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Abstract

Dilated convolution, which expands the receptive field by
inserting gaps between its consecutive elements, is widely
employed in computer vision. In this study, we propose
three strategies to improve individual phases of dilated con-
volution from the perspective of spectrum analysis. Depart-
ing from the conventional practice of fixing a global di-
lation rate as a hyperparameter, we introduce Frequency-
Adaptive Dilated Convolution (FADC), which dynamically
adjusts dilation rates spatially based on local frequency
components. Subsequently, we design two plug-in mod-
ules to directly enhance effective bandwidth and receptive
field size. The Adaptive Kernel (AdaKern) module decom-
poses convolution weights into low-frequency and high-
frequency components, dynamically adjusting the ratio be-
tween these components on a per-channel basis. By increas-
ing the high-frequency part of convolution weights, AdaK-
ern captures more high-frequency components, thereby im-
proving effective bandwidth. The Frequency Selection
(FreqSelect) module optimally balances high- and low-
frequency components in feature representations through
spatially variant reweighting. It suppresses high frequen-
cies in the background to encourage FADC to learn a
larger dilation, thereby increasing the receptive field for
an expanded scope. Extensive experiments on segmenta-
tion and object detection consistently validate the efficacy
of our approach. The code is made publicly available at
https://github.com/ying-fu/FADC.

1. Introduction

Dilated convolution inserts gaps between the filter values
at a dilation rate (D) to expand the receptive field without
significantly increasing computational load. This technique
is widely used in computer vision tasks, such as semantic
segmentation [9, 82] and object detection [56].

While effective in expanding the receptive field size
with a large dilation rate, it comes at the expense of high-
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(c) Frequency spectrum (d) Dilation map
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Figure 1. For the input image (a), its extracted features (b) exhibit
spatial variation. Patch 1 contains more high-frequency informa-
tion, whereas the frequency of patch 2 is predominantly concen-
trated in low frequency (c). Consequently, assigning a small dila-
tion rate for patch 1 is essential to preserve a high effective band-
width, while a larger dilation rate, with limited effective band-
width, is sufficient for patch 2, benefiting the achievement of a
larger receptive field (d).

frequency component response [82]. Increasing the dilation
rate from 1 to D is equivalent to expanding the convolution
kernel through zero-insertion by a factor ofD. According to
the scaling property of Fourier Transforms [52, 57], both the
frequency response curve and the bandwidth of the convo-
lution kernel will be scaled to 1

D . As illustrated in Figure 1,
the bandwidth of the red curve forD = 4 is only a quarter of
the one for D = 1 in blue. The reduced bandwidth signif-
icantly limits the layer’s ability to process high-frequency
components. For instance, gridding artifacts occur when a
feature map has higher-frequency content than the sampling
rate of the dilated convolution [69, 82].

In this paper, we introduce Frequency-Adaptive Di-
lated Convolution (FADC) to enhance dilated convolution
through the lens of spectrum analysis. As illustrated in Fig-
ure 2, FADC comprises three key strategies, i.e., Adaptive
Dilation Rate (AdaDR), Adaptive Kernel (AdaKern), and
Frequency Selection (FreqSelect), aimed at enhancing the
individual phases of vanilla dilated convolution. AdaDR

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3414



⨂

⨂

⨂

⨁

FreqSelect

⨂

Global
Pooling

AdaDR

⨂

AdaKernConv-ReLU-Conv-Sigmoid

......

Low-freq kernel

High-freq kernel

Sel
ect
ion

ma
p

De
com

po
sed

fea
ts

Fr
eq

ue
nc
y

de
co
m
po

se
Conv

Dil
ati
on
ma
p

Dilation
rate = 3

Dilation
rate = 1

sampling

sampling

Conv-ReLU-Conv-Sigmoid

⨁

⊛

⊛

Average ⊝

Ou
tpu
t fe
atu
reInt
pu
t fe
atu
re

High-freq kernelLow-freq kernelStatic kernel

Glo
ba
l fe
atu
re

⨂ Multiply
⨁ Add
⊝ Subtract
⊛ Convolve

Adaptive kernel

1×
"×
#

$×
"×
#

$×
"×
#

$×
"×
#

$×
"×
#

$×
1×
1

1×
"×
#

Conv+ReLU

Figure 2. Overview of the proposed Frequency Adaptive Dilated
Convolution (FADC). It comprises three strategies: Adaptive Di-
lation Rate (AdaDR), Adaptive Kernel (AdaKern), and Frequency
Selection (FreqSelect).
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Figure 3. Analysis of AdaKern. Left: representative frequency re-
sponse of a convolution kernel, λl, λh represent dynamic weights
for decomposed low/high-frequency kernels. Right: the FADC
with AdaKern increases the proportion of high-frequency band
power within [ 1

8
, 1
4
) and [ 1

4
, 1
2
] in the extracted feature, indicat-

ing an increase in effective bandwidth.

spatially adjusts the dilation rate, AdaKern operates on the
convolution kernel weights, while FreqSelect directly bal-
ances the frequency power of the input feature to encourage
the expansion of the receptive field.

