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Flgure 1. Given an abstract freehand sketch and an 1mage depicting the fa01al identity of a person, our method transforms the deformed
sketch into a plausible-looking caricature while maintaining identity-fidelity and imitating the exaggerations portrayed in the input sketch.
Additionally, it can seamlessly transmit the look-and-feel of a given style-image into the output caricature.

Abstract

In this paper, we democratise caricature generation, em-
powering individuals to effortlessly craft personalised car-
icatures with just a photo and a conceptual sketch. Our
objective is to strike a delicate balance between abstraction
and identity, while preserving the creativity and subjectiv-
ity inherent in a sketch. To achieve this, we present Explicit
Rank-1 Model Editing alongside single-image personalisa-
tion, selectively applying nuanced edits to cross-attention
layers for a seamless merge of identity and style. Addition-
ally, we propose Random Mask Reconstruction to enhance
robustness, directing the model to focus on distinctive iden-

tity and style features. Crucially, our aim is not to replace
artists but to eliminate accessibility barriers, allowing en-
thusiasts to engage in the artistry.

1. Introduction

Ever wondered when you would finally decide to get that
personalised caricature created, perhaps during a holiday?
Look no further, this paper is for you — we strive to
democratise caricature [6, 26, 27] generation for everyone!
With a portrait of yourself and a conceptual sketch of how
you envision your caricature, we will automatically gen-
erate a high-fidelity caricature that unmistakably captures
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your essence [27]. Our aim however is not to replace artists;
after all, the realm of art may be one that Al will never en-
tirely conquer — so when you find yourself in Paris next, do
get your caricature expertly crafted by a skilled artist!

We commence our study by asking the fundamental
question that arises when scrutinising a caricature — Is this
me? (or Obama or Mr. Bean for that matter in Fig. 1?) In-
deed, the core challenge in caricature generation is navi-
gating the delicate balance of infusing abstraction [20] into
the process to achieve that distinctive caricature appearance,
while still preserving the essential identity cues that unmis-
takably represent the intended person [10]. Over and above
all, how do we seamlessly inject your individuality [8] and
creativity [5] into the art generation process, ensuring the
resulting caricature is genuinely your own, rather than one
dictated solely by AI?

Our solution lies in your sketch! A single rough sketch
[2, 3, 33] is all it takes to encapsulate your vision for your
caricature, as illustrated in Fig. 1. The scientific challenge
is clear: regardless of your artistic skill or the lack of it,
how can we design a system to adeptly generate a plausible
caricature while still preserving your identity [27]? And one
more thing, if there is a specific caricature style you prefer,
we would like to accommodate that preference as well.

We most certainly are not pioneers in caricature gen-
eration [6, 26, 27]; our motivation primarily draws from
prior art in this field. However, our set of challenges no-
tably surpasses the technical capabilities of previous sys-
tems [0, 27], particularly those primarily deformation-based
[16, 57], which tend to prioritise style creation over identity.
Crucially, these prior systems often fall short in including
“you” in the solution. This deficiency results in generated
caricatures lacking expressiveness and missing interesting
features like local abstraction [20], hairstyle variation [66],
and view changes — all of which can be easily injected into
our system with just your single sketch!

Our approach to modelling the delicate balance between
identity and style relies on the interaction between a novel
single-image Text-to-Image (T2I) personalisation module
and a sketch-specific T2I-Adapter [41]. The former ensures
identity, while the latter allows for sketch-controlled carica-
ture generation. This, of course, is not trivial. Latest single-
image T2I personalisation approaches [13, 50, 61] often
grapple with overfitting during single-image fine-tuning, re-
sulting in a highly specialised yet inflexible model that lacks
generalisation beyond training data. This makes them es-
pecially challenging for them to adapt to the highly ex-
aggerated and subjective human sketches, which are often
Out-of-Distribution (OOD). This challenge is further exac-
erbated, as we face the task of merging concepts of identity
and style. If done blindly, this would lead to a blending
of features, resulting in caricatures that lack distinction or
skew towards one aspect at expense of the other.

