
Dynamic Cues-Assisted Transformer for Robust Point Cloud Registration

Hong Chen, Pei Yan, Sihe Xiang and Yihua Tan*

Hubei Engineering Research Center of Machine Vision and Intelligent Systems,
School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, China

{hongc, yanpei, m202273201, yhtan}@hust.edu.cn

Abstract

Point Cloud Registration is a critical and challenging
task in computer vision. Recent advancements have pre-
dominantly embraced a coarse-to-fine matching mecha-
nism, with the key to matching the superpoints located
in patches with inter-frame consistent structures. How-
ever, previous methods still face challenges with ambiguous
matching, because the interference information aggregated
from irrelevant regions may disturb the capture of inter-
frame consistency relations, leading to wrong matches.
To address this issue, we propose Dynamic Cues-Assisted
Transformer (DCATr). Firstly, the interference from irrele-
vant regions is greatly reduced by constraining attention to
certain cues, i.e., regions with highly correlated structures
of potential corresponding superpoints. Secondly, cues-
assisted attention is designed to mine the inter-frame con-
sistency relations, while more attention is assigned to pairs
with high consistent confidence in feature aggregation. Fi-
nally, a dynamic updating fashion is proposed to facilitate
mining richer consistency information, further improving
aggregated features’ distinctiveness and relieving matching
ambiguity. Extensive evaluations on indoor and outdoor
standard benchmarks demonstrate that DCATr outperforms
all state-of-the-art methods.

1. Introduction
Point cloud registration aims to recover the transformation
that aligns two partially overlapping point clouds, which is
fundamental in numerous computer vision tasks, such as re-
construction [6, 22], pose estimation [27], and simultaneous
localization and mapping (SLAM) [4].

Correspondence-based methods [2, 12, 18, 31, 32] have
exhibited significant potential and become one of the most
popular paradigms in point cloud registration. These meth-
ods initially establish point correspondences and derive
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Figure 1. The visualization of the cross-attention heatmaps and
matching results. Given two low-overlap point clouds, we sample
an anchor patch in one of them and mark it with red. The distri-
bution of cross-attention corresponding to the anchor patch in an-
other point cloud is marked in blue (see the first row). For a clear
presentation, they are shown in correctly registered point clouds
and highlighted with boxes. The superpoint- and point-matching
results are shown in the last two rows, respectively. Green/red
lines indicate inliers/outliers.

the relative transformation based on these correspondences.
Recent advances are dominated by keypoint-free methods
[18, 31, 32] that leverage a coarse-to-fine mechanism to
seek correspondences. By partitioning the original point
cloud pairs into smaller patches with downsampled super-
points, they first match superpoints and then propagate the
results of superpoint matches to individual points, yield-
ing dense correspondences. Consequently, the performance
of superpoints matching directly determines the accuracy
of point correspondences. Recent methods [18, 31, 32]
leverage transformer to learn long-distance dependencies in
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point clouds to improve the accuracy of superpoint match-
ing. Specifically, these methods utilize the vanilla cross-
attention for inter-frame global feature aggregation. Despite
the promising progress of these transformer-based methods,
they still face the challenge of ambiguous matching. As
shown in Fig. 1(c) and Fig. 1(e), in certain scenarios with
numerous similar regions and low overlap ratio, the match-
ing accuracy of superpoints (Inlier Ratio) is only 0.78%,
resulting in a failure of alignment.

Correct matches tend to satisfy consistency constraints,
i.e., they are located in spatially structurally consistent re-
gions, which provides important guidance for capturing
the correct inter-frame consistency relations to facilitate
point matching [3, 18]. However, due to the lack of con-
sistency constraints, the aggregated features obtained by
vanilla global cross-attention inevitably introduce interfer-
ence from irrelevant regions that do not meet the con-
straints, resulting in wrong matches. As shown in Fig. 1(a),
for the red anchor patch in one point cloud, vanilla global
attention (marked with green) distributed in another point
cloud is dispersed to irrelevant regions, which means the er-
roneous information will be aggregated, leading to poor per-
formance of superpoint and point matching (See Fig. 1(c)
and Fig. 1(e)). Although previous methods [3, 5, 8, 34] in-
troduce spatial consistency constraints to remove outliers,
they only consider information from sparse point pairs, ig-
noring the richer spatial structure information in entire point
clouds. Moreover, they need pre-prepared correspondences
as input.

