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Abstract

The rapidly growing scale of data in practice poses de-
mands on the efficiency of retrieval models. However, for
fine-grained image retrieval task, there are inherent con-
tradictions in the design of hashing based efficient models.
Firstly, the limited information embedding capacity of low-
dimensional binary hash codes, coupled with the detailed
information required to describe fine-grained categories,
results in a contradiction in feature learning. Secondly,
there is also a contradiction between the complexity of fine-
grained feature extraction models and retrieval efficiency.
To address these issues, in this paper, we propose the char-
acteristics matching based hash codes generation method.
Coupled with the cross-layer semantic information transfer
module and the multi-region feature embedding module, the
proposed method can generate hash codes that effectively
capture fine-grained differences among samples while en-
suring efficient inference. Extensive experiments on widely
used datasets demonstrate that our method can significantly
outperform state-of-the-art methods.

1. Introduction
Recently, there has been a growing interest in efficient Fine-
Grained Image Retrieval (FGIR) due to the ever-increasing
data scale in practical applications. As a representative so-
lution to efficient retrieval, hashing based model has been
introduced for this task. Different from common coarse-
grained datasets that most traditional hashing methods are
designed for, the primary feature of fine-grained datasets
is that categories involved in one fine-grained dataset usu-
ally belongs to the same meta-category (like bird or aircraft)
[22]. It results in small inter-category difference and rel-
atively large intra-category variance (because of pose and
angle). As a result, how to fully discover and extract sub-
tle fine-grained features and learn discriminative hash codes
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in an effective and efficient approach becomes the emphasis
and difficulty in the design of fine-grained hashing methods.

In the past several years, a series of fine-grained hash-
ing methods have been published and achieved signifi-
cant progress on the task of efficient FGIR. Motivated by
the aforementioned difficulty in discriminative fine-grained
hash codes generation, the main attention of researchers
has been paid to the design of feature extraction mod-
ules. They sufficiently draw lessons from the basic ideas
of well-developed fine-grained feature learning or classifi-
cation methods, and attempt to concatenate feature vectors
extracted from multiple image regions and network layers
for generating more discriminative hash codes.

However, there are inherent contradictions between the
fine-grained feature learning and hashing based retrieval,
which has been ignored by nearly all these methods. Firstly,
it is the contradiction in feature learning. Concretely, in-
tegrating comprehensive information is critical for describ-
ing a fine-grained object, but the length of target hash codes
is usually extremely low and fixed. Therefore, limited by
the information embedding capability of low-dimensional
binary codes, better feature extraction models and more
high-dimensional fine-grained feature vectors cannot al-
ways achieve corresponding performance gains because of
the information loss during the mapping from feature vec-
tors to binary codes. Furthermore, there is also a contra-
diction between effectiveness and efficiency. A compre-
hensive fine-grained feature extraction module usually leads
to more extra parameters and computational costs, which is
detrimental to the primary target of hashing based retrieval,
i.e., efficient inference and retrieval.

As a result, although fully learning discriminative fine-
grained information is critical for hashing based FGIR
tasks, it is obvious that the traditional idea, i.e., simply map-
ping the feature vectors extracted by a complex model to
hash codes, is not the optimal choice to handle this issue.
Furthermore, if a fine-grained hashing method is consid-
ered as a whole rather than a simple combination of feature
learning and hash code learning modules, it can be found
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that the ultimate goal of fine-grained hashing methods is
employing low-dimensional binary codes to represent fine-
grained differences among samples, rather than providing a
detailed description of the input samples. This implies that
there is no necessity to entirely embed the extracted fine-
grained features into the hash codes, which is also impos-
sible in fact. Instead, these fine-grained feature vectors can
be abstracted into descriptions of critical characteristics for
discriminating fine-grained categories. And then these char-
acteristics can be stored as prior knowledge. As a result, the
degree of matching between samples and these critical char-
acteristic vectors can be mapped into hash codes.