We thus propose Explicit Rank-1 Model Editing for
single-sketch personalisation, enabling effective learning
and the fusion of identity and style. By incorporating an
explicit mechanism, it independently manipulates the ex-
plicit editing of identity and style in the cross-attention lay-
ers [41], with minimal extra parameters while maintaining
the integrity of textual contexts. This provides a more sub-
jective and fine-grained control over desired concepts, mit-
igating the overfitting typically encountered. Furthermore,
we introduce Random Mask Reconstruction to enhance the
robustness of distorted shapes. It achieves this by masking
random patches of the input image, compelling the model to
focus on crucial identity and style features over local varia-
tions. This capability importantly allows the model to better
handle exaggerated caricature sketches while emphasising
the essential learned features.

Our contributions are: (i) we democratise caricature gen-
eration, enabling individuals to easily create personalised
caricatures, from a photo and a conceptual sketch. (ii)
we address the delicate balance between abstraction and
identity via Explicit Rank-1 Editing, offering nuanced con-
trol by selectively applying rank-1 edits to cross-attention
layers. (iii) we enhance system robustness with Random
Mask Reconstruction, enabling effective handling of dis-
torted shapes while emphasising essential identity and style.

2. Related Work

Deep Caricature Synthesis: Caricature synthesis aims to
exaggerate or distort specific facial features for a stylised
yet recognisable portrayal of a subject [4, 14, 16]. Such
methods typically involve a deformation stage, followed by
image-to-image translation. Introduced as a GAN [15]-
based framework [6] involving facial landmarks to guide
deformations, it was enhanced by automating control point
prediction for warping and embedding a discriminator, act-
ing as an identity classifier to help in its preservation [57]. A
few subsequent works include diversifying caricature gen-
eration to multiple facial exaggeration types [16], leverag-
ing SENet [25] and spatial transformer modules to produce
high-fidelity warps based on dense warping field [14], and
leveraging StyleGAN [28] with GAN inversion [44, 60] to
propose shape exaggeration blocks for additional control
[27]. Towards spatial manipulation within caricature syn-
thesis, while Semantics CariGAN [9] leveraged semantic
shape transformations for caricature-control from warped
semantic maps, a segmentation-guided dual-domain syn-
thesis framework [4] combined few-shot GAN [47] with
RepurposingGAN [62]. Addressing the limitations of the
deformation-based pipeline, we strive to enhance creative
freedom in caricature synthesis via freehand sketches.

Denoising Diffusion Probabilistic Models (DDPM): Re-
cently, DDPMs [22] have emerged as the de facto choice
for generative modelling, thanks to their high-fidelity im-
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age synthesis potential [34]. Earlier works [21, 22, 42, 48]
have significantly improved text-to-image (T2I) models,
such as Imagen [53], DALL-E2 [46], and Stable Diffusion
(SD) [48] — further enhanced by training on diverse image-
caption pair datasets [54, 55]. Harnessing the prior knowl-
edge of pretrained T21 models, research progressed to guide
generation under additional conditions [68, 69, 71]. For in-
stance, ControlNet [70] and T2I-Adapter [41] introduced
content semantics adapters for targeted tasks such as pose,
depth map, and sketch-conditional synthesis [65], which en-
hances the flexibility of the generation process.

T2I Personalisation: With a limited set of reference im-
ages, T2I personalisation aims to adapt pretrained T2I mod-
els [48, 53] to specific concepts, while retaining its general-
isability. Among the proposed strategies [12, 58, 64], while
Textual Inversion [13] optimises text embeddings to cap-
ture new concepts, DreamBooth [50] personalises the out-
put by fine-tuning the whole Stable Diffusion [48] and Im-
agen [53] models. Research on Parameter-Efficient Fine-
Tuning (PEFT) methods [18], such as LoRA [24, 52] and
SVDiff [17], focuses on reducing the computational bur-
den during model training. Additionally, CustomDiffu-
sion [37] fine-tunes only cross-attention layers, while Per-
fusion [61] introduces Rank-1 Model Editing (ROME) [40]
to optimise the Value-pathway in the cross-attention mech-
anism. InstantBooth [56] enables personalised inference
with single images. FastComposer [67] uses a novel im-
age encoder for concept embeddings, while HyperDream-
Booth [51] achieves efficient fine-tuning with a hypernet-
work. However, resource-intensive training may limit their
application [56, 67]. We thus offer a rapid and universal
single-image method, that extends personalisation beyond
individual identity images to include reference style images,
facilitating synthesis of stylised caricatures, while costing
minimal iterations and parameter overhead.

