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Abstract

We propose DiffSHEG, a Diffusion-based approach for
Speech-driven Holistic 3D Expression and Gesture genera-
tion with arbitrary length. While previous works focused on
co-speech gesture or expression generation individually, the
joint generation of synchronized expressions and gestures
remains barely explored. To address this, our diffusion-
based co-speech motion generation transformer enables
uni-directional information flow from expression to gesture,
facilitating improved matching of joint expression-gesture
distributions. Furthermore, we introduce an outpainting-
based sampling strategy for arbitrary long sequence gen-
eration in diffusion models, offering flexibility and compu-
tational efficiency. Our method provides a practical so-
lution that produces high-quality synchronized expression
and gesture generation driven by speech. Evaluated on two
public datasets, our approach achieves state-of-the-art per-
formance both quantitatively and qualitatively. Addition-
ally, a user study confirms the superiority of DiffSHEG over
prior approaches. By enabling the real-time generation of
expressive and synchronized motions, DiffSHEG showcases
its potential for various applications in the development of
digital humans and embodied agents.

1. Introduction

Non-verbal cues such as facial expressions, body language,
and hand gestures play a vital role in effective communi-
cation alongside verbal language [13, 43]. Speech-driven
gesture and expression generation has gained significant in-
terest in applications like the metaverse, digital human de-
velopment, gaming, and human-computer interaction. Gen-
erating synchronized and realistic gestures and expressions
based on speech is key to bringing virtual agents and digital
humans to life in virtual environments.

*The work was done during Junming’s internship at the International
Digital Economy Academy.

†Corresponding authors.
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Figure 1. DiffSHEG is a unified co-speech expression and gesture
generation system based on diffusion models. It captures the joint
expression-gesture distribution by enabling the uni-directional in-
formation flow from expression to gesture inside the model.

Existing research on co-speech motion synthesis has fo-
cused on generating either expressions or gestures indepen-
dently. Rule-based approaches [8, 18, 22, 38, 44] were
prevalent initially, but recent advancements have leveraged
data-driven techniques using deep neural networks. How-
ever, co-speech gesture generation poses a challenge due
to its inherently many-to-many mapping. State-of-the-art
methods have explored generative models such as nor-
malizing flow models [48], VQ-VAE [2], GAN [14] and
Diffusion models [1, 3, 47, 54]. These approaches have
made progress in improving synchronization and diversify-
ing generated gestures. However, none of them specifically
target the co-speech generation of both expressions and ges-
tures simultaneously.

Recently, some works have aimed to generate co-speech
holistic 3D expressions and gestures [14, 49]. These meth-
ods either combine independent co-speech expression and
gesture models [49] or formulate the problem as a multi-
task learning one [14]. However, these approaches separate
the generation process of expressions and gestures, neglect-
ing the potential relationship between them. This can lead
to disharmony and deviation in the joint expression-gesture
distribution. Additionally, deterministic CNN-based mod-
els [14] may not be well-suited for approximating the many-
to-many mapping inherent in co-speech gesture generation.
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In this work, we propose DiffSHEG, a unified Diffusion-
based Holistic Speech-driven Expression and Gesture gen-
eration framework, illustrated in Figure 1. To capture the
joint distribution, DiffSHEG utilizes diffusion models [16]
with a unified expression-gesture denoising network. As
shown in Figure 2, our denoising network consists of two
modules, an audio encoder, and a Transformer-based Uni-
direction Expression-Gesture (UniEG) generator, which
has a unidirectional flow from expression to gesture. The
proposed framework ensures a natural temporal alignment
between speech and motion, leveraging the relationship be-
tween expressions and gestures. Furthermore, we introduce
a Fast Out-Painting-based Partial Autoregressive Sampling
(FOPPAS) method to synthesize arbitrary long sequences
efficiently. FOPPAS enables real-time streaming sequence
generation without conditioning on previous frames during
training, providing more flexibility and efficiency.

Our contributions can be summarized as follows: (1)
We develop a unified diffusion-based approach for speech-
driven holistic 3D expression and gesture generation frame-
work: DiffSHEG. It is the first attempt to explicitly model
the joint distribution of expression and gesture. (2) To better
capture the expression-gesture joint distribution, we design
a uni-directional expression-gesture (UniEG) Transformer
generator, which enforces the uni-directional condition flow
from expression to gesture generator. (3) We introduce
FOPPAS, a fast out-painting-based partial autoregressive
sampling method. FOPPAS enables real-time generation
of arbitrary long smooth motion sequences using diffusion
models. It achieves over 30 FPS on a single Nvidia 3090
GPU and can work with streaming audio. (4) We evaluate
our method on two new public datasets and achieve state-of-
the-art performance quantitatively and qualitatively. User
studies validate the superiority of our method in terms of
motion realism, synchronism, and diversity.

