
GaussianEditor: Swift and Controllable 3D Editing with Gaussian Splatting

Yiwen Chen*1,2 Zilong Chen*3 Chi Zhang2 Feng Wang3 Xiaofeng Yang2

Yikai Wang3 Zhongang Cai4 Lei Yang4 Huaping Liu3 Guosheng Lin**1,2

1S-Lab, Nanyang Technological University
2School of Computer Science and Engineering, Nanyang Technological University

3Department of Computer Science and Technology, Tsinghua University
4SenseTime Research

https://buaacyw.github.io/gaussian-editor

Original view

into HulkOriginal view

Figure 1. Results of GaussianEditor. GaussianEditor offers swift, controllable, and versatile 3D editing. A single editing session only

takes 5-10 minutes. Please note our precise editing control, where only the desired parts are modified. Taking the “Make the grass on fire”
example from the first row of the figure, other objects in the scene such as the bench and tree remain unaffected.

Abstract

3D editing plays a crucial role in many areas such as
gaming and virtual reality. Traditional 3D editing methods,
which rely on representations like meshes and point clouds,
often fall short in realistically depicting complex scenes. On
the other hand, methods based on implicit 3D representa-
tions, like Neural Radiance Field (NeRF), render complex
scenes effectively but suffer from slow processing speeds and
limited control over specific scene areas. In response to these
challenges, our paper presents GaussianEditor, the first 3D
editing algorithm based on Gaussian Splatting (GS), a novel

** Corresponding author.

* The first two authors contributed equally to this work.

3D representation. GaussianEditor enhances precision and
control in editing through our proposed Gaussian semantic
tracing, which traces the editing target throughout the train-
ing process. Additionally, we propose Hierarchical Gaussian
splatting (HGS) to achieve stabilized and fine results under
stochastic generative guidance from 2D diffusion models. We
also develop editing strategies for efficient object removal
and integration, a challenging task for existing methods.
Our comprehensive experiments demonstrate GaussianEdi-
tor’s superior control, effective, and efficient performance,
marking a significant advancement in 3D editing.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

21476

1. Introduction
In the evolving field of computer vision, the development

of user-friendly 3D representations and editing algorithms

is a key objective. Such technologies are vital in various

applications, ranging from digital gaming to the growing

MetaVerse. Traditional 3D representations like meshes and

point clouds have been preferred due to their interactive

editing capabilities. However, these methods face challenges

in accurately rendering complex 3D scenes.

The recent rise of implicit 3D representations, exempli-

fied by the Neural Radiance Field (NeRF) [28], represents

a paradigm shift in 3D scene rendering. NeRF’s capacity

for high-fidelity rendering, coupled with its implicit nature

that offers significant expansibility, marks a substantial im-

provement over conventional approaches[2, 32, 56]. This

dual advantage has placed a significant focus on the NeRF

framework in 3D editing [12, 31, 46, 47, 57], establishing

it as a foundational approach for a considerable duration.

However, NeRF’s reliance on high-dimensional multilayer

perception (MLP) networks for scene data encoding presents

limitations. It restricts direct modification of specific scene

parts and complicates tasks, like inpainting and scene compo-

sition. This complexity extends to the training and rendering

processes, hindering practical applications.

In light of these challenges, our research is focused on

developing an advanced 3D editing algorithm. This algo-

rithm aims for flexible and rapid editing of 3D scenes, in-

tegrating both implicit editing, like text-based editing, and

explicit control, such as bounding box usage for specific area

modifications. To achieve these goals, we choose Gaussian

Splatting (GS) [15] for its real-time rendering and explicit

point cloud-like representations.

However, editing Gaussian Splatting (GS) [15] faces dis-

tinct challenges. A primary issue is the absence of efficient

methods to accurately identify target Gaussians, which is

crucial for precise controllable editing. Moreover, it has been

observed in [7, 45, 53] that optimizing Gaussian Splatting

(GS) using highly random generative guidance like Score

Distillation Sampling [36] poses significant challenges. One

possible explanation is that, unlike implicit representations

buffered by neural networks, GS is directly affected by the

randomness in loss. Such direct exposure results in unstable

updates, as the properties of Gaussians are directly changed

during training. Besides, each training step of GS may in-

volve updates to a vast number of Gaussian points. This

process occurs without the moderating influence of neural

network-style buffering mechanisms. As a result, the ex-

cessive fluidity of the 3D GS scene hinders its ability to

converge to finely detailed results like implicit representa-

tions when trained with generative guidance.

To counter these issues, in this work, we propose Gaus-

sianEditor , a novel, swift, and highly controllable 3D editing

algorithm for Gaussian Splatting. GaussianEditor can fulfill

various high-quality editing needs within minutes. A key

feature of our method is the introduction of Gaussian se-

mantic tracing, which enables precise control over Gaussian

Splatting (GS). Gaussian semantic tracing consistently iden-

tifies the Gaussians requiring editing at every moment during

training. This contrasts with traditional 3D editing methods

that often depend on static 2D or 3D masks. Such masks

become less effective as the geometries and appearances

of 3D models evolve during training. Gaussian semantic

tracing is achieved by unprojecting 2D segmentation masks

into 3D Gaussians and assigning each Gaussian a semantic

tag. As the Gaussians evolve during training, these semantic

tags enable the tracking of the specific Gaussians targeted

for editing. Our Gaussian tracing algorithm ensures that

only the targeted areas are modified, enabling precise and

controllable editing.