To this end, we propose a Dynamic Cues-Assisted Trans-
former (DCATr). By explicitly modeling consistency con-
straints, attention is restricted to regions with potentially
consistent structures to capture inter-frame consistency re-
lations, while information from regions with low consis-
tent confidence is suppressed during feature aggregation.
Specifically, it consists of the following steps. (1) The
potential corresponding superpoints and their cues are ex-
tracted, where the cues are those highly geometrically cor-
related regions of each superpoints. The cues are introduced
to provide richer structural information for each superpoint.
(2) A cues-assisted attention is designed to mine the inter-
frame consistency relations between all superpoint pairs us-
ing their cues. Benefiting from the attention is restricted to
specific cue regions, the interference of information from
irrelevant regions is significantly reduced, and thus, more
accurate coherence relations can be captured. Meanwhile,
high consistent confidence point pairs receive more atten-
tion in feature aggregation (See Fig. 1(b)). (3) To aggregate
richer consistency information in point clouds, the point
pairs with their cues are dynamically updated several times
at the global level. Each time the model finds more possi-
ble correspondences or other more discriminative correlated
geometric structures, the distinctiveness of aggregated fea-

tures is improved, ultimately resulting in robust and accu-
rate matching (See Fig. 1(d) and Fig. 1(f)).

Our extensive experiments on indoor and outdoor bench-
marks show that DCATr performs favorably against state-
of-the-art methods. In summary, our contributions are sum-
marized as follows:

• A novel point cloud matching method is proposed to
relieve the matching ambiguity by explicitly modeling
inter-frame consistency.

• A cues-assisted attention is proposed to learn the inter-
frame consistency relations, which effectively relieves the
interference of irrelevant and inconsistent regions in fea-
ture aggregation.

• A dynamic update fashion is designed to mine richer and
more discriminative information in point clouds, improv-
ing aggregated features’ distinctiveness.

2. Related Work

Correspondence-based Point Cloud Registration. Early
correspondence-based approaches [2, 12] focus on detect-
ing reliable keypoints with descriptors and searching for
correspondences based on the detected keypoints. The in-
herent sparsity of keypoints poses a challenge to repeata-
bility, i.e., sub-sampling introduces a heightened risk that
a certain point loses its corresponding point in another
frame, limiting the effectiveness of keypoint-based meth-
ods. Therefore, more recent and popular keypoint-free ap-
proaches use a coarse-to-fine matching mechanism to con-
sider all possible correspondences in point clouds. After
establishing correspondences, the robust pose estimators
such as RANSAC [9] or other RANSAC-free estimators
[3, 5, 8, 18] are used to recover the transformation based
on the established correspondences. Our approach inherits
the keypoint-free methods, especially enhancing the accu-
racy of coarse-level matching.
Consistency Modeling. Spatial consistency information
serves as a robust guideline for point cloud registration.
Current methods [3, 5, 8, 34] primarily utilize this infor-
mation to identify and remove outliers, typically by es-
tablishing various consistency constraints. However, these
methods require pre-prepared correspondences. As a pre-
requisite for these methods, our approach explicitly mod-
els inter-frame consistency to facilitate robust and accurate
point matching.
Transformers in Point Cloud Registration. Transform-
ers capture the correlation or importance between inputs
based on the attention mechanism and are becoming in-
creasingly popular in point cloud registration tasks in recent
years [12, 15, 18, 31, 32]. Besides, some methods [18, 32]
incorporate the geometric information into attention to en-
code intra-frame rotation invariance information. Unlike
the existing attention mechanism, we propose cues-assisted
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attention to mine and aggregate the inter-frame consistency
information.

3. Method
Given two partially overlapping point clouds P ∈ Rn×3 and
Q ∈ Rm×3, where n and m are the number of points. The
goal of our method is to recover the unknown rigid transfor-
mation T ∈ SE (3) with a rotation matrix R ∈ SO(3) and
a translation vector t ∈ R3.

An overview of our method is shown in Fig. 2. Our
method adopts the coarse-to-fine matching paradigm [18,
31] to extract correspondences. We use KPConv-FPN [25]
as our feature backbone, which consists of an encoder-
decoder architecture to extract multi-level features. Specif-
ically, given the point cloud P and Q, the encoder out-
puts the downsampled coarse-level superpoints P̂ and Q̂

with the associated learned features F̂P ∈ Rn̂×d̂ and F̂Q ∈
Rn̂×d̂, respectively. The decoder outputs the fine-level
points P̃ and Q̃ with associated features F̃P ∈ Rñ×d̃ and
F̃Q ∈ Rñ×d̃, respectively. Here, d̂ and d̃ represents the fea-
ture dimension. Using the point-to-node grouping strategy
[31], the local neighborhood points of each coarse-level su-
perpoint are gathered into a patch. The superpoints P̂ and
Q̂ with their features F̂P and F̂Q are fed into the dynamic
cues-assisted transformer for feature aggregation (Sec. 3.1)
to generate highly representative features for reliable super-
point matching (Sec. 3.2). The results of superpoint match-
ing Ĉ =

{
(p̂i, q̂j)|p̂i ∈ P̂, q̂j ∈ Q̂

}
are then propagated to

fine-level points (Sec. 3.2), yielding dense point correspon-
dences C̃ =

{
(p̃i, q̃j)|p̃i ∈ P̃, q̃j ∈ Q̃

}
. The pose estima-

tors such as RANSAC [9] and LGR [18] are introduced to
calculate the rotation matrix R ∈ SO(3) and the translation
vector t ∈ R3 for aligning two point clouds.