2. Related Work
Co-speech Expression Generation. Co-speech Expres-
sion Generation, also known as talking head/face genera-
tion, has been a topic of interest in the field. Early re-
lated methods primarily relied on rule-based procedural
approaches [10, 31, 42, 46], which required significant
manual effort despite offering explicit and flexible control.
With the advancements in deep learning, data-driven meth-
ods [7, 9, 20, 21, 28, 29, 33, 36, 41, 53] have emerged, fo-
cusing on generating images that correspond to audio in-
put. However, these methods often produce distorted pixels
and inconsistent 3D results. On another front, some ap-
proaches [21, 35] propose animating 3D faces. More re-
cently, FaceFormer [12] and CodeTalker [45] have utilized
Transformer models to animate 3D facial vertices using de-
signed attention maps for temporal alignment. While lip
movement is closely tied to speech, most data-driven meth-

ods for expression animation design deterministic map-
pings, lacking diversity in eye movement and facial expres-
sions. In contrast to these methods, our approach aims to
leverage generative models to generate diverse facial ex-
pressions with precise lip movements driven by speech.
Co-speech Gesture Generation. The speech-driven ges-
ture generation follows a similar path as face animation:
from rule-based [8, 18, 22, 38, 44] to data-driven meth-
ods [2, 5, 23, 24]. The early data-driven methods utilize
statistical models to learn speech-gesture mapping. Af-
ter that, deterministic models such as multilayer percep-
tron (MLP) [24], convolutional networks [14], recurrent
neural networks [5, 15, 27, 50, 51], and Transformers [6]
are explored. Since speech-to-gesture mapping involves
a many-to-many mapping, numerous state-of-the-art meth-
ods utilize generative models like normalizing flow [48],
GAN [14] and diffusion-based models [1, 47, 54]. Recently,
DiffGesture [54] and DiffuseStyleGesture [47] first applied
diffusion in gesture generation. However, both frameworks
require initial gestures during training for long sequence
generation, which lacks flexibility and diversity compared
to our FOPPAS. LDA [1] utilizes Conformer as the dif-
fusion base network and takes advantage of translation-
invariant positional embedding to sample longer sequences
in a go. Nevertheless, it cannot work with streaming audio
and may not generalize well on very long sequences.
Holistic Co-Speech Expression and Gesture Generation.
There are some recent methods [14, 49] exploring the holis-
tic joint generation of expression and gesture. Habibie et
al. [14] first try to synthesize 3D facial and gesture motion at
the same time. They propose a CNN-based framework that
shares the same speech encoder and uses three decoders to
generate distinct whole-body keypoints (i.e., for face, hand,
body), followed by a discriminator to provide adversarial
loss during training. However, this method learns determin-
istic mapping, which violates the nature of many-to-many
mapping from speech to gesture motion. Yi et al. [49] use
an encoder-decoder network with pre-trained Wav2Vec [4]
audio feature for expression generation and VQ-VAE for
gesture generation. Nevertheless, they generate the expres-
sions and gestures separately, overlooking the joint distribu-
tion between them. Moreover, methods based on VQ-VAE
are constrained by a finite set of motion tokens, potentially
limiting their ability to generate diverse and agile motions.

3. Method
How to model the expression-gesture joint distribution can
be key to this task. A naı̈ve way is directly concatenating
the two vectors together and passing them to deep networks
simultaneously, such that the features of both can be shared
by each other. However, we empirically find this does not
work well and leads to sub-optimal results in our experi-
ment. We hypothesize that the information flow from ges-
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Figure 2. DiffSHEG framework overview. Left: Audio Encoders and UniEG-Transformer Generator. Given an audio clip, we encode
the audio into a low-level feature Mel-Spectrogram and a high-level HuBERT feature. An audio encoder learns a mid-level representation
of speech. The audio features are concatenated with other optional temporal conditions and then fed into the UniEG Transformer Denoiser.
The denoising block fuses the conditions with noisy motion at diffusion step t and feeds it into style-aware transformers to get the predicted
noises. The uni-directional condition flow is enforced from expression to gesture for joint distribution learning. Right: The detailed
architecture of style-aware Transformer encoder and motion-condition fusion residual block.

ture to expression would interfere with the mapping from
speech to expression. Intuitively, expressions can serve as
cues for gestures since the gestures usually behave con-
sistently with the emotions and speech inferred from ex-
pression [40] and lip movement [11]. On the contrary,
gestures can hardly affect expressions, especially the lips,
which have a strong and exclusive correlation with speech.
Imagine when you express surprise, you may have widened
eyes, opened mouth, and raised eyebrows, with frozen or
startled gestures such as clasping hands and leaning back-
ward. Therefore, we propose a unified framework based
on diffusion models with uni-directional information flow
from expression to gesture for unified co-speech expres-
sion and gesture generation to capture their joint distribu-
tions. At inference time, to generate arbitrary-long motion
sequences, we propose an fast out-painting-based partial
autoregressive sampling (FOPPAS) strategy, which gen-
erates partially overlapping clips one by one with a smooth
motion at the intersection. Additionally, FOPPAS also fea-
tures its real-time streaming inference ability. In the fol-
lowing sections, we will introduce the problem formulation
and diffusion model [16], and then elaborate on the design
of our proposed framework.