Overall speaking, compared to the traditional process of
concatenating feature vectors and then mapping them into
hash codes, this characteristics matching based hash code
generation strategy offers two significant advantages. 1)
Firstly, this approach shifts the focus from concrete sample
descriptions to the abstract level of matching with specific
characteristics. It greatly simplifies the information that
needs to be embedded in the hash codes while ensuring the
descriptive power for significant differences among sam-
ples. This effectively alleviates the aforementioned con-
tradiction in feature learning. 2) Additionally, through the
training phase, this process can unify and abstractly repre-
sent the critical characteristics of each category, and pre-
serve the relationships between the overall sample features
and these characteristic vectors. Consequently, the extrac-
tion of fine-grained details for multiple regions and layers
during testing can be discarded. This maximizes testing ef-
ficiency and mitigates the contradiction between efficiency
and effectiveness. To a certain extent, this approach also
aligns better with human habit when swiftly determining
the similarity among multiple samples. It involves search-
ing for whether each sample possesses key characteristics
from one’s own experience and memory, rather than meticu-
lously checking every detail, which is usually more suitable
for accurate retrieval where efficiency is not the concern.

Inspired by the above discussions, in this paper, we pro-
pose a novel efficient FGIR method according to aforemen-
tioned Characteristics Matching Based Hash codes gener-
ation strategy, namely CMBH. In addition, similar to the
process of human learning and experience accumulation,
two auxiliary modules that operate only during the training
phase are designed to ensure that the critical characteristic
vectors can effectively describe and represent every fine-
grained category. Specifically, a cross-layer semantic infor-
mation transfer module is designed to embed fine-grained
information learned across a series of network layers to the
characteristic vectors. Besides, a multi-region feature learn-
ing module is designed to associate the characteristic vec-
tors with specific local details and preserve the distinctive-
ness among characteristic vectors.

In conclusion, the contributions of this paper can be sum-

marized as follows:
• In this paper, we are the first to analyze the feature learn-

ing contradiction and efficiency contradiction in the task
of efficient FGIR, and propose a Characteristics Matching
Based Hashing method to address these issues.

• A cross-layer semantic information transfer module and a
multi-region feature learning module is designed to com-
prehensively learn and embed fine-grained information
for characteristic vectors optimizing, with nearly no ex-
tra parameters and computational costs introduced during
inference and testing.

• Comprehensive experimental results demonstrate that the
proposed method can significantly outperform SOTA
methods in both effectiveness and efficiency.

2. Related Work
Fine-grained image retrieval is a crucial part of fine-grained
image analysis and has attracted increasing attention re-
cently. Early works like SCDA [20], CRL [29], DGCRL
[30], MPFE [2], and KAE-Net [16] generally pay their main
attention to achieving better retrieval accuracy with long
real-valued vectors. In the last three years, the main re-
search stream of this topic has turned to hashing based fine-
grained image retrieval to seek a balance between accuracy
and efficiency for dealing with increasing data size.

Hashing based retrieval is a representative strategy
for Approximate Nearest Neighbor Search, and a well-
developed field with many valuable works published [10,
17]. It proposes to map feature vectors into binary hash
codes to achieve fast query speed and low storage costs.
FPH [26] and DSaH [11] should be the earliest methods to
introduce hashing into fine-grained image retrieval. Specif-
ically, FPH proposes a two-pyramid hashing architecture
to capture subtle differences from multiple network layers;
DSaH designs an extra attention network to discover salient
image regions. Both of them pay their main attention to ex-
tracting more comprehensive fine-grained feature vectors,
and this basic idea is also followed by methods proposed
after. For example, ExchNet [4] first localizes multiple re-
gions with an attention mechanism, and then aligns the ex-
tracted part feature vectors across different images by an
exchanging operation. A2-Net [21] adopts a similar local-
ization module and then tries to learn high-level attribute
vectors for hash codes generation; and its improved version
A2-Net++ [23] further enhances model’s self-consistency.
As for the recently proposed methods, except for DLTH
[12] which designs a novel list-wise triplet loss function
to capture relative similarity, the rest also focuses on op-
timizing fine-grained feature extraction for hash code learn-
ing. sRLH [24] proposes a sub-region localization mod-
ule to locate the peaks of non-overlap sub-regions for di-
verse local information capturing. Based on similar tar-
gets, FISH [3] and FCAENet [28] employ an attention-
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based erasing strategy. In addition, FISH further intro-
duces a feature refinement module, and FCAENet adds an
enhancing space relation loss. SEMICON [18] proposes
a suppression-enhancing mask to explore the relation be-
tween discovered regions. Thereafter, CNET [27] designs a
cascaded network and an attention-guided data augmenta-
tion strategy; and it also introduces a novel approach to bal-
ance the loss of multi-task. Finally, the most recently pub-
lished AGMH [13] proposes an attention dispersion loss and
a step-wise interactive external attention module to group
and embed the category-specific visual attributes in multi-
ple descriptors for comprehensive feature representation.