3. Revisiting Text-to-Image Diffusion Models

Overview: Diffusion models [11, 48, 59], rely on two
stochastic processes, termed as forward and backward dif-
fusion [22]. The forward process involves iteratively adding
Gaussian noise to a clean image o € R"*“*3 over ¢ time-
steps, producing a noisy image z; € R"*%X3 as: z, =
Vag o + (V1 — ay)e, where, € ~ N(0,1) is the added
noise, {a;}7 represents a predefined noise schedule [22]
with a; = Hle s and time-step ¢ value is sampled from
a Uniform distribution ¢ ~ U (0, T'). With sufficiently large
T, x7 approximates isotropic Gaussian noise. The back-
ward process entails training a modified UNet [49] denoiser
Fp(-). Tt takes the noisy input z; and the corresponding
time-step ¢ to estimate the input noise €; &~ Fy(x;,t). Once
trained with a standard MSE loss [22], Fy can reverse the ef-
fect of forward diffusion. During inference, Fj is applied it-
eratively for 7" time-steps on a randomly sampled 2D Gaus-

sian noise image xr to get a cleaner image x,_; at each
time-step ¢, thus eventually resulting in one of the cleanest
images o resembling the original target distribution [22]

Text-Conditioned Diffusion Model: Diffusion models can
generate images conditioned on different signals (e.g., class
labels [23], textual prompts [46, 48], etc.). Given a textual
prompt p, the initial step involves its conversion to the word-
embedding space WV on applying a word-embedding func-
tion W. Subsequently, the transformed prompt is passed
through a CLIP [45] text encoder denoted by T(-), which
produces the text encoding as t, = T(W(p)) € R77*d
in the text encoding space 7. This t, controls the diffu-
sion process via cross-attention, thus allowing Fy(z¢, ¢, tp)
to perform p controlled denoising on x;.

Stable Diffusion: Latent Diffusion Models (i.e., Stable Dif-
fusion) [48] perform forward and backward denoising in
the latent space for [48]. In its two-stage approach, Stable
Diffusion (SD) [48] first trains a variational autoencoder
(VAE) [31], comprising an encoder E'(-) and a decoder D(+)
in sequence. E(-) converts the input image zo € R"*wxe
to its latent representation zy € R& X% xd [48]. The for-
ward process adds Gaussian noise to zy over ¢ time-steps,
producing a noisy latent z; = /&y z0 + (/1 — &y )e. Later,
a UNet [49] denoiser €g(-) is trained to perform conditional
denoising based on textual prompt p directly in the latent
space [48] with loss objective as:

Lo =Euprepllle—colnttp)3) (1)

SD incorporates the text conditioning using tp, into the de-
noising process via cross-attention [48] as:

{ Q=Wozi; K =Wgtp; V =Wytp

Attention(Q, K,V) = SoftMaX(Qf/%T) %

where Wg, Wi, and Wy, are the learnable projection ma-
trices. Wpgk and Wy, linearly projects the text ecoding
tp € R77™78 (o form the “Key” and “Value” vectors.
Whereas, W projects the intermediate noisy latents to
form the “Query” maps [48]. The cross-attention map is
produced as SoftMax(QKdT) - V. Essentially, the cross-
attention map indicates the correspondence between the tex-
tual prompt and the spatial regions of the image [48].