3.1. Dynamic Cues-Assisted Transformer

Due to the correct point matches tend to be distributed in
inter-frame consistent spatial structures, our goal is to guide
the model to focus more on the consistent regions and ag-
gregate the consistency information for obtaining distinc-
tive superpoint features by explicitly modeling inter-frame
consistency.

3.1.1 Initial Context Aggregation

For the sake of simplicity, we only introduce P̂ in the fol-
lowing, and the same steps also work for the point cloud Q̂,
unless otherwise specified.

Given the point cloud P̂ with their features F̂P ∈ Rn̂×d̂,
a linear layer is first introduced to map F̂P ∈ Rn̂×d̂ to
F̂P ∈ Rn̂×d. To extract the initial contextual information,
we first utilize the geometric self-attention proposed in Geo-

Trans [18] to mine the intra-frame global geometric features
Ĝl=0

P ∈ Rn̂×d:

Ĝl=0
P = Asl=0

P (F̂l=0
P WV ), (1)

where the weight matrix Asl=0

P is computed by a row-wise
softmax on the attention matrix Esl=0

P , and Esl=0

P is com-
puted as:

Esl=0

P =
(F̂l=0

P WQ)(F̂l=0
P WK +RWR)T√

d
. (2)

Here, R ∈ Rn̂×d is a geometric structure embedding
which consists of a pair-wise distance embedding and a
triplet wise angular embedding, WQ,WK ,WV ,WR ∈
Rd×d are projection matrices for Query ,Key ,Value and
geometric embeddings, respectively.

We then apply vanilla cross-attention [12, 18, 29, 31]
to exchange information between two point clouds. Given
the features Ĝl=0

P and Ĝl=0
Q for P̂ , Q̂, respectively, the

cross-attention features Ŷl=0
P ∈ Rn̂×d is computed with

the Ĝl=0
Q :

Ŷl=0
P = Acl=0

P (Ĝl=0
Q WV ), (3)

similarly, Acl=0

P is computed by a row-wise softmax on the
cross-attention score Ecl=0

P , and Ecl=0

P is computed as the
feature correlation between the Ĝl=0

P and Ĝl=0
Q :

Ecl=0

P =
(Ĝl=0

P WQ)(Ĝl=0
Q WK)T

√
d

. (4)

The same cross-attention is also applied in the reverse
direction, yielding Ŷl=0

Q , so that the contextual information
aggregates in both directions, P̂ → Q̂ and Q̂ → P̂.

3.1.2 Consistency Prior Extraction

This module is an extension of the initial context aggrega-
tion module, which has a similar structure that mainly con-
tains geometric self-attention and vanilla cross-attention.
The big difference is that this module serves for our dy-
namic updating fashion.

Specifically, given the initial contextual information
Ŷl=0

P (Ŷl=0
Q ), this module learns the deeper prior Ŷl=1

P

(Ŷl=1
Q ) by repeating L times. During each repetition, this

module consumes the result of the last time, i.e., Ŷl=j
P

(Ŷl=j
Q ), and output the result of this time Ŷl=j+1

P (Ŷl=j+1
Q ),

where j = 1, 2, ..., L. The learned geometric self-attention
matrix in this module is denoted as Êsl=j

P (Ŷsl=j

Q ).
On the one hand, we utilize the learned deeper inter-

frame contextual features at each layer to facilitate the
search for more possible correspondences and cues in the
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Figure 2. The architecture of our method. The backbone first downsamples the input point clouds and extracts multi-level features.
The dynamic cues-assisted transformer (DCATr) enables feature aggregation of coarse-level superpoints (Sec. 3.1). In DCATr, the initial
context aggregation module learns the inter-frame geometric features and exchanges information between two point clouds, yielding
initial contextual features Ŷl=0

P (Ŷl=0
Q ) (Sec. 3.1.1). The consistency prior extraction module consumes Ŷl=0

P (Ŷl=0
Q ) and mines deeper

contextual features Ŷl=j
P (Ŷl=j

Q ) (Sec. 3.1.2) by repeating L times. Meanwhile, the consistency information aggregation module consumes
Ŷl=0

P (Ŷl=0
Q ) and the geometric self-attention matrix Ê

sl=0
P (Êsl=0

Q ) to learn the inter-frame consistency relations, yielding the consistency
message M̂l=j

P (M̂l=j
Q ) (Sec. 3.1.3), which is implemented in a dynamic updating fashion with L times. The matching and registration

module utilizes the coarse-to-fine mechanism to establish correspondences and a pose estimator to calculate the transformation aligning
two input point clouds (Sec. 3.2).

global scope. On the other hand, we use the learned geo-
metric self-attention matrix at each layer to capture multi-
level inter-frame geometric structure correlations. We refer
to the information involved in the above uniformly as the
prior information for consistency modeling Sec. 3.1.3.