3. Methodology
3.1. Framework and Notations

The overall framework of the proposed method is illus-
trated in Fig. 1. Specifically, the training phase of the
method consists of a main component, i.e., the character-
istics matching based hash codes generation and training
module, which also includes a backbone network for feature
extraction. It is designed to calculate the matching score
between instance feature vectors and Characteristic vectors
(C-vectors), to generate binary codes accordingly. In addi-
tion, there are two auxiliary modules, i.e., the cross-layer
semantic information transfer module and multi-region fea-
ture learning module. These modules integrate information
extracted from different network layers and multiple image
regions to train and optimize the C-vectors, and further en-
sure that they can well represent each fine-grained category.
After training, only the main hash codes generation compo-
nent is kept for the inference.

In the following sections, a raw pixel input image is rep-
resented as Ii ∈ {I1, . . . , In}, where n is the total number
of training instances. The backbone network is represented
as N(·) and the feature extraction procedure is simplified as

{Fj
i |j ∈ {1, . . . , L}} = N(Ia), (1)

where feature map Fj
i ∈ Rcj×wj×hj is the output of the j-

th stage (top to bottom) of the backbone ResNet [6]. For
following processing, feature map Fj

i is further transformed
into vector as

fji = Nsub−j(Fj
i ) ∈ Rd, (2)

where each Nsub−j(·) is a sub-network that consists of two
convolutional layers, a global max pooling layer, and a fully
connected layer. As a supervised method, the target of
CMBH is learning to transform instance Ii into b-bit binary
codes bi ∈ {−1, 1}b with the assistant of one-hot label vec-
tor yi ∈ {0, 1}y , where y is the number of categories. In
addition, the C-vectors are predefined as C ∈ Ry×k×d, in
which k is the number of critical characteristic preset for

each category. C can be randomly initialized and will be
optimized as introduced in the following sections.

3.2. C-vectors Matching and Hash Codes Learning

As aforementioned, the key idea of this paper is adopting
matching score between C-vectors and one output image
feature vector fli ∈ {f

1
i , . . . , fLi } to compress information to

be embedded into hash codes. Given the symbols defined
above, the matching score for input instance Ii is defined as
Mi ∈ Ry×k, and each element of Mi is calculated as

Mi,(a,b) =
(( Ca,b,∗

||Ca,b,∗||2

)T fli
||fli||2

)
, (3)

where ||·||2 represents the L2 normalization. Thereafter, the
to-be-learned hash code bi can be obtained by a mapping
layer Nhash(·), which is formulated as

bi = Nhash(Mi) = sign(Wh(vec(Mi)), (4)

in which sign(·) is an element-wise sign function, Wh ∈
Rb×(yk) is the hash codes mapping matrix, and vec(·) is a
simple function to reshape the input matrices to vectors.

As for hash codes learning, since designing the loss func-
tion is not the focus of this paper, we design a very simple
loss function to combine pair-wise and proxy-based simi-
larity preservation training, i.e.,

Lhash = Lhash−pair + Lhash−proxy. (5)

Specifically, for the t-th training epoch, the loss functions
are defined as

Lhash−pair =
1

nn

n∑
i=1

n∑
j=1

(u(t)
i

T
b(t−1)
j − bSp

i,j)
2, (6)

Lhash−proxy =
1

ny

n∑
i=1

y∑
j=1

(u(t)
i

T
c(t−1)
j − bSc

i,j)
2, (7)

where b(t−1)
j is the recorded codes of j-th instance gen-

erated in the last training epoch, u(t)
i is the relaxed ver-

sion of b(t)
i obtained by replacing the sign operation with

tanh in Eq. (4), and c(t−1)
j is the binary version of the av-

erage of u(t−1) that belongs to the j-th category. During
the first training epoch, both c(t−1)

j and b(t−1)
j can be ran-

domly initialized. Besides, Sp is first defined as {1, 0}n×n,
where Sp

i,j = 1 if image i and j belong to the same cat-
egory, 0 otherwise. And then every 0 in Sp is replaced
with −(

