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Abstract

Multiple Object Tracking (MOT) is a critical area within
computer vision, with a broad spectrum of practical im-
plementations. Current research has primarily focused on
the development of tracking algorithms and enhancement
of post-processing techniques. Yet, there has been a lack
of thorough examination concerning the nature of track-
ing data it self. In this study, we pioneer an exploration
into the distribution patterns of tracking data and iden-
tify a pronounced long-tail distribution issue within exist-
ing MOT datasets. We note a significant imbalance in the
distribution of trajectory lengths across different pedestri-
ans, a phenomenon we refer to as “pedestrians trajectory
long-tail distribution”. Addressing this challenge, we intro-
duce a bespoke strategy designed to mitigate the effects of
this skewed distribution. Specifically, we propose two data
augmentation strategies, including Stationary Camera View
Data Augmentation (SVA) and Dynamic Camera View Data
Augmentation (DVA) , designed for viewpoint states and the
Group Softmax (GS) module for Re-ID. SVA is to backtrack
and predict the pedestrian trajectory of tail classes, and
DVA is to use diffusion model to change the background of
the scene. GS divides the pedestrians into unrelated groups
and performs softmax operation on each group individually.
Our proposed strategies can be integrated into numerous
existing tracking systems, and extensive experimentation
validates the efficacy of our method in reducing the influ-
ence of long-tail distribution on multi-object tracking per-
formance. The code is available at https://github.com/chen-
si-jia/Trajectory-Long-tail-Distribution-for-MOT.

1. Introduction
Multi-object tracking stands as one of the fundamental

and most challenging tasks in computer vision. This tech-

nology involves the tracking of multiple objects of interest

in video sequences, providing essential parameters such as

location, trajectory and velocity. Multi-object tracking has
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Figure 1. The number of frames of pedestrians with different iden-

tities in the MOTChallenge datasets. We stipulate that different

pedestrian identities are regarded as different pedestrian classes.

found widespread applications in domains like autonomous

driving, video analysis and smart transportation [2].

The prior research efforts in the field of multi-object

tracking have primarily focused on the designs of track-

ing networks and post-processing strategies. However, the

current MOT methods do not pay attention to the pedes-

trian long-tail characteristics of tracking data. Thus, we

conducted an analysis experiment to count the number

of frames of pedestrians with different identities in the

MOTChallenge datasets. As shown in Fig. 1, we observe a

large difference in the number of frames for different pedes-

trian identities. Because the characteristic of the long-tail

distribution is that the head classes possess a substantial

number of instances and the tail classes has only a few in-

stances, we conclude that the number of pedestrian identi-

ties obeys the long-tail distribution.

There is a common problem with long-tail distribution

datasets: The network is trained on long-tail distribution

data often results in a bias towards learning features associ-

ated with the prevalent head classes, while neglecting those

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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in the less represented tail classes. At present, the problem

of improving long-tail distribution can be divided into three

aspects: class re-balancing, information augmentation and

module improvement. In the image data collected by the

camera, some people stay in the image for a long time, and

some people move across the image in a hurry. Due to the

reasons of the data itself, the network will learn less fea-

tures of people who have hurriedly passed by. For the cur-

rent Re-ID branch of multi-object trackers, most of them re-

gard Re-ID as a classification problem and use the softmax

module to calculate the classification probability. However,

the softmax module has a huge flaw: the weights of classes

with large weights become larger, and the weights of classes

with small weights become smaller, which will intensify the

long-tail distribution effect on the long-tail distribution data.

Hence, to improve the issue, we propose our solution from

two key perspectives: information augmentation and mod-

ule improvement.

In the perspective of information augmentation, we clas-

sify camera data into two categories: stationary camera

view data and dynamic camera view data, based on the

motion status of the camera. For stationary camera view

data, we propose the Stationary Camera View Data Aug-

mentation (SVA) strategy that encompasses two techniques:

backtracking continuation and prediction continuation. The

backtracking continuation is applied to the pedestrians of

tail classes in the middle frame of the training sequence

data, while the prediction continuation is employed for the

pedestrians of tail classes in the final frame of the train-

ing sequence data. This strategy can promote the network’s

learning of pedestrian trajectories in the tail classes. For dy-

namic camera view data, the Dynamic Camera View Data

Augmentation (DVA) strategy is proposed. This strategy

uses the diffusion model to perform style transformation on

the scene background, improving the network’s attention to

the features of pedestrians areas.