Additionally, to tackle the significant challenge of Gaus-

sian Splatting (GS) struggling to fit fine results under highly

random generative guidance, we propose a novel GS repre-

sentation: hierarchical Gaussian splatting (HGS). In HGS,

Gaussians are organized into generations based on their

sequence in multiple densification processes during train-

ing. Gaussians formed in earlier densification stages are

deemed older generations and are subject to stricter con-

straints, aimed at preserving their original state and thus

reducing their mobility. Conversely, those formed in later

stages are considered younger generations and are subjected

to fewer or no constraints, allowing for more adaptability.

HGS’s design effectively moderates the fluidity of GS by

imposing restrictions on older generations while preserving

the flexibility of newer generations. This approach enables

continuous optimization towards better outcomes, thereby

simulating the buffering function achieved in implicit repre-

sentations through neural networks. Our experiments also

demonstrate that HGS is more adept at adapting to highly

random generative guidance.

Finally, we have specifically designed a 3D inpainting

algorithm for Gaussian Splatting (GS). As demonstrated in

Fig. 1, we have successfully removed specific objects from

scenes and seamlessly integrated new objects into designated

areas. For object removal, we developed a specialized local

repair algorithm that efficiently eliminates artifacts at the

intersection of the object and the scene. For adding objects,

we first request users to provide a prompt and a 2D inpaint-

ing mask for a particular view of the GS. Subsequently, we

employ a 2D inpainting method to generate a single-view

image of the object to be added. This image is then trans-

formed into a coarse 3D mesh using image-to-3D conversion

techniques. The 3D mesh is subsequently converted into the

HGS representation and refined. Finally, this refined repre-

sentation is concatenated into the original GS. The entire

inpainting process described above is completed within 5

minutes.

21477

GaussianEditor offers swift, controllable, and versatile

3D editing. A single editing session typically only takes 5-10

minutes, significantly faster than previous editing processes.

Our contributions can be summarized in four aspects:

1. We have introduced Gaussian semantic tracing, enabling

more detailed and effective editing control.

2. We propose Hierarchical Gaussian Splatting (HGS), a

novel GS representation capable of converging more sta-

bly to refined results under highly random generative

guidance.

3. We have specifically designed a 3D inpainting algorithm

for Gaussian Splatting, which allows swift removal and

addition objects.

4. Extensive experiments demonstrate that our method sur-

passes previous 3D editing methods in terms of effective-

ness, speed, and controllability.

2. Related Works
2.1. 3D Representations

Various 3D representations have been proposed to address

diverse 3D tasks. The groundbreaking work, Neural Ra-

diance Fields (NeRF) [28], employs volumetric rendering

and has gained popularity for enabling 3D optimization with

only 2D supervision. However, optimizing NeRF can be

time-consuming, despite its wide usage in 3D reconstruc-

tion [3, 6, 13, 21, 44] and generation [22, 35] tasks.

While efforts have been made to accelerate NeRF train-

ing [29, 40], these approaches primarily focus on the re-

construction setting, leaving the generation setting less opti-

mized. The common technique of spatial pruning does not

effectively speed up the generation setting.

Recently, 3D Gaussian splatting [15] has emerged as

an alternative 3D representation to NeRF, showcasing im-

pressive quality and speed in 3D and 4D reconstruction

tasks [15, 26, 48, 51, 52]. It has also attracted considerable

research interest in the field of generation [7, 45, 53]. Its

efficient differentiable rendering implementation and model

design facilitate fast training without the need for spatial

pruning.

In this work, we pioneer the adaptation of 3D Gaussian

splatting to 3D editing tasks, aiming to achieve swift and

controllable 3D editing, harnessing the advantages of this

representation for the first time in this context.

2.2. 3D Editing

Editing neural fields is inherently challenging due to the

intricate interplay between their shape and appearance. Ed-

itNeRF [24] stands as a pioneering work in this domain,

as they edit both the shape and color of neural fields by

conditioning them on latent codes. Additionally, some

works [1, 10, 46, 47] leverage CLIP models to facilitate

editing through the use of text prompts or reference images.

Another line of research focuses on predefined template

models or skeletons to support actions like re-posing or

re-rendering within specific categories [30, 33]. Geometry-

based methods [20, 49, 50, 55] translate neural fields into

meshes and synchronize mesh deformation with implicit

fields. Additionally, 3D editing techniques involve combin-

ing 2D image manipulation, such as inpainting, with neural

fields training [19, 23].

Concurrent works [31, 57] leverage static 2D and 3D

masks to constrain the edit area of NeRF. However, these

approaches have their limitations because the training of 3D

models is a dynamic process, and static masks cannot effec-

tively constrain it. In contrast, our research employs Gaus-

sian semantic tracing to track the target Gaussian throughout

the entire training process.

