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Abstract

In this paper, we explore a novel challenging genera-
tion task, i.e. Handwritten Mathematical Expression Gen-
eration (HMEG) from symbolic sequences. Since symbolic
sequences are naturally graph-structured data, we formu-
late HMEG as a graph-to-image (G2I) generation problem.
Unlike the generation of natural images, HMEG requires
critic layout clarity for synthesizing correct and recogniz-
able formulas, but has no real masks available to super-
vise the learning process. To alleviate this challenge, we
propose a novel end-to-end G2I generation pipeline (i.e.
graph → layout → mask → image), which requires no
real masks or nondifferentiable alignment between layouts
and masks. Technically, to boost the capacity of predicting
detailed relations among adjacent symbols, we propose a
Less-is-More (LiM) learning strategy. In addition, we de-
sign a differentiable layout refinement module, which maps
bounding boxes to pixel-level soft masks, so as to further al-
leviate ambiguous layout areas. Our whole model, includ-
ing layout prediction, mask refinement, and image genera-
tion, can be jointly optimized in an end-to-end manner. Ex-
perimental results show that, our model can generate high-
quality HME images, and outperforms previous generative
methods. Besides, a series of ablations study demonstrate
effectiveness of the proposed techniques. Finally, we vali-
date that our generated images promisingly boosts the per-
formance of HME recognition models, through data aug-
mentation. Our code and results are available at: https:
//github.com/AiArt-HDU/HMEG.

1. Introduction
Handwritten Mathematical Expressions (HMEs) are com-
mon and play significant roles in our daily life, especially in
the research and education areas. HMEs generally present
complex structures, serious deformations, and diverse writ-
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Figure 1. Differences between (a) typical two-stage graph-to-
image generation pipeline and (b) our end-to-end pipeline. In
previous methods, the real masks are available as the input. In
contrast, we propose a novel end-to-end pipeline of graph →
layout → mask → image, and requires no real masks or non-
differentiable alignment between layouts and masks.

ing styles. Such characteristics, along with data scarcity,
make HME Recognition (HMER) a grand challenge in the
OCR community. Despite the tremendous efforts that have
been made to this task, the HMER performance is still un-
satisfactory [14, 27, 62].

Recently, synthetic data augmentation has shown inspir-
ing performance in various recognition tasks [23, 51]. This
is mainly achieved by the remarkable progress of condi-
tional image generation [21] in the past few years [58]. The
advances allow for creating realistic images through texts
[39, 57, 66], scene graphs [24, 60], layouts [28, 69], seman-
tic masks [37, 72], sketches [61, 67], and more [12, 65].
However, there has been no effective generative model for
generating high-quality HME images.

Some previous works synthesize HMEs by recompos-
ing real online HMEs [46, 59]. Besides, FormulaGAN
[41] generates HMEs from rendered images, via an Image-
to-Image (I2I) Translation model. However, their gener-
ated images are limited in either diversity or realism. Be-
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sides, Mathematical Expressions (MEs) are highly struc-
tured data. Given an HME, its meaning and handwritten
style, depend not only on the category and shape of each
symbol, but also on the positional relations between sym-
bols. It’s unlikely to design an elaborate I2I translation
model that can handle all these issues.

To combat this challenge, in this paper, we explore a
new generation task, i.e. Handwritten Mathematical Ex-
pression Generation (HMEG) from symbol graphs of sym-
bolilc sequences. It’s natural and easy to use a graph, spec-
ifying symbols and positional relations between symbols,
to represent an ME [63]. Besides, previous works have
demonstrated the significance of fully mining the struc-
tural information in boosting generalization [52]. By con-
verting symbolic sequences to symbol graphs, we propose
a novel HMEG method, inspired by the classic graph-to-
image (G2I) generation work, Sg2im [24]. Similar to ex-
isting G2I generation works, our method consists of three
stages: graph-to-layout prediction, layout-to-mask transfor-
mation, and mask-to-image generation.

Compared to the generation of natural images, the key
challenge of HMEG is to generate unambiguous structural
layouts, for accurately presenting meanings of formulas.
From one hand, the requirement of layout clarity is much
critical for generating formulas. Not only the size of each
symbol, but also the positional relations between symbols,
should be precisely predicted. Otherwise, mathematical
meanings might change or become unrecognisable. For ex-
ample, an input formula x2 might become x2 or x2 in a
generated image. From the other hand, MEs have infinite
possible layouts and structures. Namely, a formula could
comprise of arbitrary number of symbols and arbitrary rela-
tions between symbols. It’s impossible to collect completed
training data for learning the layout predictor.