Unlike the conventional approach of globally fixing the
dilation rate, our AdaDR dynamically assigns dilation rates
locally based on the spectrum. For instance, in patch 1 of
Figure 1(a), where the car boundaries exhibit much high-
frequency component (indicated by the blue solid line),
AdaDR applies a small dilation rate (D = 1) with a broad
effective bandwidth (represented by the blue dot curve).
Conversely, for the car door in patch 2, where the frequency
power is predominantly concentrated in the low-frequency
domain, AdaDR increases the dilation rate D to 4, as a re-

duced bandwidth can still encompass a substantial amount
of frequency power. The dilation map for these two patches
is illustrated in Figure 1(d). In comparison to the fixed di-
lation rates (e.g., D =1, 2, 4 in [42, 82]), our AdaDR en-
hances the theoretical average receptive field size of Fig-
ure 1 from ∼440 to ∼1000 pixels.

AdaKern is a plug-in module that manipulates the con-
volution kernel to optimize the frequency response curve in
Figure 3 and enhances the effective bandwidth. As shown
in Figure 3, this module decomposes convolution weights
into low-frequency and high-frequency components. This
allows us to dynamically manipulate both components on a
per-channel basis. For example, increasing the weight of the
high-frequency kernel (marked in red at the bottom of Fig-
ure 2) leads to a stronger response for high-frequency com-
ponents, which in turn increases the effective bandwidth as
shown in the left of Figure 3, curve of λh/λl = 2.

The FreqSelect increases the receptive field size by bal-
ancing high- and low-frequency components in the feature
before feeding into dilated convolution. Since convolution
tends to amplify high-frequency components [49], features
after dilated convolution often exhibit a higher proportion of
high-frequency components. To capture these added high-
frequency components, a small dilation rate D will be fa-
vored for its large effective bandwidth, at the cost of com-
promised receptive field size. By suppressing the high-
frequency power on the input features, our FreqSelect mod-
ule is able to increase the respective field size. Specifically,
As shown in Figure.2, FreqSelect decomposes the feature
map into 4 frequency channels from low to high. Then,
we spatially reweights each channel with a selection map
to balance frequency power, enabling FADC to effectively
learn a larger receptive field.

Our experimental results in semantic segmentation show
that our proposed method consistently brings improve-
ments, thus validating the effectiveness of our approach.
In particular, when our proposed method is applied with
PIDNet, it achieves the optimal balance between inference
speed and accuracy on Cityscapes, resulting in an 81.0
mIoU at 37.7 FPS. Moreover, our proposed strategy can
also be integrated into deformable convolution and dilated
attention, resulting in a consistent boost in performance for
both segmentation and object detection tasks. Our contribu-
tions can be summarized as follows:
• We conduct an in-depth exploration of dilated convolu-

tion using frequency analysis, reframing the assignment
of dilation as a trade-off problem that involves balancing
effective bandwidth and receptive field.

• We introduced Frequency-Adaptive Dilated Convolution
(FADC). It adopts the Adaptive Dilation Rate (AdaDR),
Adaptive Kernel (AdaKern), and Frequency Selection
(FreqSelect) strategies. AdaDR dynamically adjusts di-
lation rates in a spatially variant manner to achieve a
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balance between effective bandwidth and receptive field.
AdaKern adaptively adjusts the kernel to fully utilize the
bandwidth, and FreqSelect learns a frequency-balanced
feature to encourage a large receptive field.

• We validate our approach through comprehensive experi-
ments in the segmentation task, consistently demonstrat-
ing its effectiveness. Furthermore, the proposed AdaKern
and FreqSelect also prove to be effective when integrated
with deformable convolution and dilated attention in ob-
ject detection and segmentation tasks.

2. Related work
Content-Adaptive Networks. As deep learning technol-
ogy advances [18, 59, 72, 74, 85–87], the effectiveness of
content-adaptive characteristics has been demonstrated by
various works [13, 21, 58, 61, 67, 90]. One content-adaptive
strategy involves weight adjustments, which are widely em-
ployed. Recent vision transformers [15, 23, 43] incorpo-
rate attention mechanisms to predict input-adaptive atten-
tion values. These models have achieved significant success
with large receptive, but suffer from heavy computation.

In addition to weight adjustments, [1, 13, 31, 70, 78, 91]
modify the sampling grid of the convolution kernel that is
closely related to our work. Deformable convolution [13,
70, 91] is employed in various computer vision tasks, in-
cluding object detection. It introducesK×K×2 asymmet-
rical offsets for every position in the sampling grid, causing
the extracted features to exhibit spatial deviations. In object
detection tasks, estimated boxes are corrected through re-
gression to mitigate these deviations. However, in position-
sensitive tasks such as semantic segmentation, where strong
consistency in density and features at each location is cru-
cial, features with spatial deviations can lead to incorrect
learning. In contrast, the proposed frequency-adaptive di-
lated convolution only requires one value as the dilation
rate for each position. This approach necessitates fewer ad-
ditional standard convolutions for computing sampling co-
ordinates, making it lightweight. Moreover, it eliminates
spatial deviations, thereby reducing the risk of erroneous
learning and benefiting position-sensitive tasks.