3.1.3 Consistency Information Aggregation

To model the inter-frame consistency, the non-local cues are
first recalled for providing richer spatial structure informa-
tion. Then, cues-assisted attention is utilized mines and ag-
gregates consistency information. The overall workflow is
shown in Fig. 3.
Dynamic Updating. To aggregate richer consistency in-
formation in point clouds, we design a dynamic updating
fasion. For clarity, let us start with the data flow from the
beginning (see Fig. 2). Here only demonstrate for P̂ and the
same process acts on Q̂.

Specifically, in the first phase, the consistency informa-
tion aggregation module (Sec. 3.1.3) consumes the initial
contextual features Ŷl=0

P (Ŷl=0
Q ) and the geometric self-

attention matrix Esl=0

P (Esl=0

Q ), and outputs the consistency
features M̂l=1

P . The consistency prior extraction module
consumes the initial contextual features Ŷl=0

P (Ŷl=0
Q ) and

outputs the prior Ŷl=1
P (Ŷl=1

Q )
Start with l = 1, in the following phase, the consistency

prior extraction module (Sec. 3.1.2) consumes the previous
prior Ŷl=j

P and generate deeper global prior Ŷl=j+1
P , re-

spectively, where j = 1, 2, ..., L. At the same time, the
global prior Ŷl=j

P and the consistency features M̂l=j
P are

fused, yielding the hybrid features Ĥl=j
P :

Ĥl=j
P = Ŷl=j

P + M̂l=j
P , (5)

and Ĥl=j
P are sent into the consistency information aggrega-

tion module (Sec. 3.1.3) in the next times, yielding M̂l=j+1
P .

For simplicity, the symbols in this module are no longer
distinguished by superscripts, and we use the ĤP (ĤQ) and
Es

P (Es
Q) represent the input of this module uniformly.

Non-local Cues Recall. The potential correspondences at
the global level are first established (see the first step in
Fig. 3). Given the point clouds P̂ and Q̂ with their hy-
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Figure 3. The workflow of the consistency information aggrega-
tion module. It includes 4 steps from bottom to top.

brid features ĤP and ĤQ, respectively, the similarity ma-
trix by between ĤP and ĤQ is first calculated by S(i, j) =

τ
〈
ĤP, ĤQ

〉
, where τ is the temperature coefficient and

⟨, ⟩ is the inner product. Then, the dual-softmax operator is
performed on S to calculate the confidence matrix:

Â(i, j) = softmax(S(i, ·))(i, j) · softmax(S(·, j))(i, j).
(6)

For each point p̂i ∈ P̂, we select the point q̂′
j ∈ Q̂

with the highest confidence score to construct the potential
correspondence set:

Ĉp =
{
(p̂i, q̂

′
j)|q̂′

j = max(Â(p̂i, ·))
}
. (7)

To expand the spatial structure information for each
point pair, we extract non-local cues using the geometric
self-attention matrix Es

P (see the second step in Fig. 3). For
simplicity, we only demonstrate for P̂, and the same pro-
cess acts on Q̂. Given each point p̂i, we search k points in
P̂ by select the Top-k entries in Es

P:

R̂k
p = topk(Es

P(p̂i, ·)). (8)

Due to the guidance of global geometric correlations in ge-
ometric self-attention, the points in R̂k

p have the most cor-
related geometric structures to point p̂i and provide richer
spatial cues for point p̂i. The points in R̂k

p may be dis-
tributed anywhere in the point cloud P̂ and are therefore
non-local. We further aggregate the contextual features
ĤP of points in R̂k

p , constructing the cue feature matrix
Ẑk

P ∈ Rn̂×k×d.
Cues-assisted Attention. Using the cue feature matrix
Ẑk

P ∈ Rn̂×k×d, we employ cues-assisted attention to mine
the consistency relations among all point pairs (see the third
step in Fig. 3) and further aggregate consistency informa-
tion (see the fourth step shown in Fig. 3). Specifically, the
attention scores are calculated firstly as the feature corre-
lations between ẑkPi

and ẑkQi
using the learnable matrices

WQ ∈ Rd×d and WK ∈ Rd×d:

êaPi
=

k∑
l=1

k∑
m=1

(ẑlPi
WQ)(ẑmQi

WK)T
√
d

. (9)

This process learns the consistency relations among all
point pairs by means of their cues, and the obtained atten-
tion score êaPi

measures the consistency confidence of each
point pair.