3.1. Problem Formulation

Given an arbitrary-long (streaming) audio, we aim to gen-
erate realistic, synchronous, and diverse gestures as well as
expressions. To get training samples, we cut the aligned
audio and motion sequences into clips with the same time
duration using sliding windows. For each N -frame clip,
we encode the corresponding audio clip to audio features
A = [a1, . . . ,aN ]. Gesture clip G = [g1, . . . ,gN ] is
represented by joint rotations in axis-angle format, where
gi ∈ R3J and J is the total joint number. Expression
clip E = [e1, . . . , eN ] is represented by the blend shape

weights where ei ∈ RCexp and Cexp is the channel di-
mension of expression. The holistic motion sequence M =
Concat(G,E), where each motion frame mi ∈ R3J+Cexp .
The training objective of our framework is to reconstruct the
motion clip M conditioned on audio clip A, which is sim-
ilar to the Multi-Input Multi-Output (MIMO) setting [34].
At inference time, we generate realistic, diverse, and well-
aligned co-speech expressions and gestures with motion
clips smoothly connected.

3.2. Preliminary: Diffusion Models

DiffSHEG uses diffusion models [16] for this task which
consists of a diffusion and a denoising process. For explic-
itness, we substitute notations of expression, gesture, and
motion clip E,G,M with xE

0 ,x
G
0 ,x0. Given a motion clip

distribution p(x0) ∈ RN×(3J+Cexp), our goal is to train a
model parameterized by θ to approximate p(x0).
Diffusion Process. In the diffusion process, models pro-
gressively corrupts input data x0 ∼ p(x0) according to a
predefined schedule βt ∈ (0, 1), eventually turning data dis-
tribution into an isotropic Gaussian in T steps. Each diffu-
sion transition can be assumed as

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (1)

where the full diffusion process can be written as

q (x1:T | x0) =
∏

1≤t≤T

q (xt | xt−1) . (2)

Denoising Process. In the denoising process, models learn
to invert the diffusion procedure so that it can turn random
noise into real data distribution at inference. The corre-
sponding denoising process can be written as

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t))

= N
(
xt−1;

1√
αt

(
xt − βt√

1−ᾱt
ϵ
)
, 1−ᾱt−1

1−ᾱt
βt

)
, (3)
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where ϵ ∼ N (0, I), αt = 1 − βt, ᾱt =
∏t

i=1 αi and θ
specifically denotes parameters of a neural network learning
to denoise. The training objective is to maximize the like-
lihood of observed data pθ (x0) =

∫
pθ (x0:T ) dx1:T , by

maximizing its evidence lower bound (ELBO), which effec-
tively matches the true denoising model q (xt−1 | xt) with
the parameterized pθ (xt−1 | xt). During training, the tar-
get of the denoising network ϵθ(.) is to restore x0 given any
noised input xt, by predicting the added noise ϵ ∼ N (0, I)
via minimizing the noise prediction error

Lt = Ex0,ϵ

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2] . (4)

To make the model conditioned on extra context infor-
mation c, e.g., audio, we inject c into ϵθ(.) by replacing
µθ (xt, t) and Σθ (xt, t) with µθ (xt, t, c) and Σθ (xt, t, c).

3.3. DiffSHEG Framework

Our DiffSHEG consists of audio encoders and the UniEG
Transformer generator. Our UniEG has double mean-
ings: unified joint expression-gesture generation with
uni-directional expression-to-gesture condition flow. The
UniEG generator includes two main building blocks:
Motion-Speech Fusion Residual Block and Style-aware
Transformer Block.
Speech Encoding. We convert the raw speech audio into
two types of features: Mel-spectrogram and HuBERT [17]
feature, which serve as low-level and high-level speech fea-
tures, respectively. The HuBERT encoder is frozen during
training. For the low-level Mel-spectrogram feature, we fur-
ther feed it into a Transformer encoder shared by expression
and gesture branch to extract the shared mid-level speech
feature. This is drawn upon a classical design of multi-task
learning, in which task-specific decoders can share the low-
level feature to benefit each other.
Motion-Speech Fusion Residual Block. In order to con-
dition the motion on speech and align them in the temporal
dimension, instead of using cross-attention between speech
and motion [12], we directly concatenate the motion fea-
tures with the speech embeddings as well as other optional
temporal conditions along the channel dimension, resulting
in a natural temporal alignment between audio and motion
as well as an exemption on the use of attention masks in
cross-attention temporal conditioning [12]. For feature fu-
sion, instead of using simple linear layer [54] which leads
to slow convergence and unstable training, we design the
motion-speech fusion residual block, which fuses concate-
nated features and projects them into the same shape as mo-
tion features as shown in Figure 2. The block consists of
a LayerNorm (LN) and an MLP, where the LN ensures nu-
merical stability, and the MLP is designed to predict the
residual of the original motion features to facilitate fast con-
vergence (Section C in Appendix).