In terms of module enhancement, we devise the Group

Softmax (GS) module. The GS groups pedestrians with a

similar number of training samples together, and then com-

putes the softmax and cross-entropy loss for each group

individually, preventing a significant suppression of tail

classes by the weights of head classes, improving the net-

work’s ability to extract appearance features of tail classes.

We apply our tailored solution to the SOTA Fair-

MOT [58] and CSTrack [30] of multi-object tracking net-

works and evaluate them on four public MOT bench-

marks, ie., MOT15 [27], MOT16 [34], MOT17 [34] and

MOT20 [12]. The experimental results clearly demonstrate

that our approach appear to significant improvements. The

performance of our network trained using only MOT20 data

far exceeds the performance of the baseline trained using

mixed data on the MOT20 test set. For example, FairMOT

using our strategy is only trained on the MOT20 data, which

is better than FairMOT trained using the mixed data. On the

MOT20 test set, it increased 4.1% MOTA and 3.0% IDF1.

The main contributions of this work are as follows:

1. We serve as the first to discover the long-tail distri-

bution problem in multi-object tracking and point out

that this problem is caused by the imbalance of the

number of frames for different pedestrians.

2. We propose the tailored data augmentation strategies,

including SVA and DVA, from information augmenta-

tion perspective. SVA is used to backtrack and predict

the pedestrians trajectory of tail classes, and DVA is

used to change the background of the scene. Addi-

tionally, we design the GS module from module im-

provement perspective. The GS divides pedestrians

with different identities into unrelated groups and per-

forms a separate softmax operation on each group.

3. We apply our method to two SOTA Joint Detection

and Tracking algorithms and evaluate on MOTChal-

lenge datasets. The evaluation results showcase robust

performance improvements, serving as a compelling

validation of the efficacy of our method.

2. Related Work
Multiple Object Tracking. We review three main multiple

object tracking frameworks: Tracking-by-Detection, Joint

Detection and Tracking, and Transformer-based Track-

ing. Tracking-by-Detection [6, 15, 18, 20, 44, 59] pri-

marily consists of two main components. In the detec-

tion phase, a detector is established to locate objects of in-

terest. In the association phase, early methods used mo-

tion predictors to forecast the positions of objects in the

next frame and relied on positional information to asso-

ciate objects across consecutive frames. Joint Detection and

Tracking[3, 30, 41, 43, 50, 58, 66], a unified network simul-

taneously produces detection results and the correspond-

ing appearance features of the detected objects. Subse-

quently, association methods are employed to link objects

between consecutive frames. Transformer-based Tracking

[33, 39, 51, 52, 54, 60, 67] uses a transformer to combine

detection queries with queries derived from the previous

frame predictions for detecting and tracking objects in the

current frame. This approach eliminates the need for post-

processing steps, enabling end-to-end multi-object tracking.

Long-tail Distribution. Improving long-tail distribution

issues can be categorized into three aspects: class re-

balancing, information augmentation, and module improve-

ment. Class re-balancing including resampling, cost-

sensitive learning, and Logit adjustment. Resampling

[17, 24, 35, 57] is one of the most widely used meth-

ods for addressing class imbalance. Cost-sensitive learning

[7, 8, 11, 47] involves adjusting the loss weights of different

classes. Logit adjustment [40, 42, 61] is a post-hoc tech-

nique that shifts the model’s logits based on label frequen-
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Figure 2. Overall pipeline of our strategies. Our strategies comprise 3 modules: (1) SVA: To backtrack and predict the pedestrians trajectory

of tail classes. (2) DVA: To use diffusion model to change the background of the scene. (3) GS: To divide the pedestrians with different

identities into unrelated groups and perform softmax operation on each group individually.

cies. Information augmentation including transfer learning

and data augmentation. transfer learning aims to transfer

knowledge from a source domain to enhance model training

in a target domain. Transfer learning [21, 32, 45, 48, 69]

primarily includes four approaches: head-tail knowledge

transfer, model pre-training, knowledge distillation, and

self-training. Data augmentation [9, 28, 53] utilizes an en-

hancement technique to increase the size and quality of the

model training dataset, playing a significant role in optimiz-

ing especially limited training sets. Module improvement

including representation learning, classifier design, decou-

pled training, and ensemble learning. Representation learn-

ing [10, 37, 63, 64, 68] entails refining network structures

to facilitate a more effective acquisition of informative rep-

resentations. Classifier design [22, 31] is designed by set-

ting up the appropriate classifier so that it focuses more on

the tail class. Decoupled training [13, 25, 56] untangles the

learning process by segregating it into representation learn-

ing and classifier training, ensuring that they do not affect

each other. Ensemble learning [19, 29, 65] to solve the is-

sues of long-tail learning by deliberately generate and amal-

gamate multiple network modules.