∑
Sp/

∑
(1 − Sp)). Similarly, Sc is first defined

as {1, 0}n×y , where Sc
i,j = 1 if image i belong to the j−th

category, 0 otherwise. And then every 0 in Sc is replaced
with −(

∑
Sc/

∑
(1− Sc)).
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Figure 1. The overall architecture of the proposed CMBH method. Operation represented by dashed lines are only used for training.

3.3. C-vectors Training and Optimization

In the previous section, the basic framework of character-
istics matching based hash codes generation has been es-
tablished. However, the prerequisite for this framework
to work effectively is that the C-vectors can sufficiently
describe fine-grained categories, thereby ensuring that us-
ing the matching scores as sample representations can ad-
equately reflect the differences between samples. In this
section, we will introduce how to train and optimize the C-
vector through cross-layer and multi-region learning. Re-
lated modules are only utilized during the training phase,
with the introduction of nearly no additional computational
costs and parameters during the inference phase.

3.3.1 Cross-layer semantic information transfer

Integrating information of different granularities from mul-
tiple network layers is an effective approach to enhance the
description of feature vectors for fine-grained class charac-
teristics [5, 14, 25]. However, traditional cascading strate-
gies inevitably introduce more parameters and computa-
tional costs, and result in higher-dimensional vectors, which
is not a reasonable solution for hashing as discussed in
Sec. 1. In this method, to ensure efficiency, only the out-
put of a single network layer, i.e., fli, is ultimately involved
in hash code generation. Information integrated from multi-
ple network layers will be embedded into C-vectors, serving
as an intermediary to transfer integrated information into
the hash code generation process. Given feature vectors

{fji |j ∈ {1, . . . , L}} generated in Eq. (1), the information
transfer procedure includes two components.

The first component is based on the early fusion strat-
egy. A unified cross-layer feature representation f0i can be
obtained by concatenating feature maps from the different
layers as follows,

f0i = Ncon(concat(f1i ; . . . ; fLi )) ∈ Rd, (8)

where Ncon is a mapping layer including a fully-connected
layer to unify feature dimension. f0i is also used to calculate
a matching score matrix as

Mcon
i,(a,b) =

(( Ca,b,∗

||Ca,b,∗||2

)T f0i
||f0i ||2

)
. (9)

By jointly optimizing Eq. (3) and (9), integrated informa-
tion can be embedded and C-vectors can server as an in-
termediary for information transfer. Since Mcon

i is not in-
volved in hash codes learning, for training, classification
losses are adopted to ensure that these matching score ma-
trices are also consistent in semantic level:

Lcls =

n∑
i=1

L∑
j=0

CE(ŷj
i , yi), (10)

where CE is a standard softmax-cross-entropy loss. In
addition, ŷji is defined as the class vector generated from
different layers. Specifically, ŷ0

i = α
∑k

j=1 Mcon
i,(∗,j) and

ŷli = α
∑k

j=1 Mi,(∗,j), where α is a hyper-parameter bigger
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Algorithm 1 Distinct critical image regions localization.

Input: Feature map matrix Ai, bounding box set B = ∅.
Output: Bounding box set B.

1: for m = 1 to M do
2: a← The maximum value in Ai;
3: Hi ← Values greater than a · (0.9 −m · 0.05) in Ai

are 1, and other values are 0;
4: H̄i ← Calculate the largest connected component of

Hi;
5: [x1, y1, x2, y2] ← Calculate the bounding box coor-

dinates of H̄i;
6: [x̂1, ŷ1, x̂2, ŷ2]← Calculate the original image coor-

dinates corresponding to [x1, y1, x2, y2];
7: Ai ← Ai · (1−Hi) + (Hi · a−Hi · Ai);
8: B ← B ∪ {[x̂1, ŷ1, x̂2, ŷ2]};
9: end for

10: return Bounding box set B.

than 1 to magnify the gradient and accelerate the training
procedure. Besides, ŷji = Ncls−j(fji ) where j ∈ {1, ..., L}
and j ̸= l, Ncls−j(·) is a one layer classification layer.
These extra classification layers and losses are adopted to
improve feature learning and following procedure.