Outpainted Frames

Overlapping FramesTime Direction

Trucated Positional

Embedding

Optional to Fix

Initial Frames

Figure 3. Illustration for outpainting-based arbitrary long se-
quence inference. Given a previous clip, we generate current clip
by outpainting the remaining frames (light blue) according to the
overlaping frames (deep blue). Each row of blue bar represents a
motion clip from a single sampling process.

Style-aware Transformer Block. This block injects global
conditions (style and diffusion step t) to the fused features
from the previous Motion-Speech Block. Firstly, style (per-
son ID in this paper) and diffusion step t are projected
to vectors of the same shape by MLPs. Then, the sum-
mation of two global condition vectors will be fed into
AdaIN [19]. Two AdaIN stylization blocks are inserted af-
ter self-attention and MLP in a Transformer encoder block.
The AdaIN blocks apply the feature statistics substitution
according to the new statistics computed from the fused
global condition vector. Note that we utilize linear self-
attention [37, 52] as an alternative for full self-attention to
save computation and facilitate fast inference.
Uni-directional Expression-to-Gesture Information
Flow. To capture the joint distribution of expression and
gesture and facilitate realism and coherence of two types
of motion, we feed the predicted expression x̂E

0(t) at the
diffusion step t into the gesture Transformer block, as
shown in Figure 2. This expression is computed from the
predicted expression noise ϵ̂Et at diffusion step t:

x̂E
0(t) =

xE
t −

√
1− ᾱtϵ̂

E
t√

ᾱt
. (5)

Note that to prevent the gradient of the gesture branch from
affecting the expression encoder, we cut off the gradient of
the predicted expression x̂E

0(t) before passing it to the ges-
ture encoder, as illustrated in Figure 2. The Uni-EG module
will repeat n times to get the final noise in each forward of
the network.

3.4. Training
Loss functions. Except for the noise prediction loss in
Equation 4, we also introduce the velocity loss Lv and Hu-
ber motion reconstruction loss Lδ . Since the two losses are
computed on the motion x̂0, we first compute the predicted
motion x̂0(t) from the predicted noise ϵ̂t, which is similar
to Equation 5. Then, we have velocity loss computed as the
mean square error of the velocity:

Lv = E
[
∥(x0[1 :]− x0[: −1])− (x̂0[1 :]− x̂0[: −1])∥2

]
,

(6)
and the Huber loss for the reconstruction of motion:

Lδ =

{
1
2 (x0 − x̂0)

2, if |(x0 − x̂0)| < δ,

δ((x0 − x̂0)− 1
2δ), otherwise.

(7)
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The final loss is a weighted sum of the three losses:

L = λtLt + λvLv + λδLδ, (8)

where λt = 10, λv = 1, and λδ = 1 in our experiment.

3.5. Arbitrary-long Motion Generation

Instead of conditioning the model on previous frames dur-
ing training [26, 47, 54], we propose to realize the arbitrary
long sampling via outpainting at the test time without train-
ing, which has more flexibility and less computation waste.
Fast Outpainting-based Partial Autoregressive Sam-
pling (FOPPAS). As illustrated in Figure 3, starting from
the second clip, we can fix the initial frames to be the same
as the last frames of the previous clip and then outpaint the
remaining frames in this clip. This method conditions the
current clip only on the part of the previous clip frames;
therefore, we call it partial autoregressive sampling via out-
painting. Unlike the RNN-based methods [26] or train-
time autoregressive diffusion models [47, 54], the num-
ber of overlapping frames of FOPPAS can be flexibly set
and changeable anytime instead of being required and fixed
once trained. Those methods [26, 47, 54] also require an ini-
tial ”seed motion” to generate the first clip. However, it is
not convenient for users to find such seed sequences or they
just want to generate the first clip randomly. In contrast, we
can generate the first clip with the overlapping number set
as 0. In our experiment, we choose Repaint [30] to perform
diffusion-based outpainting.
Shorter Clip Sampling. When using Transformer without
positional embedding, it becomes a point-wise set function.
Therefore, the length of an ordered sequence that a Trans-
former can process in one pass only depends on the length
of the positional embedding used during training. Thanks
to this property of the Transformer, our framework can in-
fer any clip that is shorter than the training clip, which is
achieved by dropping the remaining positional embedding.
This is particularly useful when inferring the last clip, as
demonstrated in Figure 3.
Towards Real-time Sampling. The original DDPM has
1000 steps to generate a clip, which is very slow in practice.
Moreover, the total denoising steps would be further in-
creased due to the re-sampling operation in Repaint [30]. To
enable real-time generation for various applications in the
development of digital humans and embodied agents, we
adapt the Repaint [30] algorithm to DDIM [39] sampling.
We use 25-step DDIM to replace the 1000-step DDPM, with
a speedup of about 40 times during inference.
Last-steps Refinement with Blending. Although applying
outpainting already gets a very smooth transition between
clips, we occasionally observe slight inconsistency at the
boundary. To refine and facilitate the consistency at the clip
boundary, we perform a linear blending at the overlapping

part of clips at the last two sampling steps. For the details
of FOPPAS, please refer to Algorithm 1 in the Appendix.