3. Preliminary

3.1. 3D Gaussian Splatting

GS (Gaussian Splatting) [15] represents an explicit 3D scene

using point clouds, where Gaussians are employed to depict

the scene’s structure. In this representation, every Gaussian

is defined by a center point, denoted as x, and a covariance

matrix Σ. The center point x is commonly known as the

Gaussian’s mean value:

G(x) = e−
1
2x

TΣ−1x. (1)

The covariance matrix Σ can be decomposed into a rotation

matrix R and a scaling matrix S for differentiable optimiza-

tion:

Σ = RSSTRT , (2)

the calculation of gradient flow is detailed in [15].

For rendering new viewpoints, the method of splatting, as

described in [54], is utilized for positioning the Gaussians

on the camera planes. This technique, originally presented

in [58], involves a viewing transformation denoted by W and

the Jacobian J of the affine approximation of the projective

transformation. Using these, the covariance matrix Σ′ in

camera coordinates is determined as follows:

Σ′ = JWΣWTJT . (3)

To summarize, each Gaussian point in the model is charac-

terized by a set of attributes: its position, denoted as x ∈ R
3,

its color represented by spherical harmonics coefficients

c ∈ R
k (where k indicates the degrees of freedom), its opac-

ity α ∈ R, a rotation quaternion q ∈ R
4, and a scaling factor

s ∈ R
3. Particularly, for every pixel, the color and opac-

ity of all Gaussians are calculated based on the Gaussian’s

representation as described in Eq. 1. The blending process

of N ordered points overlapping a pixel follows a specific

21478

Before Editing During Editing

Figure 2. Illustration of Gaussian semantic tracing. Prompt:
Turn him into an old lady. The red mask in the images represents

the projection of the Gaussians that will be updated and densified.

The dynamic change of the masked area during the training process,

as driven by the updating of Gaussians, ensures consistent effec-

tiveness throughout the training duration. Despite starting with

potentially inaccurate segmentation masks due to 2D segmentation

errors, Gaussian semantic tracing still guarantees high-quality edit-

ing results.

formula:

C =
∑

i∈N

ciαi

i−1∏

j=1

(1− αj). (4)

where ci and αi signify the color and density of a given

point respectively. These values are determined by a Gaus-

sian with a covariance matrix Σ, which is then scaled by

optimizable per-point opacity and spherical harmonics (SH)

color coefficients.

3.2. Diffusion-based Editing Guidance

Recent advancements have seen numerous works elevat-

ing 2D diffusion processes to 3D, applying these pro-

cesses extensively in the realm of 3D editing. Broadly,

these works can be categorized into two types. The first

type [8, 27, 31, 36, 42, 57], exemplified by Dreamfu-

sion’s [36] introduction of SDS loss, involves feeding the

noised rendering of the current 3D model, along with other

conditions, into a 2D diffusion model [39]. The scores gen-

erated by the diffusion model then guide the direction of

model updates. The second type [5, 12, 37, 43] focuses

on conducting 2D editing based on given prompts for the

multiview rendering of a 3D model. This approach creates

a multi-view 2D image dataset, which is then utilized as a

training target to provide guidance for the 3D model.

Our work centers on leveraging the exemplary properties

of Gaussian Splatting’s explicit representation to enhance

3D editing. Consequently, we do not design specific edit-

ing guidance mechanisms but instead directly employ the

guidance methods mentioned above. Both types of guidance

can be applied in our method. For simplicity, we denote

the guidance universally as D. Given the parameters of a

3D model, Θ, along with the rendered camera pose p and

prompt e, the editing loss from the 2D diffusion prior can be

formulated as follows:

LEdit = D(Θ; p, e) (5)

4. Method
We define the task of 3D editing on Gaussian Splatting

(GS) as follows: Given a prompt y and a 3D scene rep-

resented by 3D Gaussians, denoted by Θ, where each

Θi = {xi, si, qi, αi, ci} represents the parameters of the i-th
Gaussian as detailed in Sec. 3.1, the objective is to achieve

an edited 3D Gaussians, referred to as Θy, that aligns with

or adheres to the specifications of the prompt y.

We then introduce our novel framework for performing

editing tasks on GS. We first introduce Gaussian semantic

tracing in Sec. 4.1, along with a new representation method

known as Hierarchical Gaussian Splatting (HGS) in Sec. 4.2.

The GS semantic tracing enables precise segmentation and

tracing within GS, facilitating controllable editing opera-

tions. Compared to the standard GS, the HGS representation

demonstrates greater robustness against randomness in gener-

ative guidance and is more adept at accommodating a diverse

range of editing scenarios. Additionally, we have specifically

designed 3D inpainting for GS, which encompasses object

removal and addition (Sec. 4.3).

4.1. Gaussian Semantic Tracing

Previous works [31, 57] in 3D editing usually utilize static

2D or 3D masks to apply loss only within the masked pix-

els, thus constraining the editing process to only edit the

desired area. However, this method has limitations. As 3D

representations dynamically change during training, static

segmentation masks would become inaccurate or even in-

effective. Furthermore, the use of static masks to control

gradients in NeRF editing poses a significant limitation, as

it confines the editing strictly within the masked area. This

restriction prevents the edited content from naturally extend-

ing beyond the mask, thus ’locking’ the content within a

specified spatial boundary.

To address the aforementioned issue, we have chosen

Gaussian Splatting (GS) as our 3D representation due to its

explicit nature. This allows us to directly assign semantic

labels to each Gaussian point, thereby facilitating semantic

tracing in 3D scenes.