The attention score êaPi
is further used to aggregate the

consistency information, followed by a row-wise softmax
operator on it. The aggregated features are obtained using
the learnable matrices WV ∈ Rd×d as:

ûPi
= êaPi

(ŷQi
WV ). (10)

Following [26], the obtained feature matrix ÛP con-
structed by ûPi

is further sent into a feed-forward layer
to obtain enhanced message M̂P. The cues-assisted cross-
attention is also applied in the reverse direction, yielding
M̂Q.
Analysis. For the cues-assisted attention, on the one hand,
the extracted cues expand the spatial structure information
of each potential corresponding point, facilitating the con-
sistency relations of point pairs mining. On the other hand,
the attention is restricted to cue regions, the interference
of irrelevant regional information is significantly reduced,
which allows the model to capture the essential inter-frame
consistency information more accurately.

For the dynamic updating fasion, after each time the
global prior fuse with the consistency features, DCATr re-
seeks potential correspondences and re-extracts correlated
cues on a global scale. Thus, the point pairs with their
cues are dynamic updating, and cues-assisted attention con-
stantly receives different inputs and re-learns consistency
relations between them. On the one hand, each time the
model finds more reliable correspondences or other more
discriminative correlated geometric structures, richer con-
sistency information is aggregated, which significantly im-
proves the distinctiveness of the features. On the other hand,
the changing inputs are similar to data augmentation and
help cues-assisted attention learn more accurate globally
consistent information.

3.2. Matching and Registration Module

We employ a coarse-to-fine paradigm proposed in [31] for
feature-based point matching.
Superpoint Matching. In the coarse matching stage, the
hybrid features Ĥj=L

P and Ĥj=L
Q of the superpoints in the

point clouds P̂ and Q̂, respectively, serve as inputs. Fol-
lowing [18], we initially normalize the superpoint features
Ĥj=L

P and Ĥj=L
Q to a unit hypersphere. For each point’s

feature ĥPi
and ĥQj

, we measure pairwise similarities
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using a Gaussian correlation matrix Ŝ, where Ŝ(i, j) =

−exp(−
∥∥∥ĥPi − ĥQj

∥∥∥ 2
2). After dual normalization of Ŝ

to capture global feature correlations [18, 20, 24, 32], we
select the Top-k̂ entries in Ŝ as the coarse correspondence
set Ĉ =

{
(p̂i, q̂j)|p̂i ∈ P̂, q̂j ∈ Q̂

}
.

Point Matching. In the fine-level point matching, the point-
to-node strategy [18, 31, 32] is utilized to assign dense
points P̃ and Q̃ to its closest superpoint p̂i ∈ P̂, q̂i ∈ Q̂,
respectively. The group of points assigned to each super-
point p̂i is denoted as B̂Pi , where B̃Pi ⊆ P̃, and the
features associated with B̃Pi

is defined as B̃i
FP

, where
B̃i

FP
⊆ F̃P. The similarity between feature groups B̃i

FP

and B̃j
FQ

is calculated as S̃g = B̃i
FP

(B̃j
FQ

)T /
√

d̃. Sub-
sequently, we follow the approach in [18, 21] to use the
Sinkhorn Algorithm [23] to obtain a normalized confidence
matrix S̄g . We select the mutual Top-k̃ entries in S̄g , i .e.,
entries with the Top-k̃ confidence values in both the rows
and columns, to form a point correspondence C̃g . The final

correspondence set C̃ is constructed as C̃ =
⋃|C̃|

g=1C̃g .
Regsitration. After obtaining the dense point correspon-
dences, a pose estimator such as RANSAC [9] and LGR
[18]is introduced to calculate the transformation for out-
putting the registered point clouds.
Loss Function. We use the same superpoint matching loss
Lc and point matching loss Lf as [18], and the overall loss
function is L = Lc + Lf .

4. Experiments
We evaluate our method on indoor 3DMatch [33], 3DLo-
Match [12] (Sec. 4.1) and outdoor KITTI odometry [10]
benchmarks (Sec. 4.2).
Experimental Setup. We conduct our experiments with
DCATr using PyTorch [17] on an Intel I7 12700 CPU and
an NVIDIA RTX 4090 GPU. The Adam optimizer [14] is
utilized to train our model with an initial learning rate of
0.0001 and weight decay of 0.000001. The step learning
approach is applied with a decay rate of 0.95. We set the
feature dimension d̂, d̃, and d to 1024, 256, and 256 for
3DMatch and 3DLoMatch, respectively, while they are set
to 2048, 256, and 100 for KITTI odometry, respectively. We
set the times of repetition L as 3, and the number of cues k
for each potential corresponding point is set to 6.