Adaptive Dilated Convolution [1, 31, 78] also discards
the use of globally fixed dilation. [31] formulates the di-
lation of each point in the kernel as learned fixed weights,
while [1, 78] empirically adjust the dilation rate based on
the assumption that dilation values are linked to inter-layer
patterns between convolution layers or the object scale. In
contrast to [1, 31, 78], which rely on intuitive assumptions,
our proposed method is motivated by quantitative frequency
analysis. Moreover, they overlook the aliasing artifacts that
occur when the feature frequency exceeds the sampling rate,
exposing them to a potential risk of degradation.
Aliasing Artifacts in Neural Networks. The issue of alias-
ing artifacts in neural networks is gaining increasing at-

tention within the computer vision community. Several
studies have analyzed the aliasing artifacts resulting from
insufficient sampling during downsampling in neural net-
works [28, 33, 66, 84, 92]. Others have broadened their
focus to include anti-aliasing techniques in various appli-
cations, such as vision transformers [53], tiny object de-
tection [46], and image generation in generative adversar-
ial networks (GANs) [30]. Regarding aliasing artifacts in
dilated convolution, commonly referred to as the gridding
artifact, they occur when a feature map contains higher-
frequency content than the sampling rate of the dilated
convolution [82]. Previous works either empirically ap-
plied learned convolution to acquire low-pass filters for anti-
aliasing [82], employed dilated convolution with multiple
dilation rates [63, 69], or used a fully connected layer to
smooth dilated convolutions [71]. However, these meth-
ods are primarily empirically designed, involving stacking
more layers, and do not explicitly handle the issue from a
frequency perspective. In contrast, our proposed method
avoids gridding artifacts by dynamically adjusting the dila-
tion rate based on local frequency. Additionally, FreqSelect
contributes by suppressing high frequencies in the back-
ground or object center. This approach offers a more prin-
cipled and effective solution to address aliasing artifacts.
Frequency domain learning. Traditional signal process-
ing has long relied on frequency-domain analysis as a
fundamental tool [2, 51]. Notably, these well-established
methods have recently found applications in deep learn-
ing, playing pivotal roles. In this context, they are em-
ployed to examine the optimization strategies [79] and
generalization capabilities [68] of Deep Neural Networks
(DNNs). Moreover, these frequency-domain techniques
have been seamlessly integrated into DNN architectures.
This integration has facilitated the learning of non-local fea-
tures [11, 20, 29, 36, 55] or domain-generalizable repre-
sentations [37]. Recent studies [49, 83] demonstrate that
capturing balanced representations of both high- and low-
frequency components can enhance model performance.
Therefore, our method provides a frequency view for di-
lated convolution and improves its capability to capture dif-
ferent frequency information.

3. Frequency Adaptive Dilated Convolution
The overview of the proposed FADC is illustrated in Fig-
ure 2. In this section, we begin by introducing the AdaDR
strategy, outlining how we balance bandwidth and recep-
tive field. Subsequently, we delve into the details of the
AdaKern and FreqSelect strategies, designed to fully lever-
age bandwidth and promote a large receptive field.

3.1. Adaptive Dilation Rate

Dilated Convolution. The widely-used dilated convolution
can be formulated as follows:
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Y(p) =

K×K∑
i=1

WiX(p+ ∆pi ×D), (1)

where Y(p) represents the pixel value at position p in the
output feature map, K is the kernel size, Wi denotes the
weight parameters for the kernel, and X(p + ∆pi) repre-
sents the pixel value at the position corresponding to p off-
set by ∆pi in the input feature map. The variable ∆pi rep-
resents the i-th location of the pre-defined grid sampling
(−1,−1), (−1, 0), (−1,+1), . . . , (+1,+1). By receptive
field can be enlarged by increasing the dilation rate D.
Frequency analysis. Previous works have observed that an
increased dilation leads to the degradation of frequency in-
formation capture [69, 71, 82]. Specifically, increasing the
dilation rate from 1 to D scales up the convolution kernel
by a factor of D, following the scaling property of Fourier
Transforms. Consequently, the response frequency of the
convolution kernel is reduced to 1

D , resulting in a shift in
the frequency response from high frequency to lower fre-
quency [52, 57], as depicted in Figure 1. Moreover, dilated
convolution effectively operates at a sampling rate of 1

D ,
making it unable to capture frequencies above the Nyquist
frequency, i.e., half the sampling rate 1

2D .
Specifically, we first transform the feature map X ∈

RH×W into the frequency domain using the Discrete
Fourier Transform (DFT), XF = F(X), it can be repre-
sented as