4. Experiments
4.1. Datasets
BEAT [26] is a large-scale, multi-modal human gestures
and expressions dataset with text, semantic and emotional
annotations. We follow the train-validation-test split set-
ting in [26] with four subjects. The training and validation
samples are 34-frame clips. The test samples have 64 long
sequences with a duration of around 1 minute. The motions
are then resampled into 15 frames per second. We adopt
axis-angle rotation representation for smooth motion gen-
eration. SHOW [49] is a new audio-visual dataset that in-
cludes SMPLX [32] parameters of 4 persons reconstructed
from videos at 30 fps, along with corresponding synchro-
nized audio sampled at 22K rate. Following the same set-
tings in SHOW [49], we generate the SMPLX parameters
according to the audio. The training and validation samples
are 88-frame motion clips, and the test samples are long
motion sequences with different lengths.

4.2. Experimental Setup
We train our model on five 3090 GPUs. For BEAT, we train
our model for 1000 epochs with a batch size of 2500. For
SHOW, we train 1600 epochs with a batch size of 950.
Baselines. We compare our method with CaMN [26],
DiffGesture [54], DiffuseStyleGesture [47] and ListentDe-
noiseAction (LDA) [1] on BEAT. CaMN is proposed with
the BEAT dataset, which is based on LSTM and can fuse
multiple conditions, including audio, text, face, and emo-
tion. DiffGesture, DiffuseStyleGesture, and LDA are newly
proposed diffusion-based co-speech generation methods.
For gesture generation, the four baselines are retrained on
the axis-angle rotation representation instead of the Euler
angles. For expression generation, since four baseline meth-
ods were originally proposed for gesture generation solely,
we substitute the gesture into the expression data to gener-
ate expressions independently. For a fair comparison, we
condition all the models on audio and person ID. On the
SHOW dataset, we utilize two baselines that focus on joint
expression and gesture generation: TalkSHOW [49] and
the method proposed in [14] named LS3DCG here. Since
all the baselines only focus on the upper body movement
for gesture generation, we follow this setting despite that
our framework also works for the lower body motion.

4.3. Qualitative Results
Qualitative comparisons. We highly recommend readers
watch our demo video to get an intuitive sense of qualita-
tive results. Overall, in addition to better speech-motion
alignment, we observe more realistic, agile and diverse
expressions and gestures of ours than that of baselines on
both datasets (Figure 4, 5, 6). On the BEAT dataset, our
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Figure 4. Qualitative Comparison on BEAT [26] Dataset. In comparison to baseline methods, our approach generates a broader range
of natural, agile, and diverse gestures that are closely synchronized with the audio input. When saying ”journalist”, the character driven by
our motion raises double hands to stress this word; When saying ”never”, our motion shows two times up-and-down right hand and fingers,
corresponding to the two syllables “ne” and “ver”. The character is from MetaHuman [55] rendered by Unreal Engine 5 [56].

DiffSHEG (Ours) TalkSHOW LS3DCG

… such a true story …

Figure 5. Motion Comparison on the SHOW [49] Dataset. Our method generates more expressive and diverse motions than Talk-
Show [49] and LS3DCG [14] in terms of both gesture and head pose diversity. Our results also show more agile motions than baselines.

DiffSHEG (Ours)

TalkSHOW

LS3DCG

… five …
(a) (b)

Figure 6. Expression and Head Pose Comparison on the
SHOW [49] Dataset. (a) With speech audio as input, Talk-
Show [49] and LS3DCG [14] may generate unnatural and per-
sistent head-down poses showing limited variation. In contrast,
our method produces a wide range of expressive head poses. (b)
Prior to the audio input’s emphasis on the word “five”, our ap-
proach instinctively raises the head to prepare for highlighting,
subsequently producing precise lip movements accompanied by
raised eyebrows to emphasize the word “five”.