3. Methodology

3.1. Overview

In this work, we choose the multi-object tracking algo-

rithm of the Joint Detection and Tracking framework [43]

to carry out our strategies, which is illustrated in Fig. 2.

From the data perspective, we propose two bespoke data

augmentation methods, including Stationary Camera View

Data Augmentation (SVA) and Dynamic Camera View Data

Augmentation (DVA), designed for viewpoint states, to sim-

ulate the pedestrians of tail classes motion trajectory and

change the background style. In addition, we commence

by addressing the similarity metric Re-ID used in the as-

sociation and propose the Group Softmax (GS) module to

improve the appearance recognition performance for the

pedestrians of tail classes.

3.2. Camera View Data Augmentation

We observed the distinct characteristic in the data from

the multi-object tracking, which the data was collected un-

der varying camera motion conditions. Depending on the

camera motion conditions during data collection, it can be

categorized into data collected from static cameras and data

collected from moving cameras. Consequently, we devel-

oped the customized data augmentation methods for data

collected from stationary cameras and dynamic cameras.

In particular, we define the calculation formula for cat-

egory division as shown in Eq. (1). Then, we use Eq. (1)

to divide the pedestrian categories in each sequence in the

dataset into head classes and tail classes.

Ci =

{
Ctail

i
1
Ri

≥ Tj

Chead
i

1
Ri

< Tj

(1)

where Ci represents the classes to which category i belongs,

Ri represents the ratio of the number of category i to the

number of all categories in j sequence, Tj represents the

class threshold in j sequence for determining whether the

classes of is tail or not.

3.2.1 Stationary Camera View Data Augmentation

For multi-object tracking data captured by stationary

cameras, common data augmentation methods, such as im-

age color transformation, image blending and image crop-

ping, are currently available. Although these methods can

be applied, they are not specifically designed for multi-

object tracking tasks and lack customized designs for track-

ing targets. Therefore, we propose the Stationary Camera

View Data Augmentation (SVA) strategy tailored for the
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Figure 3. Illustration of the Stationary Camera View Data Aug-

mentation (SVA).

multi-object tracking of data captured by stationary cam-

eras, focusing on quantity augmentation for the pedestri-

ans of tail classes. The SVA strategy includes backtracking

continuation and prediction continuation, which is shown in

Fig. 3. The backtracking continuation is to add the reversed

original track in the subsequent frames after the end of the

original track, applied to the pedestrians of tail classes in

the middle frame of the training sequence data. The pre-

diction continuation is to add the future trajectory predicted

using the position information of the original trajectory to

the previous frames at the beginning of the original trajec-

tory, employed for the pedestrians of tail classes in the final

frame of the training sequence data.

Backtracking continuation. For a training video with a to-

tal of Ftotal frames, if the pedestrian trajectory of tail classes

appears in the m-th frame and disappears in the n-th frame,

satisfying the condition n < Ftotal, we employ the Segment

Anything Model (SAM) [26] algorithm to segment the im-

age area of the pedestrian that appear in frames from the m-

th to the n-th and then overlay these image areas in reverse

order onto frames following the n-th frame. The backtrack-

ing continuation can be formulated as:

BP k
j = P k

i (m ≤ i ≤ n, n+ 1 ≤ j ≤ BF end) (2)

where BP k
j represents the backtracked image position of

the k-th pedestrian in the training data at the j-th frame, P k
i

represents the image position of the k-th pedestrian in the

training data at the i-th frame, and BF end is the backtrack-

ing continuation cutoff frame in the training dataset, and the

value is the minimum value of Ftotal and (2n−m).
Prediction continuation. For a training video with a total

of Ftotal frames, if the pedestrian trajectory of tail classes

appears in the final frame, we input the x and y image co-

ordinates of the pedestrian appearing from the m-th frame

to the Ftotal-th frame into a Kalman filter to predict the sub-

sequent x and y image coordinates of the pedestrian, while

ensuring that the predicted image coordinates fall in the im-

age size range. In this pedestrian trajectory, we randomly

select the pedestrian with visibility no less than the visibil-

ity threshold Tv , where 0 ≤ Tv ≤ 1, using the SAM [26]

algorithm to segment the pedestrian. The segmented im-

age area is superimposed on the frame before the pedestrian

trajectory appears based on the predicted x and y image co-

ordinate randomly selected from the predicted image coor-

dinates. The prediction continuation can be formulated as:

KP k
j = R(KF

(
P k
i

)
)(m ≤ i ≤ Ftotal ,KF start ≤ j < m)

(3)

where KP k
j represents the Kalman filter predicted image

position of the k-th pedestrian in the training data at the j-

th frame, R() represents the function that randomly selects

an image position, KF
(
P k
i

)
represents the image positions

predicted by the Kalman filter using the images coordinates

of the m-th frame to Ftotal for the i-th pedestrian in the train-

ing data, and P k
i represents the image position of the k-th

pedestrian in the training data at the i-th frame. KF start is

the starting frame for applying the prediction continuation

in the training dataset, and the value is the maximum value

of 1 and (2m− Ftotal).

3.2.2 Dynamic Camera View Data Augmentation

Due to the characteristics of significant scene and sub-

ject size variations in data captured by dynamic cameras,

the traditional data augmentation methods struggle to adapt

to these changes. To address this issue, we propose the Dy-

namic Camera View Data Augmentation (DVA) strategy, as

depicted in Fig. 4. The strategy comprises four main steps:

image segmentation, image inpainting, image diffusion and

image merging. This strategy, designed for input from dy-

namic camera perspectives, begins by using the image seg-

mentation algorithm SAM [26] to separate pedestrians in

the input image derived from the sequence, resulting in im-

age with pedestrians removed, image with pedestrian mask,

and image containing only the pedestrians area. Next, the

image inpainting algorithm Navier-Stokes [5] is applied to

repair the image with pedestrians removed, producing the

repaired image. Following this, the Stable Diffusion [36] is

used to process the repaired image, resulting in the diffused

image. Finally, the image with pedestrians mask and the

image containing only the pedestrians area obtained from

the earlier segmentation step are merged with the diffused

image to generate the output image.

Image Segmentation. SAM, which stands for Segment

Anything Model, is the largest segmentation model ever

released by Meta. This model segments objects by taking

both a prompt and an image as inputs. Given that the multi-

object tracking dataset provides bounding box annotations

but lacks mask labels for pedestrians, we utilize the image
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Figure 4. Illustration of the Dynamic Camera View Data Augmen-

tation (DVA).

and its corresponding pedestrians bounding box labels as

input for SAM to segment the pedestrians in the image.

Image Inpainting. In this paper, the algorithm used for im-

age inpainting is based on the Navier-Stokes equation [5].

This algorithm aims to start repairing the image from the

edges of the area to be patched, propagating image smooth-

ness along the contour lines, and obtaining the repaired im-

age after all information has been propagated.

Image Diffusion. Stable Diffusion is a type of Latent Dif-

fusion Model (LDM) [36], which is a class of denoising dif-

fusion probability models capable of generating new image.

In principle, Stable Diffusion can model conditional distri-

butions. This can be achieved by inputting text, semantic

maps, or the other image-to-image transformation task in-

formation to control conditional denoising autoencoders. In

this paper, we utilize input image to generate new image by

adjusting prompt and enhancement coefficient.

Image Merging. We perform a bitwise AND operation be-

tween the image with pedestrian mask and the diffused im-

age, effectively setting the pixel values in the diffused image

corresponding to the original pedestrians area to 0, while

leaving the pixel values in area outside the pedestrians area

are unchanged. This results in the post-processed diffused

image. Then, we perform a bitwise OR operation between

the post-processed diffused image and the image containing

only the pedestrians. Indeed, this operation involves setting

the pixel values in the diffused image that correspond to the

original pedestrians area to the corresponding pixel values

from the image containing only pedestrians, resulting in the

output image.

Training models on the augmented data from diffusion

model often risks over-emphasizing spurious qualities [1].

The common solution assigns different sampling proba-

bilities to original and augmented data to manage imbal-

ance [23]. We apply a similar method to balance original

images and the augmented images from DVA. Mathemati-

cally, the method can be formulated as:

Ini =

{
Ii , Pn

i ≤ Ts

Ĩi , Pn
i > Ts

(4)

where Ini represents the image of index i in the n-th epoch,

Ii represents the original image of index i, Ĩi represents the

augmented image of index i, Pn
i represents the probability

of index i calling the original image in the n-th epoch, Ts

represents the image selection threshold of calling the orig-

inal image for each image selection. Given index i, with

probability Ts the original image Ii is added to the epoch n,

otherwise its augmented image Ĩi is added.