(@3]

T2I-Adapter: Moving beyond conventional textual condi-
tioning [48], T2I-Adapter [41] enables a myriad of different
spatial conditioning signals [36] (e.g., segmentation masks,
scribbles, sketches, key pose, depth maps, colour palates,
etc., or their weighted combinations) to guide the T2I image
generation process of SD [48]. In practice, T2I-adapter [41]
trains a lightweight network (comprising one convolutional
and four residual blocks) that extracts deep features from
spatial conditioning signals at four different scales. Those
extracted conditioning-features are then added with inter-
mediate features of SD’s UNet decoder at each scale [41] to
influence denoising with the given condition [41].
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4. Problem Definition and Challenges

Given a reference portrait photo Z,, depicting a specific
identity p and a free-hand abstract sketch S as the query,
we aim to generate a caricature C;, which should retain the
identity [10] captured in Z,,, while reflecting the sketch’s (S)
influence on its shape. Notably, 7, may represent an indi-
vidual not encountered previously, and the free-hand sketch
S may depict random or highly unconstrained deformations
[6] or shape exaggerations [57], to be reflected in C;.

Complexity stems from the delicate balance between
preserving identity [10] and introducing sketch-guided
shape deformations [9]. Learning the unigue identity from a
single reference image is non-trivial, given the risk of over-
fitting [13, 50] on limited data. Adding to it is the complex-
ity of generating an exaggerated shape in accordance with
the sketch [1, 35]. Addressing these challenges requires a
robust model capable of learning and generalising [61] from
a single reference image while optimising the trade-off be-
tween identity preservation and shape exaggeration.

5. Sketch for Caricature Generation

Overview: Our approach diverges from the prevalent use of
pre-trained StyleGAN’s [28-30] latent space in facial image
editing [43] tasks. Instead, we opt for a pre-trained text-
to-image stable diffusion (SD) model [48], known for its
generalisation [38] and adaptability [13] across diverse and
wild scenarios. Our problem being inherently multi-modal
[59], where 7, is a real photo, S is a black-and-white sparse
abstract [20] line drawing, and the output caricature (C,)
typically extends beyond real photo modality, SD [48] be-
comes an ideal fit as it excels in handling such scenarios
which are less encountered [59] in real life.

Our personalised text-to-image (T2I) framework in-
volves fine-tuning the SD model to capture identity in the
reference photo Z,, and generate the same identity in various
contexts [13]. Consequently, we leverage an off-the-shelf
T2I-Sketch-Adapter [41] to spatially condition the identity-
adapted SD model. This process effectively integrates shape
guidance from sketch, aligning C; with the intended shape.

Our caricature generation pipeline extends further to in-
clude style [27] adaptation, by acquiring low-level style fea-
tures from a single style-reference image Zg characterised
by a specific style g. The resulting output caricature C;‘ -
now concurrently preserves the identity, style, and shape de-
rived from Z,,, Z,, and S, respectively.

5.1. Baseline off-the-shelf Solutions

Given the recent rise of personalised T2I frameworks [48,
50, 53], one can naively finetune it using a single reference
identity image, and further generate a sketch-conditioned
shape-exaggerated output caricature plugging an off-the-
shelf T2I-Sketch-Adapter [13]. Among such frameworks,
Textual Inversion [13] aims to learn a new pseudo word

embedding v, (representing the concept) in W space by
directly optimising the LDM loss as in Eq. (1) against refer-
ence images. Whereas, Perfusion [61] further adjusts visual
representations through ROME [40], modifying the Value-
pathway activation according to the component of all words
that are aligned with the target concept.

Such a naive solution would however suffer from a few
challenges. Firstly, training from a single reference identity
(Z,) or style (Z,) image easily leads to overfitting [61] in
word embeddings, thereby compromising on generalisabil-
ity to multiple contexts. Secondly, integrating homologous
concepts like identity and style, encounters a substantial de-
gree of semantic overlap [61]. This results in detrimen-
tal interference (see Fig. 5), causing the concepts to over-
shadow each other in sketch+style guided caricature gen-
eration. Lastly, being trained on a single reference image
only, it fails to generalise towards imbibing the exaggerated
[57] shape guidance from diverse sketches [20].

