

is utilized as the training set, while the testing samples are

derived from the public dataset DLC2021 [18]. It is noted

that this protocol is very challenging due to serious degra-

dation (e.g., low resolution, slow auto-focus, and compres-

sion) in the video recording mode employed in gathering

the DLC2021 dataset.

As illustrated in Tab. 3, methods relying on single-modal

data experience a performance decline, because samples in

DLC2021 contain numerous distortions. In particular, blur-

ring distortion makes chromaticity maps less effective than

before. Consistent with the conclusions in Appendix D, our

method shows a performance drop when facing blur attacks.

Despite this, CMA outperforms the other methods with an

AUC of 0.8489 and an EER of 25.82%.

6. Conclusion

In this work, we have demonstrated the efficacy of a foren-

sic feature from the sub-pixel sampling color artifacts. The

color artifacts are aggregated in our chromaticity map,

which is fed to a ViT backbone with the proposed CMA

approach. The generalization and robustness of our CMA

approach have been successfully demonstrated under re-

captured document samples with different acquisition de-

vices, contents, and image qualities. Robustness evaluation

confirms that the proposed method shows superior perfor-

mances compared to the RGB-only approaches and a multi-

modal ViT backbone without using our CMA.

The chromaticity map studied in this work is promising

in different forensics applications. For example, the color

artifacts presented in a recaptured document image should

be in-homogeneous under the splicing attack. This is be-

cause the re-sampling factors (between different pairs of

display and imaging devices) vary across different docu-

ment images. Moreover, the chromaticity map, highlight-

ing the disparity in different color channels, may also be

employed as a new data modality in identifying generated

document images by deep networks or locating regions tam-

pered by photo editing tools [33]. This is due to the fact

that the synthetic document data is not generated by the re-

sampling operation elaborated in Sec. 3.1.
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tion in digital photos. TIP, 32:694–708, 2023. 6

[52] Hang Yu, Tian-Tsong Ng, and Qibin Sun. Recaptured photo

detection using specularity distribution. In ICIP, pages

3140–3143, 2008. 1, 2

[53] Huanglin Yu, Ke Chen, Kaiqi Wang, Yanlin Qian, Zhaoxi-

ang Zhang, and Kui Jia. Cascading convolutional color con-

stancy. In AAAI, pages 12725–12732, 2020. 2

[54] Zitong Yu, Rizhao Cai, Yawen Cui, Xin Liu, Yongjian Hu,

and Alex Kot. Rethinking vision transformer and masked

autoencoder in multimodal face anti-spoofing. arXiv preprint

arXiv:2302.05744, 2023. 3, 5, 7

[55] Ling Zhang, Yinghao He, Qing Zhang, Zheng Liu, Xiaolong

Zhang, and Chunxia Xiao. Document image shadow removal

guided by color-aware background. In CVPR, pages 1818–

1827, 2023. 2

[56] Zhifeng Zhang, Xuejing Kang, and Anlong Ming. Domain

adversarial learning for color constancy. In IJCAI, pages

1693–1699, 2022. 2

[57] Nan Zhu and Zhiqin Liu. Recaptured image forensics based

on local ternary count of high order prediction error. SPIC,

104:116662, 2022. 2

[58] N. Zhu and Z. Liu. Recaptured image forensics based on lo-

cal ternary count of high order prediction error. SPIC, 2022.

2, 6, 8

15586


	. Introduction
	. Literature
	. Works on Forensic Color Cues
	. Works on Adapter in Transformers

	. Proposed Method
	. Distortion Model of the Color Artifacts
	. Color Artifacts in Recaptured Characters
	. Our Chromaticity Map Adapter

	. Dataset
	. Experiment
	. Experimental Protocols
	. Experimental Results
	Cross-Dataset Results
	In-the-Wild Results


	. Conclusion