Specifically, we enhance the 3D Gaussians Θ by adding

a new attribute m, where mij represents the semantic Gaus-

sian mask for the i-th Gaussian point and the j-th semantic

label. With this attribute, we can precisely control the editing

process by selectively updating only the target 3D Gaussians.

During the densification process, newly densified points in-

herit the semantic label of their parent point. This ensures

that we have an accurate 3D semantic mask at every moment

throughout the training process.

As illustrated in Fig. 2, Gaussian semantic tracing enables

continuous tracking of each Gaussian’s categories during

training, adjusting to their evolving properties and numbers.

This feature is vital, as it permits selective application of gra-

dients, densification and pruning of Gaussians linked to the

21479

Original GS A Garfield cat on the bench

Novel view 1 Novel view 2

Figure 3. 3D inpainting for object incorporation. GaussianEd-

itor is capable of adding objects at specified locations in a scene,

given a 2D inpainting mask and a text prompt from a single view.

The whole process takes merely five minutes.

Original View Removed Inpainted

Figure 4. 3D inpainting for object removal. Typically, removing

the target object based on a Gaussian semantic mask generates

artifacts at the interface between the target object and the scene. To

address this, we generate a repaired image using a 2D inpainting

method and employ Mean Squared Error (MSE) loss for supervi-

sion. The whole process takes merely two minutes.

specified category. Additionally, it facilitates training solely

by rendering the target object, significantly speeding up the

process in complex scenes. The semantic Gaussian mask

m functions as a dynamic 3D segmentation mask, evolving

with the training, allowing content to expand freely in space.

This contrasts with NeRF, where content is restricted to a

fixed spatial area.

Next, we discuss Gaussian Splatting unprojection, the

method we propose to obtain semantic Gaussian mask m.

For a set of 3D Gaussians Θ, we render them from multi-

ple viewpoints to generate a series of renderings I. These

renderings are then processed using 2D segmentation tech-

niques [18] to obtain 2D segmentation masks M, with each

Mj , representing the j-th semantic labels.

To obtain the semantic label for each Gaussian, we un-

project the posed 2D semantic label back to the Gaussians

with inverse rendering. Concretely, we maintain a weight

and a counter for each Gaussian. For pixel p on the semantic

maps, we unproject the semantic label back to the Gaussians

that affects it by

wj
i =

∑
oi(p) ∗ T j

i (p) ∗Mj(p), (6)

where wj
i represents the weight of the i-th Gaussian for

the j-th semantic label, while oi(p), T
j
i (p), and Mj(p) de-

note the opacity, transmittance from pixel p, and semantic

mask of pixel p for the i-th Gaussian, respectively. After

updating all the Gaussian weights and counters, we deter-

mine whether a Gaussian belongs to the j-th semantic class

based on whether its average weight exceeds a manually set

threshold.

The entire labeling process is remarkably fast, typically

taking less than a second. Once this semantic label assign-

ment is completed, the entire Gaussian scene becomes parsed

by us, making a variety of operations possible. Notably, 2D

diffusion guidance often struggles to effectively edit small

objects in complex scenes. Thanks to Gaussian semantic

tracing, we can now render these small objects indepen-

dently and input them into the 2D diffusion model, thereby

achieving more precise supervision.

4.2. Hierarchical Gaussian Splatting

The effectiveness of vanilla GS [17] in reconstruction tasks

lies in the high-quality initialization provided by point clouds

derived from SFM [41], coupled with stable supervision

from ground truth datasets.

However, the scenario changes in the field of generation.

In previous work involving GS in text-to-3D and image-to-

3D [7, 45, 53], GS has shown limitations when facing the

randomness of generative guidance due to its nature as a

point cloud-like representation. This instability in GS is

mainly due to their direct exposure to the randomness of

loss functions, unlike implicit representations. GS models,

which update a large number of Gaussian points each training

step, lack the memorization and moderating ability of neural

networks. This leads to erratic updates and prevents GS

from achieving the detailed results as GS’s excessive fluidity

hampers its convergence in generative training.

To address these challenges, we introduce Hierarchical

Gaussian Splatting (HGS), a structured representation of GS

that is more suitable for generative and editing scenarios.

HGS categorizes GS into different generations based on the

densification round in which a particular Gaussian point

is produced. The initial Gaussians Θ, are all assigned a

generation of 0. During the training process for editing,

points generated in the k-th densification round are marked

as generation k.

Subsequently, we impose varying constraints on Gaus-

sians from different generations to control their degree of

21480

Figure 5. Qualitative comparison. It’s important to note the level of control we maintain over the editing area (the whole body of the man).