4.1. Indoor Benchmarks: 3DMatch & 3DLoMatch

Dataset. 3DMatch [33] covers 62 indoor scenes, of which
46 were used for training, 8 for validation, and 8 for testing.
We found our evaluation on the pre-processed point clouds
provided by [12]. We follow the protocols of 3DMatch and
3DLoMatch [12], where the overlap between point cloud
pairs is greater than 30% in 3DMatch and is in 10% ∼ 30%
in 3DLoMatch.

#Samples 3DMatch 3DLoMatch
250 500 1000 2500 5000 250 500 1000 2500 5000

Inlier Ratio(%) ↑
3DSNet [11] 16.4 21.5 26.4 32.5 36.0 4.8 6.4 8.0 10.1 11.4
FCGF [7] 34.1 42.5 48.7 54.1 56.8 11.6 14.8 17.2 20.0 21.4
D3Feat [2] 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0
D3Feat [2] 41.8 41.5 40.4 38.8 39.0 15.0 14.6 14.0 12.1 13.2
SpinNet [1] 27.6 33.9 39.4 44.7 47.5 11.1 13.8 16.3 19.0 20.5
YOHO [28] 41.2 46.4 55.7 60.7 64.4 15.0 18.2 22.6 23.2 25.9
Predator [12] 49.3 54.1 57.1 58.4 58.0 25.8 27.5 28.3 28.1 26.7
CofiNet [31] 52.2 52.2 51.9 51.2 49.8 26.9 26.8 26.7 25.9 24.4
GeoTrans [18] 85.1 82.2 76.0 75.2 71.9 57.7 52.9 46.2 45.3 43.5
DCATr (Ours) 87.6 86.5 84.7 81.0 76.5 62.1 60.3 57.9 53.3 48.4

Registration Recall (%) ↑
3DSNet [11] 50.8 67.6 71.4 76.2 78.4 11.0 17.0 23.3 29.0 33.0
FCGF [7] 71.4 81.6 83.3 84.7 85.1 26.8 35.4 38.2 41.7 40.1
D3Feat [2] 77.9 82.4 83.4 84.5 81.6 39.1 43.8 46.9 42.7 37.2
SpinNet [1] 70.2 883.5 85.5 86.6 88.6 26.8 39.8 48.3 54.9 59.8
YOHO [28] 84.5 88.6 89.1 90.3 90.8 48.0 56.5 63.2 65.5 65.2
Predator [12] 86.6 88.5 90.6 89.9 89.0 58.1 60.8 62.4 61.2 59.8
CofiNet [31] 87.0 87.4 88.4 88.9 89.3 61.0 63.1 64.2 66.2 67.5
GeoTrans [18] 91.2 91.4 91.8 91.8 92.0 73.5 74.1 74.2 74.8 75.0
DCATr (Ours) 91.6 91.9 92.2 92.4 92.6 73.7 75.1 75.7 76.4 76.8

Feature Matching Recall (%) ↑
3DSNet [11] 82.9 90.1 92.9 94.3 95.0 34.2 45.2 53.6 61.7 63.6
FCGF [7] 96.6 96.7 97.0 97.3 97.4 67.3 71.7 74.2 75.4 76.6
D3Feat [2] 93.1 94.1 94.5 95.4 95.6 66.5 66.7 67.0 66.7 67.3
SpinNet [1] 94.3 95.5 96.8 97.2 97.6 63.6 70.0 72.5 74.9 75.3
YOHO [28] 96.0 97.7 97.5 97.6 98.2 69.1 73.8 76.3 78.1 79.4
Predator [12] 96.5 96.3 96.5 96.6 96.6 75.3 75.7 76.3 77.4 78.6
CofiNet [31] 98.3 98.2 98.1 98.3 98.1 82.6 83.1 83.3 83.5 83.1
GeoTrans [18] 97.6 97.9 97.9 97.9 97.9 88.3 88.6 88.8 88.6 88.3
DCATr (Ours) 98.2 98.3 98.4 98.0 98.1 87.7 87.5 87.7 87.2 87.4

Table 1. Evaluation results on 3DMatch and 3DLoMatch based
on RANSAC pose estimator with a varying number of correspon-
dences.

Metrics. We report five metrics: (1) Inlier Ratio (IR),
the proportion of putative correspondences whose residu-
als are below a specific threshold (e.g., 0.1m) under the
ground-truth transformation, (2) Registration Recall (RR),
the fraction of point cloud pairs for which the transforma-
tion error is less than a particular threshold (e.g., RMSE
< 0.2m), (3) Feature Matching Recall (FMR), the fraction
of point cloud pairs whose inlier ratio is above a certain
threshold (e.g., 5%), (4) Relative Rotation Error (RRE), the
geodesic distance between estimated and ground-truth rota-
tion matrices, (5) Relative Translation Error (RTE), the Eu-
clidean distance between estimated and ground-truth trans-
lation vectors. We compare our method with the recent state
of the arts: 3DSNet[11], FCGF [7], D3Feat [2], SpinNet[1],
YOHO[28], Predator [12], CoFiNet [31], and GeoTrans
[19].
Results with RANSAC Estimator. we run 50K RANSAC
[9] iterations and report the results with different num-
bers of correspondences in Tab. 1. For Inlier ratio, DCATr
achieves the highest performance on both datasets, which
means the highest accuracy of point matching. In particu-
lar, compared with the sota method GeoTrans, DCATr out-
performs by a considerable margin in IR, up to 2.5% ∼
11.7%. For Registration Recall, DCATr also achieves the
highest performance on both datasets. Note that the Reg-
istration Recall reflects the performance of the final reg-
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Methods 3DMatch
RR(%) ↑ IR(%) ↑ FMR(%) ↑ RRE(◦) ↓ RTE(m) ↓