method shows more agile gestures than CaMN. The ges-
tures of baseline diffusion-based methods all suffer differ-
ent extents of jittering. The jittering extents from high to
low are DiffGesture, DiffuseStyleGesture, and LDA. Both
our method and CaMN can generate smooth motions. How-
ever, CaMN exhibits much slower and less diverse motion
while ours is as agile as the real motion. For expression,
CaMN shows inaccurate lip sync while other methods all
look fine. Interestingly, we find that the CaMN barely
blinks, while our method can generate good expressions
with a reasonable frequency of blinks. Other baselines show
a more frequent blinking, corresponding to higher diversity
scores. However, ours has the most similar blink frequency

as the real data. On the SHOW dataset, our method shows
more agile gestures than TalkSHOW and more diverse ex-
pressions and gestures (Figure 5, 6). This might be due to
the fact that Talkshow utilizes VQ-VAE to encode the ges-
tures, which may filter the high-frequency gestures, leading
to slow motion. Also, because VQ-VAE tokenizes the ges-
tures into limited numbers, its gestures show lower diversity
than ours. The LS3DCG suffers from jittering arms, which
may be because their deterministic CNN structure has diffi-
culty approximating the many-to-many mapping. Note that
we retrain the TalkSHOW for qualitative comparison be-
cause the results of TalkSHOW and LS3DCG with author-
provided checkpoints have many highly similar concurrent
motions and face distortions as ground truth during testing.

User study. We conducted a user study on eight 1-minute-
long videos in BEAT and twelve 10-second-long videos
in SHOW sampled from the test set. We recruited 22
subjects with diverse backgrounds to evaluate holistic re-
alism, expression-speech synchronism, gesture-speech
synchronism, and holistic diversity given real data as a
reference. Users are instructed to perform sorting questions
on shuffled videos of different methods. Note that for diver-
sity, we let users sort the motion diversity under the premise
of smooth and natural motion. The result is reported in
Figure 7. The user study results show that our generated
expressions and motions are dominantly preferred on all
four metrics over the baseline method, demonstrating that
our proposed DiffSHEG approach is capable of generating
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Figure 7. Results of the user study. The chart shows user preference percentage in terms of four metrics: realism, gesture-speech
synchronism, expression-speech synchronism, and motion diversity. In both datasets and all metrics, our method is dominantly preferred.
DSG and DG are the abbreviations of DiffuseStyleGesture and DiffuseGesture.

Dataset Method Holistic Expression Gesture

FMD ↓ FED ↓ Div ↑ Gen FGD ↓ BA↑ SRGR ↑ Div ↑ Gen

BEAT [26]

Ground Truth - - 0.651 - - 0.915 0.961 0.819 -
CaMN (ECCV’22) [26] 1055.52 1324.00 0.479 % 1635.44 0.793 0.197 0.633 %

DiffGesture (CVPR’23) [54] 12142.70 586.45 0.625 ! 23700.91 0.929 0.096 3.284 !

DSG (IJCAI’23) [47] 1261.59 998.25 0.688 ! 1907.58 0.919 0.204 0.701 !

LDA (SIGGRAPH’23) [1] 688.25 510.345 0.603 ! 997.62 0.923 0.215 0.688 !
Ours Naı̈ve Concat 354.60 354.60 0.526 497.28 0.914 0.253 0.503
Ours w/o Detach 375.98 384.31 0.513 475.19 0.917 0.247 0.517
Ours w/o x̂E

0(t)
369.97 366.37 0.519 ! 477.00 0.917 0.251 0.504 !

Ours Reverse Direction 357.56 369.72 0.583 472.38 0.913 0.245 0.553
DiffSHEG (Ours) 324.67 331.72 0.539 438.93 0.914 0.251 0.536

SHOW [49]

Ground Truth - - 0.990 - - 0.867 PCM=1 0.834 -
LS3DCG* (IVA’21) [14] 0.00230 0.00229 0.708 % 0.00478 0.947 0.981 0.645 %

TalkSHOW* (CVPR’23) [49] 0.00219 0.00233 0.740 % 0.00323 0.869 0.902 0.703 !

TalkSHOW (Re-train) [49] 0.00278 0.00408 0.618 % 0.00328 0.872 0.894 0.711 !
Ours Naı̈ve Concat 0.00255 0.00192 0.766 0.00407 0.896 0.932 0.618
Ours w/o Detach 0.00259 0.00234 0.745 0.00378 0.899 0.926 0.673
Ours w/o x̂E

0(t)
0.00248 0.00251 0.728 ! 0.00311 0.892 0.927 0.694 !

Ours Reverse Direction 0.00269 0.00266 0.731 0.00347 0.882 0.926 0.695
DiffSHEG (Ours) 0.00184 0.00161 0.923 0.00271 0.902 0.912 0.810

Table 1. Quantitative comparison and ablation study. On the BEAT [26] dataset, we compare our DiffSHEG with CaMN [26],
DiffGesture [54], DiffuseStyleGesture (DSG) [47] and LDA [1] with audio and person ID as input. Note that the baseline methods are
originally for gesture generation solely, and we apply the same procedure independently for expression generation. On the SHOW [49]
dataset, we compare with LS3DCG [14] and TalkSHOW [49]. The ablation studies are conducted on both datasets to demonstrate the
effectiveness of our UniEG-Transformer design. Note that we use SRGR on the BEAT dataset and PCM on SHOW dataset. *: indicates
that the results are computed using the pre-trained checkpoints provided by authors of TalkSHOW [49].

more realistic, synchronized, and diverse expressions and
gestures that humans prefer. The preference for our gener-
ated motions on realism also demonstrates the effectiveness
of our out-painting-based sampling strategy, which has a
smooth connection between adjacent clips.