XF (u, v) =
1

HW

H−1∑
h=0

W−1∑
w=0

X(h,w)e−2πj(uh+vw), (2)

where XF ∈ RH×W represents the output array of com-
plex numbers from the DFT. H and W denote its height
and width. h, w indicates the coordinates of feature
map X. The normalized frequencies in the height and
width dimensions are given by |u| and |v|. After shift-
ing the low frequency to the center, u takes values from
the set {−H2 ,−

H+1
2 , . . . , H−12 }, and v takes values from

{−W2 ,−
W+1

2 , . . . , W−12 }. Consequently, the set of high
frequencies larger than the Nyquist frequency H+

D =
{(u, v) | |k| > 1

2D or |l| > 1
2D} is unable to be accurately

captured, limiting its bandwidth.
Adaptive dilation rate. Building on the above analysis, the
selection of the dilation rate can be viewed as a trade-off be-
tween a large receptive field and effective bandwidth. Con-
sidering that the input feature map is spatially variant, the
optimal dilation for each pixel can be different. Thus, we
introduce the strategy of Adaptive Dilation Rate (AdaDR)
to achieve better balancing. It assigns each pixel a different
dilation rate

Y(p) =

K×K∑
i=1

WiX(p+ ∆pi × D̂(p)). (3)

D̂(p) can be predicted by a convolutional layer with param-
eters θ. Particularly, we incorporate a ReLU layer to en-

(a) Feature (b) High frequency power map (c) Dilation map

Figure 4. Feature Visualization. Pixels with brighter colors on
the high-frequency power map indicate a higher level of high-
frequency components. Brighter colors on the dilation map indi-
cate higher dilation rates. We observe that FADC learns to assign
lower dilation rates to high-frequency areas, such as the bound-
aries of objects, and higher dilation rates for low-frequency areas,
such as the center of objects and the background.

sure the non-negativity of the dilations, and we also adopt
the modulation mechanism [91]. It aims to maximize the
receptive field and minimize the lost frequency informa-
tion for each pixel. For a local feature centered at p with
a window size of s, we term it as X(p,s). Its receptive
field RF(p) = (K − 1) × D̂(p) + 1 is positively related
to D̂(p). The frequencies in a set H+

D̂(p)
are unable to be

captured accurately. Thus, the lost frequency information
can be measured by calculating the high-frequency power
HP(p) =

∑
H+

D̂(p)

|X(p,s)
F (u, v)|2. Therefore, the optimiza-

tion of θ can be written as

θ = max
θ

(∑
RF(p)−

∑
HP(p)

)
. (4)

However, direct optimization can be impractical due to the
discrete nature of the frequency setH+

D̂(p)
, and the fact that

the calculation of HP is non-differentiable. Consequently,
we choose to optimize D̂(p) directly, i.e., by increasing the
dilation rate at position p where the HP(p) is low to encour-
age large receptive field and suppressing the dilation rate
where HP(p) is high to reduce the loss of frequency infor-
mation. To formalize this optimization, we express it as
follows

θ = max
θ

 ∑
p∈HP−

D̂(p)−
∑
p∈HP+

D̂(p)

 . (5)

Here, HP+ and HP− represent pixels with the high-
est/lowest (e.g., 25%) high-frequency power, i.e., the
brighter/darker areas in Figure 4(b), respectively.

3.2. Adaptive Kernel

AdaDR achieves a delicate equilibrium between effective
bandwidth and receptive field through the individual assign-
ment of dilation rates to each pixel, optimizing both fac-
tors collectively. The effective bandwidth, intimately con-
nected to the convolutional kernel’s weight, plays a pivotal
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role. Traditional convolutional kernels learn to capture fea-
tures across diverse frequency bands, which are crucial for
comprehending intricate visual patterns, but they become
static once trained. To further enhance effective bandwidth,
we decompose convolutional kernel parameters into low-
frequency and high-frequency components before introduc-
ing dynamic weighting to adjust the frequency response.
This process only adds minor additional parameters and
computational overhead. For a static convolutional kernel,
its weights W can be decomposed as follows

W = W̄ + Ŵ. (6)

Here, W̄ = 1
K×K

∑K×K
i=1 Wi represents the kernel-wise

averaged W. It functions as a low-pass K × K mean fil-
ter, followed by a 1×1 convolution with parameters defined
by W̄. As discussed in [64], higher mean values are more
likely to attenuate the high-frequency components. The
term Ŵ = W − W̄ denotes the residual part, capturing
local differences and extracting the high-frequency compo-
nents. After decomposition, our AdaKern dynamical adjust
both high and low frequency components and can be for-
mally represented as

W′ = λlW̄ + λhŴ, (7)

where λl, λh are the dynamic weights for each channel,
which is predicted by a simple and lightweight global pool-
ing + convolution layers. Dynamically adjusting the ratio
of λl

λh
based on the input context, allows the network to fo-

cus on specific frequency bands and adapt to the complexity
of visual patterns in the feature. This dynamic frequency-
adaptive approach enhances the network’s ability to capture
both low-frequency context and high-frequency local de-
tails. This, in turn, increases the effective bandwidth, lead-
ing to improved performance in segmentation tasks that re-
quire diverse feature extraction across different frequencies.