Accordingly, we propose three key solutions: (i) Explicit
Rank-1 Model Editing (Sec. 5.2), that edits only at the con-
cept index. Besides preventing potential interference, it
also refines the optimisation scope, rendering the adapta-
tion process more effective. Secondly, we implement Ran-
dom Mask Reconstruction (Sec. 5.3) to enable training with
locally masked images, directing the model’s focus away
from local variations and emphasising on key features. This
enhances the model’s resilience to diverse facial shape con-
straints [32] crucial for caricature synthesis. Thirdly, we
incorporate additional regularisation (Sec. 5.4) using super-
class on word embeddings and text encoding, to counter
overfitting, which ensures the model’s attention mechanism
remains less burdened by the identity [61], allowing more
free-form shape exaggeration, while preserving identity.

5.2. Explicit Rank-1 Model Editing

Rank-1 Model Editing (ROME) [40] in NLP considers
transformer [63] feed-forward layers as memory storage. It
utilises learnable outputs to edit this memory, aligning it
with the target concept. ROME differentially modifies only
the knowledge related to the target, preserving rest of the
pre-trained model’s memory completely. In T2I [41], tex-
tual context is integrated via cross-attention layers, using
‘Key’ and ‘Value’ pathways akin to feed-forward layers in
transformers [61]. Our contribution, Explicit Rank-1 Model
Editing (Explicit ROME), refines T2I models by applying
modifications to the textual encoding locally, specifically ar
the position of the concept index while leaving other textual
contexts untouched.

Given a reference identity photo Z,, and a textual prompt
p = ‘a photo of a P*’, we convert p to a series of
word embedding vectors p,, through word-embedding layer
W where the word embedding corresponding to concept to-
ken P* is replaced with a learnable pesudo word embedding
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Figure 2. Within cross-attention layers, Explicit ROME (Sec. 5.2) edits the concept entry with trainable target output o* that encapsulates
the identity features. We also employ a dynamic masking method (Sec. 5.3), selectively occluding latent regions during training to enhance

model robustness.

Additional regularisation (Sec. 5.4) is applied to word embeddings and text encoding through superclass.

During

inference, a frozen T2I-sketch-adapter [41] provides shape guidance, resulting in an output caricature with the desired identity and shape.
A similar training pipeline is used for the style image as well. We use Eq. (4) to perform sketch+style guided caricature generation.

vector v* € R7%8 for SD v1.5 [48]. It is initialised from the
word embedding of its corresponding superclass word, like
‘man’ or ‘woman’ based on the gender of the identity photo
Z,. Position of the concept token is denoted as c;. Next,
we use a CLIP-text encoder to obtain textual encoding (in
T space) as t, = T(p,) € R777% This t, influences
the intermediate feature map of SD-UNet through ‘Key’ and
“Value’ pathways which we edit via Explicit Rank-1 Model
Editing in the next stage.

Considering W € R329%768 (for SD v1.5 [48]) from
Eq. (2) as the embedding matrix for either ‘Key’ as Wi or
‘Value’ as Wy, and ty, as the textual encoding, the standard
output h = Wt,, is edited by Explicit ROME as:

hlei] < hlci] + s - ®(tp[ci], ") - o 3)

where ®(-, ) is the cosine similarity function and o* is a
learnable vector of size R32° (for SD v1.5 [48]). The target
input ¢* is initialised from CLIP [45] text encoding t, at c;
index, and at every step is updated through the exponential
moving average [61] as i* < 0.98-i* 4ty [c;]. The input i*
serves as a prototype for gauging the alignment of various
contexts with the learned identity. The scale s allows modu-
lating the degree of personalisation during inference, offer-
ing more control over results. The similarity ®(tp[c;],*)
represents how closely the input matches ¢*, after the inter-
action of learnable pseudo word embedding v* and other
word embeddings. It can adjust what level of identity fea-
tures in the caricature should be embedded depending on
various contexts (freehand sketch in our case). Instead of
complex Mahalanobis distance [61] based formulation we
utilise the cosine distance to calculate the similarity, which
is an intuitive and effective choice according to the text en-
coder CLIP [45]. In all the cross-attention layers’ ‘Key’ and
“Value’ pathways, we explicitly apply Explicit ROME as in
Eq. (3) only at the index position of the concept token c;.
This aligns visual features with the target concept, therefore
preserving other textual contexts, and consequently ensur-
ing generalisability without compromise.