Background and other non-target regions are essentially unaffected, in contrast to Instruct-Nerf2Nerf [12] where the entire scene undergoes

changes. GaussianEditor-DDS and GaussianEditor-iN2N indicate that we utilize delta denoising score [14] and Instruct-Nerf2Nerf [12]

respectively, as guidance for editing.

flexibility. The older the generation, the stronger the con-

straints applied. Anchor loss is utilized to enforce these

constraints. At the beginning of training, HGS records the

attributes of all Gaussians as anchors. These anchors are

then updated to reflect the current state of the Gaussians

at each densification process. During training, MSE loss

between the anchor state and the current state is employed

to ensure that the Gaussians do not deviate too far from their

respective anchors:

LP
anchor =

n∑

i=0

λi(Pi − P̂i)
2 (7)

where n represents the total number of Gaussians and P
denotes a certain property of the current Gaussian, including

elements from the set x, s, q, α, c. Here, P̂ refers to the same

property recorded in the anchor state. The term λi indicates

the strength of the anchor loss applied to the i-th Gaussian,

which varies based on its generation. The overall training

loss is defined as:

L = LEdit +
∑

P∈{x,s,q,α,c}
λPLP

anchor (8)

In this equation, λP signifies the strength of the anchor loss

applied to property P , and LEdit is the edit loss defined in

Sec. 3.2.

This generational design in HGS prevents the issue of

excessive flexibility in GS when faced with stochastic loss.

With each densification, the anchor loss weight λi for all

previous generations of Gaussians is increased. As a result,

the fluidity of the existing generations gradually decreases

until it nearly solidifies. This approach ensures stable geom-

etry formation under stochastic losses, relying on the almost

unconstrained Gaussians from new densifications to carve

out details. Furthermore, this method of applying anchor

loss can effectively meet various editing needs. For instance,

to limit changes in the original GS, one can increase the

anchor loss weight for generation 0. Similarly, if there is no

desire to alter color or geometry during editing, a stronger

anchor loss can be applied to these specific properties.

Additionally, to address the challenge of manually deter-

mining a densification threshold, we regulate the densifica-

tion process based on a percentage criterion. In this method,

during each densification step, we selectively densify only

those Gaussians whose 3D position gradients are within

the top k%. This strategy proves to be more manageable

and intuitive than directly setting a threshold value in the

Hierarchical Gaussian Splatting (HGS) framework.

4.3. 3D Inpainting

Object Removal. Simply removing Gaussians identified by

a mask can lead to artifacts, especially at the interfaces where

the object intersects with other Gaussians. To address this,

we employ 2D inpainting techniques to provide guidance

for filling these areas. However, effective 2D inpainting

requires precise masks to offer better guidance. To generate

these masks, after deletion, we use the KNN algorithm to

identify Gaussians nearest to the ones removed, which are

likely at the interface. These are then projected onto various

views. We subsequently dilate the mask and fix any holes

to accurately represent the interface area, thus creating a

refined mask for the boundary zones. The whole object

removal procedure typically takes only two minutes.

Object Incorporation. We define this task as follows:

Within the 3D Gaussians θ, given a camera pose p and the

21481

“Make it snowy”

“Turn him into an old lady”

“Turn the bear into a grizzly bear”

Figure 6. Extensive Results of GaussianEditor. Our method is capable of various editing tasks, including face and scene editing. In face

and bear editing, we restrict the editing area to the face using Gaussian semantic tracing, ensuring that undesired areas remain unchanged.

The leftmost column demonstrates the original view, while the right three columns show the images after editing.

corresponding rendering I from this viewpoint, the user pro-

vides a 2D mask M on I indicating the area they wish to

inpaint. Additionally, a prompt y is provided to specify the

content of the inpainting. We then update θ to fulfill the

inpainting request.

Given I , M , and y, the process begins with generating a

2D inpainted image IMy, utilizing a 2D inpainting diffusion

model as per [34]. Subsequently, the foreground object

from IMy, created by [34], is segmented and input into the

image-to-3D method referenced in [25] to generate a coarse

3D mesh. This coarse mesh is then transformed into 3D

Gaussians θy , and refined with HGS detailed in Sec. 4.2.

For aligning the coordinate system of θy with θ, the depth

of IMy is first estimated using the technique from [38]. This

depth is then aligned with the depth map rendered by θ at

camera pose p, using the least squares method. With this

alignment, we can accurately determine the coordinates and

scale of the inpainted foreground object in the coordinate

system of θ. After transforming θy into the coordinate sys-

tem of θ, we simply concatenate them to produce the final

inpainted 3D Gaussians.

It is important to note that due to our efficient design, the

entire object incorporation procedure can be completed in

approximately 5 minutes.

5. Experiments

5.1. Implementation Details

We utilize the highly optimized renderer implementation

from [16] for Gaussian rendering and base our implemen-

tation on Threestudio [11]. All the original 3D Gaussians

used in this work are trained using the methods described in

[16]. Our experiments are conducted on a single RTX A6000

GPU. As detailed in Sec. 4.1, once we obtain segmentation

masks from the 2D segmentation method outlined in [18],

segmenting the 3D Gaussians takes only about 1 second.

For editing large scenes, the camera poses employed dur-

ing the editing process are selected from a subset of the

multi-view image dataset initially used for reconstruction.

Depending on the complexity of the scene, the number of

camera poses used in our experiments varies from 24 to 96.

The editing process, influenced by the specified prompt and

the complexity of the scene, typically involves optimizing

for 500-1000 steps, taking about 5-10 minutes in total.

Regarding 3D inpainting for object incorporation, as de-

tailed in Sec. 4.3, it takes approximately 3 minutes to gener-

ate a 3D mesh using the method from [25] and an additional

2 minutes to transfer this mesh into 3D Gaussians and refine

it, while the composition process of two Gaussians takes less

than 1 second.