The second component is based on the later fusion strat-
egy. Given above classification vectors, the ensemble of
classification results from multiple layers is generally better
than any one of them. Inspired by the idea of Knowledge
Distillation [7], the following cross-layer information trans-
fer loss is designed to supervise the training of the output
layer l with the integration of results from multiple layers,

Ltrans = −
n∑

i=1

(
softmax(

L∑
j=0

ŷji )
Tlog(softmax(ŷli))

)
.

(11)
The training based on the aforementioned loss functions

effectively ensures the semantic-level consistency among
C-vectors. Given that Mi remains a high-dimensional vec-
tor, to further reduce the potential loss of critical informa-
tion during the mapping process, especially for shorter hash
codes, the semantic-preserving information obtained in this
section can be further leveraged to reinforce the correspond-
ing weights of C-vectors in hash code mapping. Specifi-
cally, Eq. (4) is modified as

bi = sign
(

Wh(vec(
exp (ŷl

i)∑y
j=1 exp (ŷ

l
i,j)
⊙Mi))

)
, (12)

where⊙ stands for element-wise multiplication with broad-
casting operation.

3.3.2 Multi-region feature embedding

The ideal C-vectors should be able to sufficiently describe
the distinct characteristics of a fine-grained category. Thus,
another objective of the training and optimization process
is to ensure distinctiveness among multiple C-vectors de-
scribing the same category. Typically, this objective can be
achieved through an orthogonal constraint term. However,
additional constraints inevitably affect the overall training
efficiency of the model and may not accurately reflect the
relationships among features. Multi-region feature extrac-
tion is an effective approach to fine-grained feature learn-
ing. In this section, we aim to achieve multi-region infor-
mation embedding by extracting features from different re-
gions of the input images and associating them with spe-
cific C-vectors, thereby ensuring distinctiveness among the
C-vectors and improving feature learning.

Although there are many existing techniques or models
for multi-region feature extraction, the introduction of addi-
tional trainable modules and losses inevitably affects model
training and, consequently, may not be conducive to the as-
sessment of the effectiveness of the idea presented in this
paper. Therefore, an independent parameter-free algorithm
is designed in this section. Based on the idea of SCDA [20]
and NMS, it iteratively localizes multiple informative re-
gions. Specifically, all feature maps generated in Eq. (1)
are first resized to the same spatial size as the last stage
feature map, i.e., {Fj

i ∈ Rcj×wL×hL |j ∈ {1, . . . , L}}.
Then the algorithm takes the channel-wise mean feature
map Ai ∈ RwL×hL as input, where

Ai =
1∑L

j=1 cj

∑L
j=1 cj∑
a=1

stack(F1
i ; . . . ;FL

i )(a,∗,∗), (13)

where stack(·) is a channel-wise stack operation. The
bounding box coordinates of M distinct informative regions
of input image can be generated according to Algorithm 1.
Accordingly, M patches {I1i , ..., IMi } are cropped out from
image Ii, and then processed in the same way as image
Ii to generate corresponding feature vectors {fm,j

i |j ∈
{1, . . . , L},m ∈ {1, . . . ,M}} with Eq. (1)-(2), as well as
matching score Mm

i and Mm,con
i with Eq. (3), (8) and (9).

Thereafter, the max function will replace the correspond-
ing sum function related to Eq. (10) to compute the corre-
sponding class vector, i.e., ŷm,0

i = αmax(Mm,con
i ) and

ŷm,l
i = αmax(Mm

i ), where max(·) is a row-wise max op-
eration. During training, this ensures that feature vectors
extracted from each patch are only related to its most sim-
ilar C-vector, thereby promoting the gradual emergence of
distinctiveness among C-vectors. Thereafter, by continuing
to follow the same procedure introduced by Eq. (10) and
(11), the loss function associated with the multi-region fea-
ture embedding discussed in this section can be obtained as
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Datasets Category Training Testing
CUB-200-2011 [19] 200 5,994 5,794
FGVC-Aircrafts [15] 100 6,667 3,333

Food101 [1] 101 75,750 25,250
NABirds [8] 555 23,929 24,633
VegFru [9] 292 29,200 116,931

Table 1. Statistics of experimental datasets.