Similar to adapting to a reference identity photo Z,,, one
can adapt it for a specific style-image Z, as well, taking su-
perclass word for style images as ‘comics’, ‘illustration’ etc.

In particular, Eq. (3) can be extended to combine multiple
independently trained concepts as follows:

hles] = hles] + Y s -
j=1
This equation independently treats each concept at its re-
spective j" index, preserving unique elements without un-
intentional blending. This ensures easier integration of mul-
tiple concepts in caricature synthesis [61], addressing the
challenge of blending homologous identity and style [27].
To sum up, our method has the following trainable pa-
rameters: (i) a single pseudo word embedding v* € R768.
(ii) the tuple {0}, 0% }! at each cross-attention layer [ for
‘Key’ and ‘Value’ pathway respectively. Every o* has a di-
mension of 320, thus making our Explicit ROME overall
30x lesser learnable parameters than Perfusion [61].

D(tplesij)-0; ()

5.3. Random Mask Reconstruction

One of the major challenges of caricature synthesis is recre-
ation of the reference-style [27], while maintaining the sub-
ject’s unique identity [6, 26, 27, 61]. To ensure the seamless
reproduction of style and identity in the output caricature,
we introduce random mask reconstruction (RMR) loss. We
hypothesise that random masking of the reference images
would shift the model’s focus from local spatial regions,
enforcing it to understand the global concepts (i.e., style
and identity). Given a random masked image, we pass it
through the encoder (), to obtain a masked latent image
zy* which after forward diffusion becomes z;". This upon
passing through UNet-denoiser ¢y conditioned on ty, the
modified SD objective becomes:

k 2

L™ = Eapttpe((|(€ = ca(zi", 1, 85)) © Ml[3)  (5)
where M is the equivalent latent space binary mask with
size same as z;. It is used to impose £%%*k on the unmasked

areas only. In practice, we obtain M via bilinear downscal-
ing from a randomly sampled mask [19] in the pixel space.

5.4. Concept Regularisation

Any marked deviation of the concept word embedding v*,
risks dominating of the text encoder and attention mecha-
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Figure 3. Qualitative comparison with GAN-based deformation models. These visual results illustrate our method’s higher fidelity and
shape flexibility in caricature synthesis compared to existing method viz. StyleCariGAN [27], CariGANs [6], and WarpGAN [57].

nism by the concept, thus losing generalisability to sketch-
based deformations. We thus apply l» regularisation [13]
on the concept word embedding against its superclass word
embedding S¥ in W space to prevent overfitting of the text
encoder. Furthermore, we impose cosine distance-based
regularisation loss between text encodings t, (using v*)
and t3 (using S¢”) from CLIP textual encoder T, at the
position of concept token c;. Therefore, the regularisation
losses in VW and T spaces become:

Lhy =1V SY) 5 L =1—B(tp[es], tirlecs])  (6)
Finally, the overall training loss becomes Ly, = ngask +
Alﬁre"\; + )\Qﬁze—g. Please see Fig. 2 for a summarised
overview of training and inference pipelines.

6. Experiments

Datasets. We use the WebCaricature dataset [26] to source
identities and styles. To validate our approach via a quanti-
tative comparison and a user study, we curate a test dataset
encompassing 20 identities, 4 styles, and 12 distinctive edge
maps as shapes. These edge maps are extracted from cari-
cature images of WebCaricature [26], leading to 960 unique
caricature pairs for evaluation. For a fair assessment of our
method, the carefully selected identities encompass a wide-
spectrum of race, gender, and age, thereby upholding diver-
sity and inclusiveness in our evaluation. Analysing qual-
itative results, we incorporate amateur freehand sketches,
incorporating real user interpretation into the assessment.

Implementation Details. Our implementation is based on
Stable Diffusion v1.5 [48]. We train using AdamW [39] op-
timiser, with a batch size of 16, learning rates 0.2 and 0.002
for target outputs and embeddings respectively. Fine-tuning
consists of 40 and 100 steps for identities and styles, respec-
tively. We conduct all experiments on a single NVIDIA
GTX 4090 GPU, taking 1 minute for identity and 2 min-
utes for style fine-tuning. For inference, results are sam-

StyleCariGAN  CariGANs

WarpGAN

pled with 50 steps along with a classifier-free guidance [21]
scale of 9. We use the prompts “a caricature of [idx]”
and “a caricature of [idx]| in the style of [stylex]”
to generate caricatures.