21482

Original View GS HGS

Figure 7. Ablation study on Hierarchical Gaussian Splatting
(HGS). Prompt: make the grass on fire. Even when specifying

the editing area with prompts, generative methods like Instruct-

Pix2Pix [4] tend to edit the entire 2D image. Without HGS, Gaus-

sians tend to conform to this whole-image editing by spreading

and densifying across the entire scene, leading to uncontrollable

densification and blurring of the image. With HGS, however, this

kind of diffusion is effectively restrained.

5.2. Qualitative Comparisons

As illustrated in Fig. 5, GaussianEditor-iN2N surpasses

other methods in both the quality of edits and controllability.

Instruct-Nerf2Nerf, while producing edits with insufficient

detail, cannot also control the editing area. GaussianEditor-

DDS, due to the more challenging control of guidance of-

fered by DDS loss [14] compared to Instruct-pix2pix [4],

tends to result in oversaturated colors and less precise editing

outcomes.

Additionally, our method exhibits exceptional control

over the editing area. This is achieved through Gaussian

semantic tracing, which identifies the Gaussians that require

editing at each training step, for example, the entire hu-

man body in Fig. 5. It’s important to note that in Instruct-

Nerf2Nerf [12], the use of static 2D or 3D masks restricts the

spatial freedom of the edits, as the permissible area for the

edited subject is limited by these masks. Furthermore, the

effectiveness of static masks diminishes as the geometries

and appearances of 3D models evolve during training.

In Fig. 6, we demonstrate that GaussianEditor can accom-

modate a variety of scenarios, such as editing in large-scale

scenes and facial swaps. In the case of large scenes, we

did not apply Gaussian semantic tracing. However, for fa-

cial swaps, we traced the Gaussians corresponding to facial

regions, achieving controllable and realistic editing.

5.3. Quantitative Comparisons
As shown in Table 1, we conduct quantitative comparisons

on user study and CLIP directional similarity (as shown in In-

structPix2Pix [4] and StyleGAN-Nada [9]). GaussianEditor-

iN2N not only demonstrates superior outcomes in user stud-

ies but also excels in CLIP Directional Similarity. Besides,

Instruct-Nerf2Nerf [12] typically requires more than 30 min-

utes to complete the editing of a scene, whereas our method

iN2N [12] Ours (DDS) Ours (iN2N)

User study 15.45% 12.27% 72.28%
CLIP Directional Similarity 0.1600 0.1813 0.2071

Table 1. Quantitative Comparation. GaussianEditor-iN2N out-

performs in both user study evaluations and CLIP Directional Simi-

larity [9] metrics.

only takes between 5 to 10 minutes.

5.4. Ablation Study

As demonstrated in Fig. 7, we conducted ablation experi-

ments on Hierarchical Gaussian Splatting(HGS). Without

HGS, Gaussians tend to spread and densify across the scene,

leading to uncontrolled densification and image blurring.

This is typically caused by the tendency of methods like

Instruct-Pix2Pix to edit the entire 2D image when prompts

are used to define editing areas. However, HGS effectively

circumvents this issue by constraining the mobility of the

Gaussian in the old generation, ensuring that the overall

scene does not exhibit excessive mobility.

6. Conclusion
In our research, we introduce GaussianEditor , an innovative

3D editing algorithm based on Gaussian Splatting, designed

for enhanced control and efficiency. Our method employs

Gaussian semantic tracing for precise identification and tar-

geting of editing areas, followed by Hierarchical Gaussian

Splatting (HGS) to balance fluidity and stability in achieving

detailed results under stochastic guidance. Additionally, we

developed a specialized 3D inpainting algorithm for Gaus-

sian Splatting, streamlining object removal and integration,

and greatly reducing editing time.

Limitation. Similar to previous 3D editing works based

on 2D diffusion models, GaussianEditor relies on these mod-

els to provide effective supervision. However, current 2D

diffusion models struggle to offer effective guidance for cer-

tain complex prompts, leading to limitations in 3D editing.

7. Acknowledgements
This study is supported under the RIE2020 Industry Align-

ment Fund – Industry Collaboration Projects (IAF-ICP)

Funding Initiative, as well as cash and in-kind contribution

from the industry partner(s). This research is also supported

by the MoE AcRF Tier 2 grant (MOE-T2EP20220-0007).

References
[1] Chong Bao, Yinda Zhang, and Bangbang et al. Yang. Sine:

Semantic-driven image-based nerf editing with prior-guided

editing field. In CVPR 2023, pages 20919–20929, 2023. 3

[2] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.

21483

Mip-nerf: A multiscale representation for anti-aliasing neural

radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5855–5864, 2021. 2

[3] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded

anti-aliased neural radiance fields. CVPR, 2022. 3

[4] Tim Brooks, Aleksander Holynski, and Alexei A Efros. In-

structpix2pix: Learning to follow image editing instructions.

arXiv preprint arXiv:2211.09800, 2022. 8

[5] Yiwen Chen, Chi Zhang, Xiaofeng Yang, Zhongang Cai,

Gang Yu, Lei Yang, and Guosheng Lin. It3d: Improved text-

to-3d generation with explicit view synthesis. arXiv preprint
arXiv:2308.11473, 2023. 4

[6] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-

drea Tagliasacchi. Mobilenerf: Exploiting the polygon raster-

ization pipeline for efficient neural field rendering on mobile

architectures. arXiv preprint arXiv:2208.00277, 2022. 3

[7] Zilong Chen, Feng Wang, and Huaping Liu. Text-to-3d using

gaussian splatting. arXiv preprint arXiv:2309.16585, 2023.