3.3. Group Softmax Module

We observe the issue where the Re-ID have different de-

grees of feature learning for pedestrian categories with dif-

ferent quantities. It tends to perform better for categories

with higher quantities (head classes) and less effectively for

categories with fewer quantities (tail classes), which can

negatively impact the performance of the Re-ID. To tackle

this problem, we propose the Group Softmax (GS) module,

as depicted in Fig. 2. The GS divides the pedestrian cate-

gories into several disjoint groups and performes softmax

operation separately for each group. In this way, the pedes-

trian categories with similar quantities can compete in the

same group. Thus, the GS can isolate categories with sig-

nificant quantity differences, preventing the weights of tail

classes from being heavily suppressed by the head classes.

Specifically, we divides the total of M pedestrian classes

in the training dataset into K distinct groups according to

their number in the training dataset, and the rule of parti-

tioning group formula is: T l
j ≤ N(i) ≤ Th

j , where the

value of i is from 1 to M , the value of j is from 1 to K,

N(i) is the quantity of the i-th pedestrian categories in the

training dataset, T l
j is the lowest quantity thresholds for the

j-th group, Th
j is the highest quantity thresholds for the j-

th group, M represents the number of pedestrian categories,

K represents the number of groups.

To ensure each pedestrian category is only assigned to

one group and maintain ordered groups, we specify that the

lowest quantity threshold for the j + 1-th group is equal to

the highest quantity threshold for the j-th group, i.e., T l
j+1

= Th
j + 1. To facilitate grouping, we propose the set rule of

Th
j formula is as follows:
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Th
j =

j

K
max(N(i))(1 ≤ i ≤ M, 1 ≤ j ≤ K) (5)

where Th
j is the highest quantity thresholds for the j-th

group, j represents the index of group.

Furthermore, we individually apply softmax processing

to each group and utilize the Cross-Entropy Loss to com-

pute the group loss. Then, we calculate the group loss mean

as the Re-ID loss, the formula is as follows:

LossRe-ID = − 1

K

K∑
j=1

∑
i∈Gj

yi log (pi) (6)

where LossRe-ID represents the Re-ID loss, K represents the

number of groups, j represents the index of group, Gj rep-

resents the j-th group, yi represents the label in Gj , pi rep-

resents the probability in Gj .

4. Experiments
4.1. Datasets and Evaluation Metrics

Datasets: We conduct extensive experiments on four pub-

lic MOT benchmarks, i.e., MOT15 [27], MOT16 [34],

MOT17 [34] and MOT20 [12]. Specifically, MOT15 con-

tains 22 sequences, 11 for training and the other 11 for test-

ing, which includes 11286 frames. MOT16 contains 14 se-

quences, 7 for training and the other 7 for testing, which

includes 11235 frames. Compared with MOT16, MOT17

adds the detection bounding boxes of three detectors that

DPM, SDP, Faster-RCNN. MOT20 contains 8 sequences

captured in the crowded scenes, 4 for training and the other

4 for testing, which includes 13410 frames. In some frames,

more than 200 pedestrians are included simultaneously.

Evaluation metrics: To evaluate, we use the CLEAR

metrics [4], including multiple object tracking accuracy

(MOTA), ID F1 score (IDF1), Higher Order Tracking Ac-

curacy (HOTA), mostly tracker rate (MT), mostly lost rate

(ML) and identity switches (IDS). MOTA, IDF1 and HOTA

are three important comprehensive metrics. MOTA focuses

on detection performance, and IDF1 focuses on association

performance. Compared with them, HOTA balances detec-

tion performance and association performance.

4.2. Implementation Details

All experiments are trained using an NVIDIA GeForce

RTX 3090 GPU. All models are trained for 30 epochs. For

MOT15, we set the class threshold Tj to 15 for all stationary

camera view sequences, the visibility threshold Tv to 1.0,

the image selection threshold Tp to 0.8, the prompt of dif-

fusion to “A street” for all dynamic camera view sequences,

the enhancement coefficient of diffusion to 0.4, and the

group number K to 3 for FairMOT and 4 for CSTrack.
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Figure 5. Division of head classes and tail classes is based on the

class average principle on the MOT17 validation set.