To alleviate these difficulties, we first propose a Less-is-
More (LiM) training strategy for learning an effective lay-
out predictor. Specially, our layout predictor follows the
structure of Graph Convolutional Networks (GCNs) [30].
During training, we only use minimal graphs with 1-degree
connections, in stead of whole graphs with complex struc-
tures, to optimize the layout predictor. Note that the learned
predictor can be applied to arbitrary symbol graphs, in the
testing stage. By using LiM, the predictor emphasizes on
local structures between adjacent symbols. Besides, the
learning process is eased. Namely, we could learn an ef-
fective layout predictor by using moderate amount of train-
ing samples. Such benefits will be verified in the ablation
study part. Besides, we add a layout discriminator to further
boosts the realism of predicted layouts.

In addition, we propose a Sequential BBox-to-Mask
Transformation (B2M) module, for refining layouts under
weak supervision. In the original layout, bounding boxes of
symbols tend to overlap with each other. Such overlapped

areas may lead to overlapping symbols or chaotic strokes,
in generated images. It’s critical to refine coarse layouts to
pixel-level soft masks, to alleviate the overlapping problems
[22]. Most previous G2I generation works require real seg-
mentation masks for learning refined layout masks [13, 22].
However, it’s difficult to define the mask of a symbol, be-
cause white pixels around strokes are essential for repre-
senting a symbol. We have to refine the layout under weak
supervision. To this end, we propose to learn a sequential
mapping of layout → grid → mask, and use an subse-
quent image decoder to generate an HME image. During
training, we use the image-related losses to train both B2M
and the image decoder jointly.

In summery, we propose a novel end-to-end pipeline of
graph → layout → mask → image for G2I generation
tasks. Our model requires no supervision of real masks,
or interactive alignment operations between layouts and
masks. The major differences between our method and pre-
vious typical G2I generation works, are illustrated in Fig. 1.
To verify the effectiveness of the proposed techniques, we
conduct experiments on CROHME2014/2016/2019 [34].
Results show that, our model can generate high-quality
HME images with clear layouts and recognisable symbols.
Besides, our model significantly outperforms a number of
existing generative methods, both qualitatively and quan-
titatively. A series of ablation study demonstrate the effec-
tiveness of the proposed techniques, including the LiM, lay-
out discriminator, and B2M. Finally, our generated HME
images prove to boost the HMER performance by 5-11%
absolutely, through synthetic data augmentation.

2. Related Works
HME Recognition (HMER). Most advanced methods
treat HMER as an image-to-markup problem [53]. They
typically use Convolutional Neural Networks (CNNs) or
Recurrent Neural Networks (RNNs) [18] to encode input
images; and use attention-based models, such as Gated Re-
current Units (GRU) [5, 14, 68], or Transformers [2, 47,
70], to generate LaTeX sequences. Besides, some meth-
ods have been proposed [41, 46, 59]. Some recent works
propose to use additional information, e.g. symbol-level
counting [27], or relation-level counting [14], or emphasis
on visually similar symbols [33], or synthetic data augmen-
tation, to boost the HMER performance. Another branch of
HMER are graph-based methods. These methods typically
transform LaTeX sequences to Symbol Label Trees (SLTs)
[63], and use tree-structured decoders to obtain the outputs
[14, 52, 54]. These works validate the capacity of graphs in
representing the structural information of formulas. In this
paper, we therefore convert symbolic sequences to graphs,
and use a GCN to encode them for generating HME images.

Graph-to-Image Generation. Image generation from
scene graphs is first proposed in Sg2im [24]. The pipeline
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Figure 2. Overview of our handwritten mathematical expression generator (HMEG).

of Sg2im includes two stages: graph-to-layout mapping and
layout-to-image generation. Various subsequent methods
have been proposed to boost the quality of generated im-
ages, following the same pipeline [9, 13, 16, 40]. Besides,
some semi-parametric methods use crops from real images
to boost the quality of generated images [31]. There are also
some extensions to image manipulation [9, 42].

Most of these methods use a image discriminator and
a object discriminator during training. Besides, they use
real layouts, segmentation masks, and images, to supervise
the learning process [13, 22]. COLoR [22] additionally
uses a mask discriminator to boost the precision of gener-
ated masks. Recently, KCGM [55] uses knowledge consen-
sus to alleviate the dependency on real layouts or masks.
Besides, several diffusion model based methods [12, 60]
can generate high-quality images directly from input scene
graphs. However, diffusion based methods still suffer the
high cost during both training and inference. Besides, gen-
erating recognisable texts is still challenging for most diffu-
sion models.