2, 3, 5

[8] Xinhua Cheng, Tianyu Yang, Jianan Wang, Yu Li, Lei Zhang,

Jian Zhang, and Li Yuan. Progressive3d: Progressively local

editing for text-to-3d content creation with complex semantic

prompts. arXiv preprint arXiv:2310.11784, 2023. 4

[9] Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano,

Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-

guided domain adaptation of image generators. ACM Trans-
actions on Graphics (TOG), 41(4):1–13, 2022. 8

[10] William Gao, Noam Aigerman, Thibault Groueix, Vladimir G

Kim, and Rana Hanocka. Textdeformer: Geometry manipula-

tion using text guidance. arXiv preprint arXiv:2304.13348,

2023. 3

[11] Yuan-Chen Guo, Ying-Tian Liu, Chen Wang, Zi-Xin Zou,

Guan Luo, Chia-Hao Chen, Yan-Pei Cao, and Song-Hai

Zhang. threestudio: A unified framework for 3d content

generation. https://github.com/threestudio-
project/threestudio, 2023. 7

[12] Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander

Holynski, and Angjoo Kanazawa. Instruct-nerf2nerf: Editing

3d scenes with instructions. arXiv preprint arXiv:2303.12789,

2023. 2, 4, 6, 8

[13] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall,

Jonathan T. Barron, and Paul Debevec. Baking neural ra-

diance fields for real-time view synthesis. ICCV, 2021. 3

[14] Amir Hertz, Kfir Aberman, and Daniel Cohen-Or. Delta de-

noising score. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2328–2337, 2023. 6,

8

[15] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and

George Drettakis. 3d gaussian splatting for real-time radiance

field rendering. ACM Transactions on Graphics (ToG), 42(4):

1–14, 2023. 2, 3

[16] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and

George Drettakis. 3d gaussian splatting for real-time radiance

field rendering. ToG, 42(4):1–14, 2023. 7

[17] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and

George Drettakis. 3d gaussian splatting for real-time radiance

field rendering. ACM Transactions on Graphics, 42(4), 2023.

5

[18] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,

Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-

head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-

thing. arXiv preprint arXiv:2304.02643, 2023. 5, 7

[19] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann.

Decomposing nerf for editing via feature field distillation.

arXiv preprint arXiv:2205.15585, 2022. 3

[20] Yuan Li, Zhi-Hao Lin, David Forsyth, Jia-Bin Huang, and

Shenlong Wang. Climatenerf: Physically-based neural ren-

dering for extreme climate synthesis. arXiv e-prints, pages

arXiv–2211, 2022. 3

[21] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Tay-

lor, Mathias Unberath, Ming-Yu Liu, and Chen-Hsuan Lin.

Neuralangelo: High-fidelity neural surface reconstruction. In

CVPR, 2023. 3

[22] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,

Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler, Ming-

Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-

3d content creation. In CVPR, pages 300–309, 2023. 3

[23] Hao-Kang Liu, I Shen, Bing-Yu Chen, et al. Nerf-in:

Free-form nerf inpainting with rgb-d priors. arXiv preprint
arXiv:2206.04901, 2022. 3

[24] Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard Zhang,

Jun-Yan Zhu, and Bryan Russell. Editing conditional radiance

fields. In ICCV 2021, pages 5773–5783, 2021. 3

[25] Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu,

Zhiyang Dou, Lingjie Liu, Yuexin Ma, Song-Hai Zhang,

Marc Habermann, Christian Theobalt, et al. Wonder3d: Sin-

gle image to 3d using cross-domain diffusion. arXiv preprint
arXiv:2310.15008, 2023. 7

[26] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva

Ramanan. Dynamic 3d gaussians: Tracking by persistent

dynamic view synthesis. arXiv preprint arXiv:2308.09713,

2023. 3

[27] Aryan Mikaeili, Or Perel, Mehdi Safaee, Daniel Cohen-Or,

and Ali Mahdavi-Amiri. Sked: Sketch-guided text-based

3d editing. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14607–14619, 2023.

4

[28] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view synthe-

sis. In ECCV, 2020. 2, 3

[29] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-

olution hash encoding. ACM Trans. Graph., 41(4):102:1–

102:15, 2022. 3

[30] Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya

Harada. Neural articulated radiance field. In ICCV 2021,

pages 5762–5772, 2021. 3

[31] Jangho Park, Gihyun Kwon, and Jong Chul Ye. Ed-nerf:

Efficient text-guided editing of 3d scene using latent space

nerf. arXiv preprint arXiv:2310.02712, 2023. 2, 3, 4

[32] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T

Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-

21484

Brualla, and Steven M Seitz. Hypernerf: A higher-

dimensional representation for topologically varying neural

radiance fields. arXiv preprint arXiv:2106.13228, 2021. 2

[33] Sida Peng, Yuanqing Zhang, Yinghao Xu, and et al. Neural

body: Implicit neural representations with structured latent

codes for novel view synthesis of dynamic humans. In CVPR
2021, pages 9054–9063, 2021. 3

[34] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann,

Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach.