Lregion =

M∑
j=1

(Lj
cls + Lj

trans). (14)

3.4. Training and Inference

The whole method can be trained end-to-end with batch
based stochastic gradient descent and back-propagation al-
gorithm, supervised by the following overall loss function:

L = Lhash + Lcls + Ltrans + Lregion, (15)

in which each term has been introduced in Eq. (5), (10), (11)
and (14) separately. After training, given a query image Iq ,
the corresponding hash code can be obtained according to
Eq. (1) - (3) and Eq. (12). It can be noticed that there is
no cross-layer and multi-region feature extraction involved
in the inference and test procedure, which promises the re-
trieval efficiency of the proposed method during testing.

4. Experiments
4.1. Experimental settings and Baselines

The proposed method is evaluated on five widely-used fine-
grained datasets. The official training/testing data splitting
is adopted, and details are summarized in Tab. 1. For fair
comparison, ResNet-50 and ResNet-18 without the final
pooling and classification layer are chosen as the backbone
network. For hyper-parameters, the last three stages of the
backbone are used, i.e., L = 3 in Eq. (1). In view of both
effectiveness and efficiency, only the penultimate stage, i.e.,
l = 2, is used for hash codes generation, and the number of
C-vectors for each category k = 2. The number of cropped
patches M is empirically set to be 4 for comprehensively
extracting features of different image regions. For training
and testing settings, raw pixel images are used as inputs. All
input images are first resized into 255 × 255 and then ran-
dom/center cropped to 224 × 224 for training/testing. The
standard SGD optimizer with momentum 0.9 and weight
decay 5e-4 is used for model training, and the total number
of training epochs is set to be 100. The learning rate is set
to be 0.001, and will be divided by 10 at 70-th epoch. The
batch size is 16 for CUB-200-2011 and Aircrafts datasets,

and 64 for rest three large scale datasets to accelerate train-
ing. The performance of all models is evaluated with the
most widely-adopted Mean Average Precision (MAP@all).

In order to fully represent the state-of-the-art perfor-
mance and results, nearly all hashing based FGIR methods
published in the recent three years, which are summarized
in Tab. 2 and Tab. 3 and introduced in Sec. 2, are included
as baselines and compared with our proposed method.

4.2. Comparison with SOTA Methods

The experimental results (MAP) of our proposed method
implemented based on ResNet-50 and all ResNet-50 based
baselines are given in Tab. 2. Besides, Tab. 3 also presents
some additional results because MAP results on different
code length or backbones are reported by the paper of in-
volved methods. According to the tables, it can be observed
that our proposed method significantly outperforms state-
of-the-art methods on all datasets and all code lengths. In
addition, the superiority of the proposed method is particu-
larly evident when applied to extremely short code length,
i.e., 12 bits. This further substantiates the effectiveness
of the characteristics matching based hash code generation
strategy introduced in this paper, compared to other meth-
ods that generate hash codes based on feature vectors. And
it also underscores its effectiveness in addressing the afore-
mentioned contradiction in feature learning. As approxi-
mate nearest neighbor search methods for large-scale data,
efficiency is a more important target than accuracy for hash-
ing based retrieval methods. So this is a very worthy atten-
tion result because short codes can further reduce retrieval
time and storage costs.

4.3. Ablation Study

In order to demonstrate the effectiveness and necessity of
each module in the proposed model, we further conduct
an ablation study. Experimental results are summarized in
Tab. 4. In this subsection, the proposed method is decom-
posed into four components: 1) (B) that represents the ba-
sic hash code generation and training procedure introduced
in Sec. 3.2; 2) (L) that represents the C-vector optimiza-
tion based on multi-layer semantic information integration
in Sec. 3.3.1, except for 3) (T) that represents the cross-
layer information transfer supervised by Eq. (11); and 4)
(R) that represents the multi-region feature embedding in-
troduced in Sec. 3.3.2