6.1. Qualitative Evaluation

Fig. 1 shows the efficacy of our proposed method in generat-
ing caricatures while faithfully conforming to specifications
of identity [26], style [27], and sketch shape [20]. Given a
subject, our method demonstrates its robust caricature syn-
thesis [27] potential in the above half of Fig. 1. It moves
beyond the traditional confines of feature scaling [6, 27, 57]
to a paradigm where features can be adjusted and exagger-
ated with ease of using sketch-based guidance. Such flex-
ibility reaches into the domain of fine-grained facial fea-
ture manipulation [7] adjusting shape, features (mouth, ears,
nose), expressions, as well as hairstyles, while also attend-
ing to accessories and novel perspectives. From simple one-
stroke outlines to intricate details, our model demonstrates
adaptability to varying sketch complexities. Remarkably,
it achieves this without reliance on identity-tailored com-
ponents [51], capturing the subtle essence of human faces
from merely a single reference image with only a few
fine-tuning steps. Our framework addresses the challenge
of identity preservation while applying exaggeration and
distortion, exemplifying a robust resistance to overfitting.
When constrained by a sketch, the model seamlessly inte-
grates identity into the shape, ensuring recognisability with-
out apparent visual artefacts, while maintaining the prior
knowledge of the SD [48] model.

Lower half of Fig. 1 illustrates our model’s ability to har-
monise two conflicting concepts: identity and style, each
derived from separate human likenesses. The objective is to
unify them within a single synthesised caricature face. Dif-
fusion backbones [48] usually struggle with such duality,
yet our model overcomes this, rendering caricatures with
high fidelity to both identity and style elements.
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Figure 4. Comparison with T2I personahsatlon approaches. Our framework is stronger in smgle image personalisation caricature
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Figure 5. Comparlson with T2I personallsatlon approaches with style reference Demonstrates our model’s robustness in generatmg
stylised caricatures with faithful identity and style, surpassing other methods like Perfusion [61] and TI [13].

6.2. Comparison with SOTA

We benchmark our caricature synthesis against three state-
of-the-art (SOTA) deformation-based models viz. Style-
CariGAN [27], CariGANs [6], and WarpGAN [57].
These models however do not support caricature synthesis
with combined conditioning on identity [6], style [27], and
shape [26] like ours. We extend our comparison to advanced
SD-based [48] personalisation models, like Textual Inver-
sion (TI) [13] and Perfusion [61] as well.

CariGANs [6] and WarpGAN [57] which rely on land-
marks and control point manipulation, clearly show distor-
tions and artefacts in Fig. 3. By leveraging deep feature-
map modulation from StyleGAN [28], StyleCariGAN [27]
delivers higher-fidelity caricatures, yet it is limited to pre-
defined scale-based exaggeration [27], ignoring shape infor-
mation. On the other hand TI [13] and Perfusion [61] fail to
preserve identity in caricatures due to overfitting caused by
single-image personalisation (Fig. 4). Furthermore, lack-
ing an effective interaction-control mechanism, they suffer
from (Fig. 5) identity and style ambiguity, thus deviating
from corresponding references. Our Explicit ROME strat-
egy circumvents these pitfalls, ensuring targeted editing at
corresponding positions without disrupting other text and
concept encodings in the cross-attention mechanism [41],
as verified by our superior qualitative results.

Table 1. Quantitative comparison. Quantitative metrics of vari-
ous approaches and our framework ablative design, reflecting the
precise quantitative edge our model holds over existing methods.