FCGF [7] 83.3 48.7 97.0 1.949 0.066
D3Feat [2] 83.4 40.4 94.5 2.161 0.067
Predator [12] 90.6 57.1 96.5 2.029 0.064
CoFiNet [31] 88.4 51.9 98.1 2.011 2.011
GeoTrans [18] 91.5 70.3 97.7 1.625 0.053
DCATr(Ours) 92.1 75.0 98.1 1.536 0.050

Methods 3DLoMatch
RR(%) ↑ IR(%) ↑ FMR(%)↑ RRE(◦) ↓ RTE(m) ↓

FCGF [7] 38.2 17.2 74.2 3.147 0.100
D3Feat [2] 46.9 14.0 67.0 3.361 0.103
Predator [12] 61.2 28.3 76.3 3.048 0.093
CoFiNet [31] 64.2 26.7 83.3 3.280 0.094
GeoTrans [18] 74.0 43.3 88.1 2.547 0.074
DCATr(Ours) 75.7 48.2 87.3 2.445 0.072

Table 2. Registration results on 3DMatch and 3DLoMatch based
on LGR pose estimator.

Methods 3DMatch 3DLoMatch
RR(%) PIR(%) IR(%) FMR(%) RR(%) PIR(%) IR(%) FMR(%)

GeoTrans 91.5 86.1 70.3 97.7 74.0 54.9 43.3 88.1
Static (serial) 91.0 86.0 66.8 98.0 72.8 54.2 41.3 87.7
Static (residual) 91.0 86.6 70.9 98.4 74.2 55.2 43.9 87.3
Dynamic (residual) 92.1 88.1 75.0 98.1 75.7 58.0 48.2 87.3

Table 3. Ablation studies about cues-assisted attention.

istration, which means DCATr achieves more successfully
matched point cloud pairs. For Feature Matching Recall,
DCATr achieves comparable performance.
Results with LGR Estimator. We use the LGR estima-
tor proposed in [18]. As shown in Tab. 2, DCATr achieves
the highest performance in RR, FMR, RRE, and RTE on
3DMatch, and achieves the highest performance in RR, IR,
and RRE on 3DLoMatch, with a comparable performance
in other metrics. In particular, DCATr improves by 2.3% in
RR and 5.1% in IR on 3DLoMatch.
Qualitative Results of Registration. We visualize a col-
lection of the registration results of GeoTrans [18] and
DCATr in Fig. 4. Benefitting from the aggregation of con-
sistency information, in scenarios with low overlap and a
large number of geometrically indistinct (1st row) or sim-
ilar structures (2nd and 3rd rows), DCATr is still able
to effectively avoid the interference of similar but non-
overlapping regions, obtaining high-performance patch-
and point-matching results.
Qualitative Results of Extracted Dynamic Cues. The vi-
sualization of dynamic cues are shown in Fig. 5. The red
box marks the anchor regions, while regions marked with
green and blue represent the cues in source and target point
clouds, respectively. The brown boxes indicate when green
and blue cues overlap. It shows that DCATr extracts more
consistent cues after more updating times.
Ablation Studies. To verify the impact of the dynamical
updating fashion on the performance of DCATr, we first
implemented two connection structures for the prior infor-

Methods 3DMatch 3DLoMatch
RR(%) IR(%) FMR(%) RR(%) IR(%) FMR((%)

GeoTrans+SC2-PCR 92.4 70.9 98.2 74.1 43.5 87.1
Ours 92.1 75.0 98.1 75.7 48.2 87.3

Table 4. Registration results with SC2-PCR.