According to Tab. 4, it can be observed that each com-
ponent can contribute to the final performance and the com-
plete CMBH model achieves the best performance. Specif-
ically, due to the lack of effective C-vector optimizing, the
individual B alone cannot achieve the desired results. This
further emphasizes that the effectiveness of the characteris-
tics matching based hash code generation idea relies on the
accurate description of fine-grained samples by C-vector.
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dataset bits ExchNet A2-Net FCAENet SEMICON FISH A2-Net++ AGMH CNET Ours

CUB

12 25.14 33.83 34.76 37.76 76.77 37.83 56.42 77.10 84.07
24 58.98 61.01 67.67 65.41 79.93 71.73 77.44 82.11 85.79
32 67.74 71.61 73.85 72.61 80.09 78.39 81.95 83.09 86.21
48 71.05 77.33 80.14 79.67 80.88 82.71 83.69 83.92 86.47

Aircrafts

12 33.27 42.72 43.92 49.87 88.29 57.53 71.64 86.15 89.11
24 45.83 63.66 75.46 75.08 89.20 73.45 83.45 88.27 91.45
32 51.83 72.51 81.61 80.45 89.28 81.59 83.60 88.40 91.60
48 59.05 81.37 81.34 84.23 89.49 86.65 84.91 89.17 92.88

Food101

12 45.63 46.44 44.97 50.00 - 54.51 62.59 83.06 87.85
24 55.48 66.87 76.56 76.57 - 81.46 80.94 85.85 88.71
32 56.39 74.27 81.37 80.19 - 82.92 82.31 86.35 89.28
48 64.19 82.13 83.14 82.44 - 83.66 83.21 86.42 88.87

NABirds

12 5.22 8.20 12.56 8.12 - 8.80 - 68.42 74.42
24 15.69 19.15 23.90 19.44 - 22.65 - 75.73 81.04
32 21.94 24.41 31.58 28.26 - 29.79 - 77.11 81.64
48 34.81 35.64 49.74 41.15 - 42.94 - 78.81 82.07

Vegfru

12 23.55 25.52 21.76 30.32 79.17 30.54 43.99 81.63 84.37
24 35.93 44.73 50.36 58.45 85.33 60.56 68.05 86.41 88.63
32 48.27 52.75 67.46 69.92 85.43 73.38 76.73 86.80 88.46
48 69.30 69.77 79.76 79.77 85.51 82.80 84.49 87.75 89.06

Table 2. MAP (%) results of the proposed method and other SOTA hashing based fine-grained image retrieval methods on all five datasets
with code lengths from 12 to 48. All methods are based on ResNet-50. The best results are highlighted in boldface.

Method Backbone 16bits 32bits 48bits 64bits

DLTH ResNet50 68.84 77.82 79.97 81.32
sRLH ResNet18 62.68 69.37 71.27 71.60
FISH ResNet18 76.03 77.14 78.06 78.34

AGMH ResNet18 59.68 76.71 80.73 81.43

Ours ResNet18 82.10 82.86 83.36 83.31

Table 3. Additional MAP (%) results on CUB-200-2011 based
on different backbone with code lengths from 16 to 64. The best
results are highlighted in boldface.

B L T R 12bits 24bits 32bits 48bits

✓ 17.89 48.07 55.25 51.90
✓ ✓ 77.56 81.12 81.61 82.26
✓ ✓ ✓ 80.30 82.16 82.68 82.80
✓ ✓ ✓ ✓ 84.07 85.79 86.21 86.47

Table 4. MAP (%) results of ablation study with code length from
12 to 48 on CUB-200-2011 dataset.

On this basis, through the integration of information across
multiple layers and the training associated with semantic in-

formation, module L enhances the descriptive capacity of
C-vector for fine-grained categories, leading to a signifi-
cant performance improvement. The cross-layer informa-
tion transfer module T further strengthens this effect. Fi-
nally, module R implements multi-region feature embed-
ding, enhancing C-vectors’ capture of local details and their
distinctiveness, which also leads to better performance.