Methods ID 1 Style 1 Shape 1
TI[13] 0.634 0.553 0.633
Perfusion [61] 0.536 0.549 0.676
Ours (w/o rand mask) 0.659 0.567 0.694
Ours (w/o explicit) 0.664 0.530 0.661
Ours (Mahalanobis) 0.666 0.574 0.663
Ours-full 0.671 0.576 0.654

Now, for quantitative evaluation (Tab. 1) , we use CLIP-
Score [45] on ID, Style, and Shape. It measures ID/style-
fidelity as the similarity between generated caricatures and
ID/style images using a pre-trained CLIP [45] encoder, and
shape fidelity as the same between edgemaps of generated
caricatures and conditioning sketches. Notably, at the same
level of shape similarity, our results have the highest iden-
tity and style similarity at 0.671 and 0.576, which is 3x
and 10x faster than Perfusion [61] and TI [13] respec-
tively. Notably, this was achieved within three minutes of
fine-tuning for identity and style.

Human Study. We conduct a thorough human study to
judge the efficacy of our method from end-users’ perspec-
tive. Specifically, each of the 15 users were shown 20 tu-
ples, each containing {ID, input sketch, style image, out-
put caricature} from all competing methods, and asked to
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Figure 8. Our model’s capacity to integrate various modalities.

rate the caricatures on a discrete scale of [1,5] (worst to
best) based on fidelity to input sketch-shape, style, and ID
— resulting in a total of 300 responses per method. The fi-
nal score for each method is calculated from the mean of
all its responses. Our method with high shape-fidelity and
identity-preservation, garners an impressive overall score of
4.1 (Tab. 2) surpassing others. Although, the users pre-
ferred TI [13] over Perfusion [01] in terms of identity-
preservation, they both score lower compared to ours.

Table 2. Human Study Scores.

Methods ID 1t Style 1 Shape 1 Overall 1

TI[13] 33 2.5 29 29

Perfusion [61] 2.8 3.1 2.4 2.7

Ours 44 3.8 42 4.1
6.3. Ablation Study

Design Choices. Our ablation experiments are depicted in
Fig. 7 and Tab. 1. (i) To judge the impact of explicit edit-
ing we exclude it for an experiment, to observe that carica-
tures lose defining visual characteristics, dropping scores to
0.006 and 0.046 in identity and style similarities, respec-

tively, thus proving its significance. (ii) Removing Ran-
dom mask reconstruction (Sec. 5.3) results in 0.659 (0.553)
for ID (style), validating its role in reinforcing robustness
against local distortions in personalisation [61]. (iii) The
replacement from the Mahalanobis distance to applying co-
sine similarity on the Euclidean distance alleviates the need
for cumbersome pre-cached uncentered covariance estima-
tion [61], leading to a more streamlined training process.
More importantly, it causes an apparent improvement in vi-
sual quality, and a slight increase (0.05/0.002 in ID/style)
in the similarities as well, thus replacing cosine similarity
with a more efficient choice.

Modalities. While the fourth column of Fig. 8§ validates our
model’s precision in preserving identity, the fifth displays
our integration of styles with shapes. Finally, the sixth col-
umn highlights our Sketch+ID+Style result, achieving high
fidelity to input ID [26], sketch [20] and style [27].

Impact of Identity Scale (s). Fig. 6 shows the influence of
identity scale s on the generated caricatures. Evidently, a
higher s tends to retain a higher proportion of identity traits
in a caricature and vice-versa. Around the sweet spot below
1.40, users can freely choose this balance as per their own
subjective tastes to obtain coherent personalised caricatures
[61]. In all our experiments we had set s as 1.2, empirically.

7. Conclusion

In conclusion, our work marks a significant leap in
democratising caricature generation, offering individuals an
effortless means to craft personalised artworks with mini-
mal input — just a photo and a conceptual sketch. By navi-
gating the delicate balance between abstraction and identity,
our proposed Explicit Rank-1 Model Editing and Random
Mask Reconstruction, empower users to seamlessly merge
their unique identity and desired artistic style in the carica-
ture synthesis process. We emphasise that our intention is
not to replace the irreplaceable touch of artists but to remove
accessibility barriers, allowing enthusiasts to engage in the
creative realm of caricature art. More generally, our con-
tribution underscores the potential for Al to harmoniously
collaborate with human creativity, ensuring that art remains
a captivating and inclusive expression for all.
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