Methods 3DMatch (rotated) 3DLoMatch (rotated)
RR(%) IR(%) FMR(%) RR(%) IR(%) FMR(%)

GeoTrans 92.0 68.2 97.8 71.8 40.0 85.8
Ours 94.9 69.7 97.8 73.6 39.6 84.3

Table 5. Generalization results under full-range rotations.

mation extraction modules and cues-assisted attention mod-
ules. One is to connect the cues-assisted attention modules
directly after the prior information extraction modules, sim-
ilar to a serial connection. Another is residual connection
that shown in Fig. 2 (i.e., extracting hybrid features). At
the same time, we implemented a static fashion. We use
the LGR pose estimator in all ablation studies. In Tab. 3,
the static fashion using serial connection (2nd row) results
are lower than GeoTrans because that the way of serial con-
nection may affect the prior information learning. While the
static fashion using residual connection (3rd row) results are
slightly better than GeoTrans. Moreover, the consistency in-
formation mined by the static fashion is limited, and our dy-
namic fashion (using residual connection, (4th row)) mines
richer cues through dynamic updates and achieves greater
performance gains.
Comparison with the Method Modeling Consistency.
Existing methods utilize spatial consistency information to
remove outliers, among which SC2-PCR[5] is a typical and
convenient method. To verify the effectiveness of DCATr in
introducing the idea of consistency modeling into the corre-
spondence extraction session, we feed the geotans-extracted
correspondences into SC2-PCR for registration, and com-
pare them directly with DCATr. Tab. 4 shows the superior-
ity of DCATr, especially at low overlap.
Generalization under Full-range Rotations. We also ver-
ifies the generalization of DCATr under full-range rotations.
Here we use RANSAC-50K estimator. Tab. 5 shows that
our method can maintain the performance under strong ro-
tation even though we didn’t customize for this situation.

4.2. Outdoor Benchmark: KITTI

Dataset. The KITTI odometry dataset [10] consists of 11
sequences capturing outdoor driving scenarios using Li-
DAR scans. Following the methods described in [2, 7, 12,
19], we use sequences 0-5 for training, 6-7 for validation,
and 8-10 for testing. Meanwhile, we refined the ground-
truth poses using the Iterative Closest Point (ICP) algorithm
and conducted evaluations only on point cloud pairs that are
at least 10 meters apart.
Metrics. We adopted three metrics similar to [12, 18] to
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Figure 4. Qualitative results on 3DLoMatch of GeoTrans and DCATr. Each row shows the point cloud in a different scenario, and columns
3 to 8 show a comparison of different metrics. Green/red lines indicate inliers/outliers. Benefitting from the consistency information
aggregation, DCATr can capture consistent regions in geometrically insignificant scenes as well as in a large number of similarly structured
scenes, which greatly improves the matching accuracy (see (f) and (h)) and the registration performance (see (d)).

Figure 5. The visualization of dynamic cues.

assess the performance of our method. These metrics in-
clude (1) Relative Rotation Error (RRE), the geodesic dis-
tance between estimated and ground-truth rotation matrices,
(2) Relative Translation Error (RTE), the Euclidean distance
between estimated and ground-truth translation vectors, and
(3) Registration Recall (RR), the fraction of point cloud
pairs meeting specific threshold criteria (i.e., RRE< 5◦ and
RTE< 2m). We compare our method with the state-of-the-
art methods: 3DFeat-Net [30], FCGF [7], D3Feat [2], FMR
[13], DGR [8], SpinNet[1], Predator [12], HRegNet [16],
CoFiNet [31] and GeoTrans [19].
Registration Results. We use the LGR pose estimator, and
the registration results are shown in Tab. 6. Compared to the
previous method, our model achieves lower RRE and RTE,
and has a comparable performance in RR, showing good
generality of DCATr on outdoor scenes.

5. Conclusion

We introduced DCATr, a dynamic cues-assisted transformer
for robust point cloud registration. In DCATr, the potential
corresponding superpoints and their highly geometric cor-

Methods RTE(cm) ↓ RRE(◦ ) ↓ RR(%) ↑
3DFeatNet [30] 25.9 0.25 96.0
FCGF [7] 9.5 0.30 96.6
D3Feat [2] 7.2 0.30 99.8
FMR [13] ∼66 1.49 90.6
DGR [8] ∼32 0.37 98.7
SpinNet [1] 9.9 0.47 99.1
Predator [12] 6.8 0.27 99.8
HregNet [16] ∼12 0.29 99.7
CofiNet [31] 8.2 0.41 99.8
GeoTrans [18] 6.8 0.24 99.8
DCATr (Ours) 6.6 0.22 99.7

Table 6. Registration results on KITTI odometry.

related structures (the cues) are extracted. Then the model’s
attention is restricted to these cue regions, which relieves
the distraction from irrelevant regions. Further, we de-
signed cues-assisted attention to learn the consistency re-
lations among the cues, while suppressing the information
from inconsistent regions in feature aggregation. Finally, by
mining more possible potential corresponding superpoints
and their cue regions, a dynamic updating fashion is pro-
posed, which significantly improves the distinctiveness of
aggregated features. Extensive evaluations are conducted
on indoor and outdoor standard benchmarks to demonstrate
the superiority of our DCATr.
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