Sdxl: Improving latent diffusion models for high-resolution

image synthesis. arXiv preprint arXiv:2307.01952, 2023. 7

[35] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall.

Dreamfusion: Text-to-3d using 2d diffusion. arXiv preprint
arXiv:2209.14988, 2022. 3

[36] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall.

Dreamfusion: Text-to-3d using 2d diffusion. In The Eleventh
International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

2, 4

[37] Amit Raj, Srinivas Kaza, Ben Poole, Michael Niemeyer,

Nataniel Ruiz, Ben Mildenhall, Shiran Zada, Kfir Aber-

man, Michael Rubinstein, Jonathan Barron, et al. Dream-

booth3d: Subject-driven text-to-3d generation. arXiv preprint
arXiv:2303.13508, 2023. 4

[38] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-

sion transformers for dense prediction. In Proceedings of
the IEEE/CVF international conference on computer vision,

pages 12179–12188, 2021. 7

[39] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image

synthesis with latent diffusion models. In CVPR, pages 10684–

10695, 2022. 4

[40] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong

Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:

Radiance fields without neural networks. In CVPR, 2022. 3

[41] Johannes L Schonberger and Jan-Michael Frahm. Structure-

from-motion revisited. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 4104–

4113, 2016. 5

[42] Etai Sella, Gal Fiebelman, Peter Hedman, and Hadar

Averbuch-Elor. Vox-e: Text-guided voxel editing of 3d ob-

jects. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 430–440, 2023. 4

[43] Ruizhi Shao, Jingxiang Sun, Cheng Peng, Zerong Zheng,

Boyao Zhou, Hongwen Zhang, and Yebin Liu. Control4d:

Dynamic portrait editing by learning 4d gan from 2d diffusion-

based editor. arXiv preprint arXiv:2305.20082, 2023. 4

[44] Chaoyue Song, Tianyi Chen, Yiwen Chen, Jiacheng Wei,

Chuan Sheng Foo, Fayao Liu, and Guosheng Lin. Moda:

Modeling deformable 3d objects from casual videos. arXiv
preprint arXiv:2304.08279, 2023. 3

[45] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang

Zeng. Dreamgaussian: Generative gaussian splatting for effi-

cient 3d content creation. arXiv preprint arXiv:2309.16653,

2023. 2, 3, 5

[46] Can Wang, Menglei Chai, Mingming He, Dongdong Chen,

and Jing Liao. Clip-nerf: Text-and-image driven manipulation

of neural radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 3835–3844, 2022. 2, 3

[47] Can Wang, Ruixiang Jiang, Menglei Chai, Mingming He,

Dongdong Chen, and Jing Liao. Nerf-art: Text-driven neural

radiance fields stylization. IEEE Transactions on Visualiza-
tion and Computer Graphics, 2023. 2, 3

[48] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng

Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.

4d gaussian splatting for real-time dynamic scene rendering.

arXiv preprint arXiv:2310.08528, 2023. 3

[49] Tianhan Xu and Tatsuya Harada. Deforming radiance fields

with cages. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceed-
ings, Part XXXIII, pages 159–175. Springer, 2022. 3

[50] Bangbang Yang, Chong Bao, and Junyi et al. Zeng. Neumesh:

Learning disentangled neural mesh-based implicit field for

geometry and texture editing. In ECCV 2022, pages 597–614.

Springer, 2022. 3

[51] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing

Zhang, and Xiaogang Jin. Deformable 3d gaussians for

high-fidelity monocular dynamic scene reconstruction. arXiv
preprint arXiv:2309.13101, 2023. 3

[52] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li

Zhang. Real-time photorealistic dynamic scene representation

and rendering with 4d gaussian splatting. arXiv preprint
arXiv:2310.10642, 2023. 3

[53] Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xiaopeng

Zhang, Wenyu Liu, Qi Tian, and Xinggang Wang. Gaussian-

dreamer: Fast generation from text to 3d gaussian splatting

with point cloud priors. arXiv preprint arXiv:2310.08529,

2023. 2, 3, 5

[54] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and

Olga Sorkine-Hornung. Differentiable surface splatting for

point-based geometry processing. ACM Transactions on
Graphics (TOG), 38(6):1–14, 2019. 3

[55] Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, and et al. Nerf-

editing: geometry editing of neural radiance fields. In CVPR
2022, pages 18353–18364, 2022. 3

[56] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen

Koltun. Nerf++: Analyzing and improving neural radiance

fields. arXiv preprint arXiv:2010.07492, 2020. 2

[57] Jingyu Zhuang, Chen Wang, Lingjie Liu, Liang Lin, and

Guanbin Li. Dreameditor: Text-driven 3d scene editing with

neural fields. arXiv preprint arXiv:2306.13455, 2023. 2, 3, 4

[58] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and

Markus Gross. Surface splatting. In Proceedings of the 28th
annual conference on Computer graphics and interactive
techniques, pages 371–378, 2001. 3

21485