3.3. Frequency Selection

As indicated by prior studies [49], conventional convolu-
tion often functions as a high-pass filter. Consequently, the
resulting features tend to manifest a higher proportion of
high-frequency components. This inclination leads to the
adoption of smaller overall dilation rates to preserve a high
effective bandwidth, unfortunately compromising the size
of the receptive field. FreqSelect is devised to enhance the
receptive field by balancing high- and low-frequency com-
ponents in the feature representations.

Specifically, FreqSelect initially decomposes features
into different frequency bands by applying distinct masks
in the Fourier domain:

Xb = F−1(MbXF ), (8)

whereF−1 denotes the inverse Fast Fourier Transform.Mb

is a binary mask designed to extract the corresponding fre-
quency:

Mb(u, v) =

{
1 if φb ≤ max(|u|, |v|) < φb+1

0 otherwise
(9)

Here, φb, φb+1 are fromB+1 predefined frequency thresh-
olds {0, φ1, φ2, ..., φB−1, 12}. Subsequently, FreqSelect dy-
namically reweights the frequency components in different
frequency bands spatially. This is formulated as:

X̂(i, j) =

B−1∑
b=0

Ab(i, j)Xb(i, j), (10)

where X̂(i, j) is the learned frequency-balanced feature af-
ter FreqSelect, and Ab ∈ RH×W denotes the selection map
for the b-th frequency band. Specifically, we decompose
the frequency in an octave-wise [62] manner into four fre-
quency bands, i.e., [0, 1

16 ), [ 1
16 ,

1
8 ), [ 18 ,

1
4 ), and [ 14 ,

1
2 ].

4. Experiments
4.1. Experiments Settings

Datasets and Metrics. We evaluate our methods on sev-
eral challenging semantic segmentation datasets, including
Cityscapes [12] and ADE20K [89]. We employ the mean
Intersection over Union (mIoU) for semantic segmenta-
tion [4, 8, 19, 40, 45] and Average Precision (AP) for object
detection/instance segmentation [5–7, 24, 27] as our evalu-
ation metrics.
Implement details. Mask2Former [10], PIDNet [76],
ResNet/HorNet+UPerNet, we keep the same setting with
the original paper [10, 54, 76]. On the COCO [38] dataset,
we adhere to common practices [22, 54, 70] and train ob-
ject detection and instance segmentation models for 12
(1× schedule) or 36 (3× schedule) epochs. In the case
of Dilated-ResNet, we substitute the dilated convolution at
stage-3∼4 with the proposed FADC. For PIDNet, the con-
volution at the bottleneck is replaced with the proposed
FADC. For ResNet, we replace the convolution at stage-
2∼4 with the proposed FADC.

4.2. Main Results

In this section, we initially assess the effectiveness of the
proposed method through standard semantic segmentation
benchmarks. Subsequently, we report results on real-time
semantic segmentation. Finally, we seamlessly integrate the
proposed method into pertinent deformable convolutions
(DCNv2 [91]) and advanced frameworks, such as DCN3-
based InternImage [70], along with incorporating dilated at-
tention mechanisms as exemplified by DiNAT [22].
Standard Semantic Segmentation. As shown in Ta-
ble 1, we compared the proposed FADC with Dilated
Convolution [82], Deformable Convolution (DCNv2)[91],
and Adaptive Dilated Convolution (ADC)[78]. On the
widely used Cityscapes dataset [12], when equipped with
our FADC, the results for PSPNet, DeepLabV3+, and
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Table 1. Results are reported on Cityscapes validation set [12].

Method #Params #FLOPS mIoU
Backbone: Dilated-ResNet-50 [82]

PSPNet [88] 49.0M 1427.5G 77.8
PSPNet [88] + DCNv2 [91] +0.7M +24.5G 79.7
PSPNet [88] + FADC (Ours) +0.5M +9.2G 80.4

DeepLabV3+ [9] 43.6G 1410.9G 79.2
DeepLabV3+ [9] + DCNv2 [91] +0.7M +24.5G 79.9
DeepLabV3+ [9] + FADC (Ours) +0.5M +9.2G 80.3

Backbone: Dilated-ResNet-101 [82]

DeepLabV3+ [9] + ADC [78] 62.8M 2032.3G 80.7
DeepLabV3+ [9] + FADC (Ours) 63.9M 2067.0G 81.5

Backbone: ResNet-50 [25]

Mask2Former [10] 44.0M - 79.4
Mask2Former [10] + DCNv2 [91] +0.9M +7.7G 80.4
Mask2Former [10] + FADC (Ours) +0.5M +4.3G 80.6

Table 2. Quantitative comparisons on semantic segmentation tasks
with UPerNet [75] on the ADE20K validation set.