Method
All classes Head classes Tail classes

MOTA↑ IDF1↑ MOTA↑ IDF1↑ MOTA↑ IDF1↑

Base 67.8 72.3 69.3 74.0 28.6 56.9

Base(+Focal Loss) 68.7 70.8 70.0 72.2 26.2 56.8

Base(+Triplet Loss) 68.4 65.7 69.7 67.7 23.3 51.3

Base(+CB Loss) 67.9 72.0 69.3 73.3 27.7 55.7

Base(+Logit Adjustment) 68.1 72.1 69.6 74.0 26.8 55.8

Base(+Ours) 69.3 73.4 70.9 75.2 29.6 57.2

Table 1. Comparison of different methods for improving long-

tail distribution on the MOT17 validation set. The best results are

shown in bold. Our method is highlighted in blue.

For MOT16 and MOT17, we set Tj to 120 for 02, 04 and

09 sequences, Tv to 1.0, Tp to 0.9, except Tp is 1.0 for

CSTrack on MOT17, prompt to “A street” for 05, 10 and

13 sequences, “A mall” for 11 sequence, enhancement co-

efficient to 0.4, K to 3 for FairMOT on MOT16, K to 3 for

FairMOT on MOT17, 4 for CSTrack on MOT16, and 2 for

CSTrack on MOT17. For MOT20, since MOT20 is all sta-

tionary camera view data, we only need to set the SVA and

GS parameters.We set Tj to 1000 for all sequences, Tv to

1.0, and K to 2. For a fair comparison, we adopt the same

training settings as for the baseline to retrain each track-

ing model with and without our method, where the training

datasets include MOT15, MOT16, MOT17 and MOT20.

4.3. Comparison of long-tail distribution solutions.

We follow the settings of the ablation experiment, count

the number of frames of pedestrians with different identi-

ties on the MOT17 validation set, and divide all classes into

head classes and tail classes according to the class average

principle, as shown in Fig. 5. We evaluate various long-tail

distribution solutions in multiple classes on the MOT17 val-

idation set. As shown in Tab. 1, we can observe that some

methods boost the MOTA metric but reduce the IDF1 metric

on all classes, and the Logit Adjustment method boosts the

performance on the all classes but reduces the performance

on the tail classes. In comparison, our method achieves the

best performance in all classes, head classes and tail classes.

4.4. Comparison with other SOTA

Due to the fact that Joint Detection and Tracking involve

the concurrent learning of detectors and appearance extrac-
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Method HOTA↑ IDF1↑ MOTA↑ MT↑ ML↓ IDS↓

MOT15
FairMOT [58] 45.2 59.4 53.1 39.0% 15.4% 911

FairMOT(+Ours) 47.0(+1.8) 61.5(+2.1) 56.7(+3.6) 42.7% 14.0% 845

MOT15
CSTrack [30] 42.9 56.7 49.8 20.9% 27.2% 762

CSTrack(+Ours) 46.4(+3.5) 60.2(+3.5) 55.0(+5.2) 46.7% 13.0% 920

MOT16
FairMOT [58] 57.7 70.8 71.0 38.2% 21.6% 1,274

FairMOT(+Ours) 57.8(+0.1) 71.3(+0.5) 71.0(+0) 38.9% 21.5% 1,270

MOT16
CSTrack [30] 53.1 67.5 65.7 30.4% 25.0% 1,265

CSTrack(+Ours) 53.3(+0.2) 67.5(+0) 66.0(+0.3) 29.5% 25.4% 1,303

MOT17
FairMOT [58] 57.1 70.2 70.2 40.9% 18.6% 4,329

FairMOT(+Ours) 57.3(+0.2) 70.1(-0.1) 69.9(-0.3) 41.4% 17.8% 4,776

MOT17
CSTrack [30] 52.6 66.1 65.2 30.7% 23.8% 4,605

CSTrack(+Ours) 53.1(+0.5) 66.7(+0.6) 65.1(-0.1) 32.0% 25.0% 4,341

MOT20
FairMOT [58] 52.3 65.0 56.8 67.2% 7.3% 6,108

FairMOT(+Ours) 54.4(+2.1) 70.3(+5.3) 65.9(+9.1) 49.7% 12.5% 3,548

MOT20
CSTrack [30] 45.7 59.9 58.1 33.7% 21.8% 3,645

CSTrack(+Ours) 47.1(+1.4) 60.4(+0.5) 58.1(+0) 35.5% 20.9% 4,358

Table 2. State-of-the-art comparisons on four public MOT bench-

marks, i.e., MOT15, MOT16, MOT17 and MOT20. Performance

under the private detection on the test set of four public MOT

benchmarks, only using themselves train set. All the results are

obtained from the official MOT challenge evaluation server. Our

better results are marked in bold. The gain vlaues are marked in

red. The best gain vlaue is marked in red. Our method is high-

lighted in blue.