4.4. Quantitative Results
Metrics. Except for the gold standard of evaluation for
generative tasks — user study, we also provide several
quantitative metrics as a reference: (1) FMD, FGD, and
FED denotes Fréchet Motion Distance, Fréchet Gesture
Distance, and Fréchet Expression Distance. Except for
the FGD [51] that is proposed to evaluate the Fréchet dis-

tance between generated and real data in gesture feature
space. Similarly, we propose FMD and FED that can indi-
cate the generation-GT distribution distance for holistic mo-
tion (joint expression-gesture) distribution and expression
distribution. (2) PCM and SRGR. PCM is the Percent of
Correct Motion parameters, which is computed on motion
parameters instead of keypoints in our experiment. SRGR
is a weighted version of PCM according to the temporal se-
mantic weight proposed in BEAT [26]. We use PCM for
SHOW and SRGR for BEAT. (3) Diversity (Div) is used
to evaluate whether a model can generate a wide range of
dynamic and varied motions, following [5]. This metric in-
volves calculating the distance between various generated
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gestures. (4) Beat alignment (BA) [25] is a Chamfer Dis-
tance between audio and gesture beats to evaluate gesture-
audio beat similarity and we follow the same implementa-
tion in the BEAT paper [26]. (5) We also mark in Table 1
to show whether it is a generative (Gen) model. Generative
models can generate different and diverse motions from the
same audio input, while the deterministic models output the
determined motion given the same input speech. Note that
except for the Fréchet distances, other quantitative metrics
only serve as a reference since they are not always aligned
with the human-perceived visual quality [1, 2].

Comparison with Baselines. The results in Table 1 demon-
strate our method can achieve state-of-the-art performance
compared with other baselines on both datasets. We con-
sistently outperform the baseline methods on Fréchet dis-
tance (FMD, FED, and FGD) by a large margin, indicating
the strong distribution matching ability of DiffSHEG, espe-
cially the expression-gesture joint distribution. For SRGR
and PCM of gestures, we outperform all the baselines ex-
cept for the LS3DCG which generates jittering motion.
Note that Div and BA are only meaningful when the syn-
thesized motions are smooth and natural because the jitter-
ing motion or motion with outliers can also result in a high
score of diversity and beat alignment. For jittering motion,
the beat detector will regard each jitter timestep as a beat
covering most of the audio beat. On the BEAT dataset, we
outperform CaMN on the gesture BA and get a comparative
BA with other diffusion baselines. As for the Div score,
ours is higher than CaMN but lower than other diffusion
baselines. This aligns with the qualitative observations that
CaMN has slow motions and other diffusion baselines suf-
fer from jittering. On the SHOW dataset, our DiffSHEG is
consistently better than TalkSHOW and LS3DCG on both
BA and Div, except that LS3DCG has a higher BA which
may be due to the jittering. The Div of our DiffSHEG for
both expression and gesture achieves a similar score to that
of real data, indicating that the diversity of our generated
results can achieve a realistic level on the SHOW dataset.

Impact of FOPPAS and Runtime Analysis. Diffusion
models suffer from the long sampling steps at the test time
– the original DDPM model takes 1000 steps to sample a
quality image. Considering the resampling of Repaint [30],
it would be slower by times. However, thanks to our FOP-
PAS mechanism, we can synthesize arbitrary-long smooth
motion sequences in real time. We test the runtime of our
method on a one-minute-long audio corresponding to 900
frames of expressions and gestures (BEAT uses 15 FPS mo-
tion), with the number of overlapping frames in FOPPAS
set to 4. The average runtime of our method is 28.6 seconds
on a single NVIDIA GeForce RTX 3090 GPU, correspond-
ing to around 31.5 FPS. The time for audio encoding (Mel-
Spectrogram and HuBERT) is also included. In contrast, if
we directly use DDPM with Repaint [30], it costs 2068.1s to

infer 900 frames using the default setting of repaint, which
is 0.44 FPS. Therefore, our proposed FOPPAS can bene-
fit the diffusion model to achieve real-time in the inference
stage, making many downstream products applicable.

4.5. Ablation Study
Uni-directional condition flow. To demonstrate the effec-
tiveness of our uni-directional condition flow design, we
conduct experiments on three ablated architectures: ours
without expression condition flow into gesture encoder
(Ours w/o x̂E

0 ), ours without cutting off the gradient when
feeding predicted expression to gesture encoder (Ours w/o
Detach), naı̈vely concatenate expression and gesture to-
gether to be fed into a single Transformer denoising block
(Ours Naı̈ve Concat), and reverse the direction of condi-
tion flow to become gesture to expression (Ours Reverse
Direction). For Ours Naı̈ve Concat, we enlarge the la-
tent dimension of the Transformer block by 1.41 times to
have a similar computational complexity for a fair compar-
ison. From Table 1, on both BEAT and SHOW datasets,
our DiffSHEG outperforms all the four ablated architectures
on Fréchet distances and achieves better or comparable BA,
Diversity, and PCM/SRGR scores. On the BEAT dataset,
the reverse direction ablation has a higher diversity due to
the high entropy of gestures as a condition for expression,
but its other metrics are still worse than DiffSHEG, indi-
cating the adverse affect of gesture condition flow to ex-
pression. These results demonstrate the effectiveness of our
design and validate our intuitive analysis of the relationship
between expression and gesture. For more ablations, please
refer to our Appendix.