4.4. Hyper-parameter Analysis

As the core hyper-parameter of the proposed C-vector
matching based hash code generation, k defines the number
of critical characteristics for each fine-grained category. As
a results, it determines the level of detail in describing fine-
grained categories and the amount of information to embed
in the hash code. Fig. 2a illustrates the impact of different
values of k to the final results. In general, when k is greater
than 1, the model’s performance is better than k = 1, es-
pecially when the hash code length is relatively high. This
demonstrates the necessity of using multiple C-vectors to
describe intra-class diversity within each fine-grained cate-
gory. Moreover, excessively large k can lead to a decline
in performance. The main reason may be the limited infor-
mation representation capacity of the hash codes, and the
over-fitting problem resulted by additional parameters. Fi-
nally, combining Tab. 2, 3, and Fig. 2a, the performance
with k=1 has surpassed most existing SOTA baselines, fur-
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Params(M) Flops(G)
Method Backbone 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

SEMICON ResNet50 42.3937 42.3691 42.4346 42.4676 7.0910 7.091 7.0911 7.0911
CNET ResNet50 41.1342 41.1797 41.2100 41.2706 9.3546 9.3546 9.3547 9.3547
FISH ResNet50 23.9202 23.9227 23.9243 23.9275 4.1321 4.1321 4.1321 4.1321
Ours ResNet50 14.3219 14.3267 14.3299 14.3363 4.3492 4.3492 4.3492 4.3492

FISH ResNet18 11.2815 11.2839 11.2855 11.2887 1.8236 1.8236 1.8236 1.8236
sRLH ResNet18 11.1827 11.1888 11.1929 11.2011 1.8235 1.8235 1.8235 1.8235
Ours ResNet18 4.2330 4.2378 4.2410 4.2474 1.6696 1.6696 1.6696 1.6696

Table 5. Parameters and computational costs (Flops) for inference and testing. Results are based on CUB-200-2011 dataset.

(a) MAPs with different k. (b) MAPs with different α.

Figure 2. Parameter analysis on the CUB-200-2011 dataset.

ther emphasizing the point highlighted in the Sec. 1: the
essence of fine-grained hashing lies in reflecting differences
between samples through hash codes, rather than compre-
hensive fine-grained feature extraction and embedding.

The L2 normalization involved in the computation of
the matching score matrix significantly reduces the abso-
lute values of its elements, thereby causing a shrinkage in
gradients during the BP process, which affects the effective
training of the model. To amplify the training gradients,
the parameter α is introduced in the calculation of the class
vector in Eq. (10). As illustrated in Fig. 2b, stable results
can be achieved as long as the α reaches a certain mag-
nitude. Furthermore, relatively higher α result in slightly
better performance on longer hash codes, while relatively
lower α lead to relatively higher performance on shorter
hash codes, especially 12 bits. The potential reason is that
bigger α can encourage the model to learn more diverse fea-
tures with higher gradients, and more bits can encapsulate
more information. In general, although different values may
have specific advantages, setting α to 12 or 16 is sufficient
to obtain relatively stable and effective results across vari-
ous datasets. However, this also inspires the idea that we
could adaptively adjust the value of α based on the hash
code lengths, to achieve universal performance improve-
ments. Nonetheless, this is not the main focus of this paper,
and we plan to leave it for future work.

4.5. Parameters and Computational Costs

As stated in the Sec. 1, one of the primary objectives of this
paper is to address the contradiction between efficiency and
effectiveness in the development of hashing based models
for efficient FGIR. In this section, we record the parameters
and computational costs for inference of our method and
some other baselines in Tab. 5. Combining Tab. 2, 3 and
5, it can be observed that our method can achieve signifi-
cantly better performance with much fewer parameters and
less or comparable computational costs. Particularly, our
method is much more efficient than SEMICON, which is
designed based on multi-region learning, as well as CNET
that is developed based on mulit-layer integration. These
results further demonstrate that the proposed characteristics
matching based hash code generation method is an effective
solution to aforementioned contradiction in feature learning
and contradiction between effectiveness and efficiency.

5. Conclusion

In this paper, we discuss two inherent contradictions about
feature learning and efficiency in the design of hash based
efficient FGIR method. Based on the analysis, we pro-
pose the C-vector matching based hash codes generation
method, and design the cross-layer semantic information
transfer module and the multi-region feature learning mod-
ule for training and optimization. Extensive experiments on
widely-used datasets demonstrate the superiority of the pro-
posed method in both effectiveness and efficiency.
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