tors, it is highly suitable for evaluating our method aimed

at training data and Re-ID. To evaluate the effectiveness of

our method, we apply them to two state-of-the-art track-

ers of the Joint Detection and Tracking, FairMOT [58] and

CSTrack [30]. We evaluate FairMOT and CSTrack on four

public MOT benchmarks, i.e., MOT15, MOT16, MOT17

and MOT20. The results are reported in Tab. 2. According

to the results, our method can improve the performance of

the algorithm on MOTA, IDF1, HOTA and other metrics,

especially on the MOT15 and MOT20 benchmarks.

MOT15: As shown in Tab. 2, the superiority of our method

can be fully reflected on the benchmark MOT15. Fair-

MOT is improved by 1.8% HOTA, 2.1% IDF1 and 3.6%

MOTA. CSTrack is improved by 3.5% HOTA, 3.5% IDF1,

5.2% MOTA and 25.8% MT, decreased by 14.2% ML. This

demonstrates that our method excellently improves the per-

formance of detection and appearance feature extraction.

MOT16 and MOT17: Compared with MOT15, MOT16

and MOT17 contain more data and more precised annota-

tions. The results in Tab. 2 show that FairMOT is improved

by 0.1% HOTA on MOT16 and 0.2% HOTA on MOT17,

Method Venue MOTA↑ IDF1↑ HOTA↑ IDS↓

Joint Detection and Tracking framework:
FairMOT [58] IJCV 2021 61.8 67.3 54.6 5,243

CSTrack [30] TIP 2022 66.6 68.6 54.0 3,196
RelationTrack [50] TMM 2022 67.2 70.5 55.1 4,243

MTrack [49] CVPR 2022 63.5 69.2 - 6,031

FairMOT(+Ours) - 67.8 70.7 55.4 3,505

Table 3. Comparison with the SOTA methods of the Joint Detec-

tion and Tracking framework on the MOT20 test set. The best

results are shown in bold. Our method is highlighted in blue.

Method Training Data Images Identities MOTA↑ IDF1↑ IDS↓

FairMOT [58] MIX 77K 10.4K 61.8 67.3 5,243

FairMOT(+Ours) MIX 77K 10.4K 67.8 70.7 3,505
FairMOT(+Ours) MOT20 9K 2.2K 65.9 70.3 3,548

Table 4. Results of the MOT20 test set when using different meth-

ods and different datasets for training. “MIX” represents the mixed

datasets, including MOT20 [12], ETH [16], CityPerson [55], Cal-

Tech [14], CUHK-SYSU [46], PRW [62] and CrowdHuman [38]

dataset. Our better results are shown in bold. Our method is high-

lighted in blue.

and CSTrack is improved by 0.2% HOTA on MOT16 and

0.5% HOTA on MOT17, after adding our method. HOTA is

a comprehensive index that balances detection performance

and association performance. This shows that our method

can improve the comprehensive ability of the network.

MOT20: Compared with previous MOT benchmarks,

MOT20 is more crowded. As shown in Tab. 2, our method

delivers extremely outstanding results, with improvements

of 2.1% HOTA, 5.3% IDF1 and 9.1% MOTA for FairMOT

and 1.4% HOTA for CSTrack. We speculate that it is be-

cause the number of head classes and tail classes in the

MOT20 dataset is very different, and our method allevi-

ates the negative impact of the long tail distribution of the

MOT20 dataset. Our method achieves extremely superior

performance in dense pedestrian scenes.

Then, we evaluate the SOTA methods of the Joint De-

tection and Tracking framework on the MOT20 test set. As

shown in Tab. 3, our method achieves the best performance

on comprehensive metrics.

Furthermore, to explore the data efficiency benefits of

our approach. We used different methods to train models

on different data, and the results are shown in Tab. 4. No-

tably, our method trained using only the MOT20 data is

4.1% higher in MOTA and 3.0% higher in IDF1 than the

baseline method trained using MIX data, indicating that our

method is particularly effective for data efficiency.