5. Conclusion
In conclusion, we propose a novel diffusion-based ap-
proach, DiffSHEG, for speech-driven holistic 3D expres-
sion and gesture generation. Our approach addresses the
joint expression and gesture generation challenges, which
have received less attention in previous works. We develop
a Transformer-based framework, UniEG-Transformer, that
enables the uni-direction flow of information from expres-
sion to gesture in the high-level feature space, which can
effectively capture the expression-gesture joint distribu-
tion. We also introduce a fast outpainting-based partial
autoregressive sampling (FOPPAS) strategy with DDIM to
achieve real-time inference on arbitrary-long streaming au-
dio. Our approach has demonstrated state-of-the-art per-
formance on two public datasets quantitatively and qualita-
tively. The qualitative results and user study show that our
method can generate realistic, agile, and diverse expressions
and gestures that are well-aligned with speech.
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The persona effect: How substantial is it? In People and
computers XIII, pages 53–66. Springer, 1998. 1

[44] Petra Wagner, Zofia Malisz, and Stefan Kopp. Gesture and
speech in interaction: An overview, 2014. 1, 2

[45] Jinbo Xing, Menghan Xia, Yuechen Zhang, Xiaodong Cun,
Jue Wang, and Tien-Tsin Wong. Codetalker: Speech-driven
3d facial animation with discrete motion prior. In CVPR,
2023. 2

[46] Yuyu Xu, Andrew W Feng, Stacy Marsella, and Ari Shapiro.
A practical and configurable lip sync method for games. In
Proceedings of Motion on Games, pages 131–140, 2013. 2

[47] Sicheng Yang, Zhiyong Wu, Minglei Li, Zhensong Zhang,
Lei Hao, Weihong Bao, Ming Cheng, and Long Xiao. Diffus-
estylegesture: Stylized audio-driven co-speech gesture gen-
eration with diffusion models. In IJCAI, pages 5860–5868,
2023. 1, 2, 5, 7

[48] Sheng Ye, Yu-Hui Wen, Yanan Sun, Ying He, Ziyang Zhang,
Yaoyuan Wang, Weihua He, and Yong-Jin Liu. Audio-driven
stylized gesture generation with flow-based model. In ECCV.
Springer, 2022. 1, 2

[49] Hongwei Yi, Hualin Liang, Yifei Liu, Qiong Cao, Yandong
Wen, Timo Bolkart, Dacheng Tao, and Michael J Black.
Generating holistic 3d human motion from speech. In CVPR,
2023. 1, 2, 5, 6, 7, 3

[50] Youngwoo Yoon, Woo-Ri Ko, Minsu Jang, Jaeyeon Lee, Jae-
hong Kim, and Geehyuk Lee. Robots learn social skills:
End-to-end learning of co-speech gesture generation for hu-
manoid robots. In ICRA, pages 4303–4309. IEEE, 2019. 2

[51] Youngwoo Yoon, Bok Cha, Joo-Haeng Lee, Minsu Jang,
Jaeyeon Lee, Jaehong Kim, and Geehyuk Lee. Speech ges-
ture generation from the trimodal context of text, audio, and
speaker identity. TOG, 39(6):1–16, 2020. 2, 7

[52] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou
Hong, Xinying Guo, Lei Yang, and Ziwei Liu. Motiondif-
fuse: Text-driven human motion generation with diffusion
model. arXiv preprint arXiv:2208.15001, 2022. 4

[53] Wenxuan Zhang, Xiaodong Cun, Xuan Wang, Yong Zhang,
Xi Shen, Yu Guo, Ying Shan, and Fei Wang. Sadtalker:
Learning realistic 3d motion coefficients for stylized audio-
driven single image talking face animation. arXiv preprint
arXiv:2211.12194, 2022. 2

[54] Lingting Zhu, Xian Liu, Xuanyu Liu, Rui Qian, Ziwei
Liu, and Lequan Yu. Taming diffusion models for audio-
driven co-speech gesture generation. In CVPR, pages 10544–
10553, 2023. 1, 2, 4, 5, 7

[55] MetaHuman — Realistic Person Creator. https://www.
unrealengine.com/en-US/metahuman, 2023. 6

[56] Unreal Engine 5. https://www.unrealengine.
com/en-US/unreal-engine-5, 2023. 6

7361