Method #Params #FLOPS mIoU
SS MS

ResNet-50 [25] 66M 947G 40.7 41.8
ResNet-101 [25] 85M 1029G 42.9 44.0
ResNet-50-FADC (Ours) 67M 949G 44.4 45.5

Swin-B [43] 121M 1188G 48.1 49.7
NAT-B [23] 123M 1137G 48.5 49.7
ConvNeXt-B [44] 122M 1170G 49.1 49.9
ConvNeXt-B-dcls [31] 122M 1170G 49.3 -
DAT-B [73] 121M 1212G 49.4 50.6
DiNAT-B [22] 123M 1137G 49.6 50.4
Focal-B [77] 126M 1354G 49.0 50.5
InternImage-B [70] 128M 1185G 50.8 51.3
HorNet-B [54] 126M 1171G 50.5 50.9
HorNet-B-FADC (Ours) 128M 1176G 51.1 51.5

Mask2Former show improvements of +2.6, +1.1, and
+1.2 mIoU, respectively. These enhancements outperform
DCNv2 by 0.7, 0.4, and 0.2 mIoU with fewer additional
computations and parameters. FADC also outperforms
ADC, which adopts an adaptive dilation strategy, by 0.8
mIoU. Furthermore, as demonstrated in Table 2 using the
more challenging ADE20K dataset, FADC significantly en-
hances the mIoU of ResNet-50 with UPerNet by 3.7, sur-
passing even its heavier counterpart, ResNet-101 (44.4 vs.
42.9). When applied with larger HorNet-B, it leads to
+0.6 gains and outperforms recent state-of-the-art meth-
ods, including Swin, ConvNeXt, RepLKNet-31L, InternIm-
age, and DiNAT. Notably, HorNet-B-FADC exhibits supe-
rior performance and improvement (51.1 vs. 49.3, and +0.6
vs. +0.2) compared to ConvNeXt-B-dcls [31], which ap-
plies learning dilation spacing.
Real-time Semantic Segmentation. Real-time semantic
segmentation is crucial for applications such as autonomous
vehicles [17] and robot surgery [60]. We further evalu-
ate the proposed method for real-time semantic segmen-
tation on the Cityscapes dataset [12] as shown in Table 3.

Table 3. Comparison on Cityscapes [12]. † indicates the models
pre-trained by extra datasets. We follow [76] to test our method on
a single RTX 3090 with a resolution of 1024×2048.

Model #Params #FLOPs #FPS Val Test

DF2-Seg1 [35] - - 67.2 75.9 74.8
DF2-Seg2 [35] - - 56.3 76.9 75.3

SwiftNetRN-18 [48] 11.8M 104.0G 39.9 75.5 75.4
SwiftNetRN-18 ens [48] 24.7M 218.0G 18.4 - 76.5

CABiNet [32] 2.64M 12.0G 76.5 76.6 75.9

BiSeNet(Res18)[81] 49M 55.3G 65.5 74.8 74.7
BiSeNetV2-L[80] - 118.5G 47.3 75.8 75.3

STDC1-Seg75 [16] - - 74.8 74.5 75.3
STDC2-Seg75 [16] - - 58.2 77.0 76.8

PP-LiteSeg-T2 [50] - - 96.0 76.0 74.9
PP-LiteSeg-B2 [50] - - 68.2 78.2 77.5

HyperSeg-M [47] 10.1M 7.5G 59.1 76.2 75.8
HyperSeg-S [47] 10.2M 17.0G 45.7 78.2 78.1

SFNet(DF2)[34] 10.53M - 87.6 - 77.8
SFNet(ResNet-18)[34] 12.87M 247.0G 30.4 - 78.9
SFNet(ResNet-18)†[34] 12.87M 247.0G 30.4 - 80.4

DDRNet-23-S[26] 5.7M 36.3G 108.1 77.8 77.4
DDRNet-23 [26] 20.1M 143.1G 51.4 79.5 79.4
DDRNet-39 [26] 32.3M 281.2G 30.8 - 80.4

PIDNet-S [76] 7.6M 47.6G 93.2 78.8 78.6
PIDNet-M [76] 34.4M 197.4G 39.8 80.1 80.1
PIDNet-L [76] 36.9M 275.8G 31.1 80.9 80.6

PIDNet-M-FADC (Ours) 34.6M 198.4G 37.7 81.0 80.6

Equipped with FADC, our PIDNet-M achieves a mIoU of
81.0 at a frame rate of 37.7 frames per second (FPS), sur-
passing the performance of the heavier PIDNet-L while
maintaining a faster speed (37.7 vs. 31.1), thereby establish-
ing a new state-of-the-art. This demonstrates the efficiency
of the proposed method.