4.5. Ablation Study

Using FairMOT [58] as the baseline tracker, we perform

a series of ablation study on MOT17 dataset to demon-

strate the effectiveness of our method from different as-
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Method SVA DVA GS MOTA↑ IDF1↑

1 Base � � � 67.8 72.3

2 Base(+SVA) � � � 68.3 72.8

3 Base(+DVA) � � � 68.8 72.7

4 Base(+SVA+DVA) � � � 69.0 73.0

5 Base(+SVA+DVA+GS) � � � 69.3 73.4

Table 5. Impact of each proposed component on validation set

of MOT17. (SVA: Stationary Camera View Data Augmenta-

tion, DVA: Dynamic Camera View data Augmentation, GS: Group

Softmax. The best results are marked in bold.)

Ts MOTA↑ IDF1↑ FP↓ FN↓ IDS↓

0.0 68.0 70.2 2,511 14,329 475

0.1 68.0 70.2 2,945 13,868 462

0.2 68.4 70.2 2,778 13,810 461

0.3 68.1 69.7 2,670 14,090 479

0.4 68.1 71.3 2,991 13,787 451

0.5 68.5 70.8 2,663 13,844 495

0.6 68.0 69.8 2,785 14,016 515

0.7 69.0 72.5 2,685 13,591 470

0.8 69.0 70.6 2,670 13,609 453

1.0 68.3 71.0 3,224 13,426 458

0.9 69.3 73.4 2,640 13,504 455

Table 6. Comparison of different image selection thresholds Ts.

The top two results are highlighted with red and blue.

pects. Since MOTChallenge does not provide the valida-

tion set, we divide the training datasets of MOT17 into two

parts, the first one half as training set and the other half

as validation set. the training datasets of MOT17 include

02, 04, 05, 09, 10, 11 and 13 sequences. 02, 04 and 09

sequences belong to stationary camera view data. 05, 10,

11 and 13 sequences belong to dynamic camera view data.

Thus, we apply SVA to 02, 04 and 09 sequences, and DVA

to 05, 10, 11 and 13 sequences. All the models are trained

for 30 epochs on the training set of MOT17.

Impact of each component. As shown in Tab. 5, all the

components have boosted the tracking performance effec-

tively. Our method can obtain 1.5% MOTA and 1.1%

IDF1 gains ( 1© vs. 5©). Among them, the SVA increases

0.5% MOTA and 0.5% IDF1, and DVA can further im-

prove MOTA to 69.0% and IDF1 to 73.0%. Due to GS,

our method boosts the performance to 69.3% on MOTA and

73.4% on IDF1.

Analysis of DVA. As introduced in Sec. 3.2.2. We select

the image selection threshold Tp in Eq. (4) to analyze its

impact. We change the image selection threshold Ts from

0.1 to 1.0 at intervals of 0.1. The results by using different

image selection threshold Ts are illustrated in Tab. 6. We

can observe that the best experimental results occur when

the image selection threshold Ts is 0.9. This phenomenon

shows that using a small amount of enhanced images by

DVA can help improve the performance of network. We

(a) Baseline

(b) Baseline+GS

Figure 6. Visualization about the cosine metric matrix between ap-

pearance vectors of the current example frame and the track tem-

plates. Red color indicates a higher association, and blue indicates

a lesser association.

speculate that the reason is that the network learns too much

about the features of the enhanced image by DVA, which

leads to ignoring the scene features of the original image.

Analysis of GS. As introduced in Sec. 3.3. For a intuitive

comparison, we construct the cosine metric matrix between

appearance vectors of the current example frame and the

track templates in Fig. 6. During the matching process, the

ideal situation is that there is at most one red color in each

row and column of the cosine metric matrix, and the rest are

blue. We can observe that the GS can significantly improve

the association ability.

5. Conclusion
In this study, we note a significant imbalance in the distri-

bution of trajectory lengths across different pedestrians, re-

vealing the long-tail distribution issue within existing MOT

datasets. To address it, we propose our method, which fo-

cuses on two key aspects: information augmentation and

module improvement. Specifically, we introduce two data

augmentation approach tailored for viewpoint states, in-

cluding SVA and DVA, and the GS module for Re-ID. No-

tably, our work represents the pioneering effort in tackling

the long-tail distribution in the realm of MOT. Using two

SOTA multi-object trackers, we have verified the effective-

ness of our method on MOTChallenge benchmarks. The ex-

perimental results demonstrate that our method effectively

mitigates the impact of long-tail distribution on MOT.
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