Integration with DCNv2, InternImage, and DiNAT.
There exists a set of potent techniques for adjusting the
sampling coordinates of convolution or attention, akin to
dilated convolution. Examples include DCNv2 [91], In-
ternImage [70] (a DCNv3-based model), and DiNAT [22].
DCNv2 and InternImage can be conceptualized as dynam-
ically assigning a dilation rate to each point of the ker-
nel. Conversely, DiNAT adjusts the sampling coordinates
for calculating attention in a manner analogous to dilated
convolution, thereby encountering similar challenges asso-
ciated with dilation convolution. Here, we combine the pro-
posed AdaKern and FreqSelect with DCNv2, InternImage
(DCNv3-based model), and DiNAT to assess their effec-
tiveness. Table 4 illustrates the impact of this integration.
DCNv2 has previously demonstrated notable success in ob-
ject detection tasks, and our proposed AdaKern and Fre-
qSelect contribute a further enhancement of 0.9 in box AP.
Furthermore, FreqSelect enhances the performance of In-
ternImage by 0.8 on the ADE20K dataset, and DiNAT by
0.6 in mask AP on COCO [39]. These results serve as com-
pelling evidence of the efficacy of our approach.
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Table 4. Combining the proposed AdaKern and FreqSelect strate-
gies with DCNv2 [91] on the object detection task. All models are
trained with a 1× schedule on the COCO dataset [39].

Model: Faster-RCNN [56] Param FLOPs APbox APbox
50 APbox

75

ResNet-50 [25] 41.7M 207.1G 37.4 58.1 40.4

ResNet-50 [25] + DCNv2 [91] +0.9M +3.9G 41.3 62.8 45.1
+AdaKern+FreqSelect (Ours) +1.0M +4.6G 42.2 63.5 46.2

Table 5. Combining the proposed FreqSelect strategies with In-
ternImage [70] on the ADE20K validation set.

Method #Params #FLOPS mIoU
SS MS

Swin-T [43] 60M 945G 44.5 45.8
ConvNeXt-T [44] 60M 939G 46.0 46.7
SLAK-T [41] 65M 936G 47.6 -

InternImage-T [70] 59M 944G 47.9 48.1
+ FreqSelect (Ours) 60M 948G 48.7 48.9

(a) Dilated Conv
Feature

(b) FADC
Feature

(d) FADC
Prediction

(c) Dilated Conv
Prediction

(e) Ground
Truth

Figure 5. Visualized results on Cityscape [12]. Aliasing artifacts
are evident in (a), resulting in the loss of details in the represen-
tation of thin poles and truck boundaries, which leads to inferior
predictions in (c). In contrast, our proposed FADC method in (b)
demonstrates an accurate and uniform response to both thin poles
and large trucks, thereby contributing to consistently accurate pre-
dictions in (d).

Visualized Results. We present representative visualiza-
tion results in Figure 5. The top row demonstrates that di-
lated convolution fails to accurately extract high-frequency
information, such as the fine details of thin poles. In con-
trast, our proposed Frequency-Adaptive Dilated Convolu-
tion (FADC) accurately captures these details, resulting in
superior predictions. In the bottom row, it is evident that
dilated convolution struggles to respond uniformly to large
trucks due to an insufficient receptive field to extract local
information. On the other hand, FADC uniformly responds
to large trucks, leading to more consistent and accurate seg-
mentation predictions. These visualizations serve to illus-
trate the effectiveness of our proposed FADC in addressing
the limitations of dilated convolution.

5. Analysis and Disccusion
We utilize dilated ResNet-50 [82] as the baseline model and
conduct a thorough analysis of the proposed FADC. Addi-
tional analyses are available in the supplementary material.

Table 6. Object detection and instance segmentation performance
on the COCO dataset [39] with the Mask R-CNN detector [24].
All models are trained with a 3× schedule [22, 70].

Model Params FLOPs APbox APmask

ConvNeXt-S [44] 348G 70M 47.9 42.9
RegionViT-B+ [3] 307G 93M 48.3 43.5
NAT-S [23] 330G 70M 48.4 43.2
ConvNeXt-B [44] 486G 108M 48.5 43.5
Swin-S [43] 359G 69M 48.5 43.3
Internlmage-S [70] 340G 69M 49.7 44.5
DAT-S [73] 378G 69M 49.0 44.0

DiNAT-S [22] 330G 70M 49.3 43.9
+FreqSelect (Ours) 331G 71M 49.8 44.5
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Figure 6. Left: The curve illustrates the relationship between
normalized high-frequency power and the predicted dilation rate.
FADC, incorporating AdaDR, assigns lower dilation rates to areas
with more high-frequency components, such as the boundaries of
cars. Right: Mean dilation rates at stages 3 and 4 in ResNet.

Analysis of AdaDR. As depicted in Figure 6, AdaDR
learns to predict a small dilation rate for areas with high fre-
quencies, such as the boundaries of cars, bicycles, and per-
sons (refer to Figure 4(c)), to maintain a high bandwidth for
capturing high frequency fine details. Conversely, it assigns
a larger dilation rate for smoother areas with a lower level of
high frequency to expand the receptive field. Furthermore,
in comparison to deformable convolution [13, 91], AdaDR
avoids spatial deviation illustrated in Figure 7, preventing
incorrect learning and benefits position-sensitive tasks.
Analysis of AdaKern. Through adaptive adjustment of the
ratio between high-frequency and low-frequency compo-
nents in the static kernel based on input feature, AdaKern
modulates the frequency response of the convolution kernel,
empowering FADC to extract more high-frequency detailed
information. As depicted in the right of Figure 3, we per-
form a statistical analysis of the frequency power in the fea-
ture map. In comparison to dilated convolution, FADC ex-
tracts a greater amount of high-frequency information, cru-
cial for capturing segmentation details, and using AdaKern
further amplifies this capability.
Analysis of FreqSelect. We conduct a statistical analysis
of the average weights generated by FreqSelect for differ-
ent frequency bands, as presented in Table 8. FreqSelect
predicted a lower average weight for the higher frequency
band, consistent with the inverse power law [65]. Upon vi-
sualizing the heatmap in Figure 8, we noted that FreqSelect
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Figure 7. Spatial deviation analysis. We illustrate a histogram of
the spatial deviation between the center of the predicted sampling
coordinate and corresponding pixel coordinates.
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Figure 8. Visualization for Freqselect. Brighter colors indicate a
higher attention value.

Table 7. Theoretical receptive field analysis using dilated ResNet-
50 [82]. FADC considerably improves the receptive field of the
entire model, and FreqSelect further enhances it.

Conv. Type Standard FADC FADC
Dilated Conv (w/o FreqSelect) (w/ FreqSelect)

Receptive Field 441 1007 1100

Table 8. Average attention weights of different frequency bands.
Statistics are collected on the Cityscapes validation set [12].

Frequency band (×2π) [0, 1
16 ) [ 1

16 , 1
8 ) [ 18 , 1

4 ) [ 14 , 1
2 ]

Average selection weight 1.0 0.66 0.50 0.34

tends to assign a higher attention weight to object bound-
aries. This is more obvious for higher frequency bands. It
selectively suppresses high frequencies in areas that do not
contribute to accurate predictions, such as the background
and the center of objects. This encourages FADC to learn
higher dilation rates, thereby enlarging the receptive field.
Receptive Field. The importance of a large receptive field
in scene understanding tasks has been emphasized [14, 15].
Adopting the AdaDR strategy, FADC can employ a higher
overall dilation rate to expand the receptive field, surpassing
the widely used dilated ResNet [82] with a global fixed dila-
tion rate, as indicated in Table 7. Figure 8 visually demon-
strates how FreqSelect contributes to an increased average
dilation rate of FADC. By selectively weighting frequencies
in the feature map, FreqSelect further encourages a higher
dilation rate, ultimately resulting in an elevated receptive
field, as shown in Table 7.
Bandwidth. Measuring the bandwidth of a complex model
is not straightforward [58], instead, we directly assess the

frequency information in extracted features. In Figure 3,
in comparison with dilated convolution, FADC increases
the power in the high-frequency band of [ 18 ,

1
4 ) and [ 14 ,

1
2 ].

AdaKern further enhances the power in the frequency band
[ 14 ,

1
2 ]. This indicates the extraction of more high-frequency

information, demonstrating an improved bandwidth.

Aliasing Artifacts. As outlined in [69, 82], aliasing arti-
facts, commonly referred to as gridding artifacts, manifest
when the frequency content of a feature map exceeds the
sampling rate of dilated convolution, as depicted in Fig-
ure 5. To elaborate, these artifacts occur when the frequency
within the feature map surpasses the effective bandwidth
of dilated convolution. Previous studies have attempted to
address this issue empirically by incorporating additional
convolutional layers to learn a low-pass filter for artifact re-
moval [63, 69] or by employing multiple dilation rates to
increase the sampling rate [63, 69]. In contrast to these ap-
proaches, our proposed method mitigates gridding artifacts
by dynamically adjusting the dilation rate based on local
frequency. Furthermore, FreqSelect contributes to this by
suppressing high frequencies in areas that do not contribute
to accurate predictions in the background or object center.

6. Conclusion

In this work, we review dilated convolution from a fre-
quency perspective and introduce FADC to improve indi-
vidual phases with three key strategies: AdaDR, AdaKern,
and FreqSelect. Diverging from the conventional approach
of employing a fixed global dilation rate, AdaDR dynami-
cally adjusts dilation rates based on local frequency compo-
nents, enhancing spatial adaptability. AdaKern dynamically
adjusts the ratio between low-frequency and high-frequency
components in convolution weights on a per-channel ba-
sis, capturing more high-frequency information and im-
proving overall effective bandwidth. FreqSelect balances
high- and low-frequency components through spatially vari-
ant reweighting, encouraging FADC to learn larger dilations
and, consequently, expanding the receptive field. In the fu-
ture, we aim to extend our quantitative frequency analysis
to deformable/dilated attention. Additionally, since FADC
are demonstrated to be seamlessly replace standard convo-
lution layers in the existing architectures, we are going to
design specific architecture for FADC.
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