Layout-to-Image Generation. Most layout-to-image
generation methods separately predict the mask of each
object based on object embeddings, and require frequent
resizing interaction between bounding boxes and masks
[43, 44, 69]. To improve the quality of generated masks,
several methods use masks discriminator [1, 28], and re-
quires real masks during training. Besides, OC-GAN [45]
uses both global and local similarities between scene graphs
and images are used to improve the realism of generated
layouts. Similar to our method, LAMA [32] tries to al-
leviate the overlapping between objects. However, in all
these methods, the real bounding boxes are available as the
input. They at most implement the end-to-end comput-
ing of layout → mask → image. In contrast, we pro-
pose a novel end-to-end computing of graph → layout →
mask → image, and requires no interactive alignment op-
erations between layouts and masks.

Handwritten Font Generation. Another related task
is Handwritten Font Generation (HFG), which aims at

transferring images of fonts to the target handwritten style
[48, 50]. Most methods follow the I2I translation pipeline,
and adopt encoder-decoder architectures [6]. Besides, great
efforts have been made to solve the few-shot learning chal-
lenge [48, 64]. These methods focus on the style of strokes.
In contrast, our work aims to generate rational layouts of
multiple symbols, with complex relations, at the same time.
It’s interesting to explore generating HME images in per-
sonal styles in the future.

3. Method

3.1. Overview

Our goal is to generate HME images conditioned on La-
TeX sequences. To this end, we represent LaTeX sequences
by symbol graphs [63] and design a novel G2I generation
method to synthesize HME images. Our full model fol-
lows the idea of Generative Adversarial Networks (GANs)
[21, 24]. It includes a generator, and several discriminators
in the training stage. Fig. 2 shows the pipeline of our gener-
ator. It mainly include four parts: (i) First, the input LaTeX
sequence is converted to a symbol graph, and embedded
into high-dimensional feature vectors. (ii) A GCN based
layout predictor estimates the coarse layout, i.e. bound-
ing box (BBox) of each symbol. (iii) A sequential layout
refinement module, including BBox-to-Grid mapping and
Grid-to-Mask projection, generate a pixel-level soft mask
for each symbol. (iv) The image decoder, a Cascaded Re-
finement Network (CRN) [4], generates an image condi-
tioned on the predicted mask.

3.2. Symbol Graph Construction

Given a set of mathematical symbol categories C and a
set of relation categories R, a symbol graph (S,E) can
be constructed based on C and R: each node i in S =
{s1, · · · , sn} is a mathematical symbol, with si ∈ C; and
each directed edge (i, j) in E = {eij} represents the posi-
tional relation of node j w.r.t. node i, with eij = (si, r, sj)
and r ∈ R. n is the number of symbols in a mathematical
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Figure 3. Architecture of our layout predictor and the Graph Em-
bedding Model (GEM) [30].

expression. Let m denote the number of edges in E. For
example, given an expression x2, it can be represented by a
tuple (x, sup, 2), where sup is short for superscript. Be-
sides, we add an additional edge type None to indicate that
the corresponding pair of symbols are unrelated.

Afterwards, we map the nodes and edges (S,E) to high-
dimensional feature vectors {V,U} by using a learnable
embedding layer, respectively [30]. The learned embedding
feature vectors are denoted by:

V = {vi,∀i ∈ S},U = {uij ,∀(i, j) ∈ E}, (1)

where vi,uij ∈ Rd associate with si, eij , respectively; d is
the dimension of embedding vectors.

3.3. Adversarial Layout Prediction

Inspired by GAN [21], we train our layout prediction mod-
ule in an adversarial learning manner. Specially, we use
an layout predictor Gbox to generate a layout in the format
of bounding boxes, conditioned on a given symbol graph;
and use an additional layout discriminator Dbox to judge
whether a layout is real or fake. Using the adversarial learn-
ing strategy like GAN, the layout predictor would finally
predict high-quality bounding boxes.

Layout Predictor. We first use the Graph Embedding
Model (GEM) [30] to update features of nodes and edges,
and then use a MLP to predict the BBox indices of each
symbol. First, original embedding features are encoded by:
h
(0)
i = fnode(vi),∀i ∈ S and ei,j = fedge(uij),∀(i, j) ∈

E. Afterward, node features are updated through a stack
of propagation layers, by accumulating information in lo-
cal neighborhood. Features of node i at the t-th layer are
updated by:

mj→i = fmessage(h
(t)
i ,h

(t)
j , eij),∀(i, j) ∈ E,

h
(t+1)
i = fnode(h

(t)
i ,
∑
j

mj→i).
(2)

After T rounds of propagations, the model produces an ag-
gregated graph level representation by:

hG = fG

(∑
i

σ(fgate(h
(T )
i ))⊙ fupdate(h

(T )
i )

)
, (3)

where σ denotes the Sigmoid operation. Finally, we inte-
grate the updated embedding features and the graph level
features for predicting the BBox indices of each symbol.
Besides, we concatenate a Gaussian noise vector zi ∈
Rk,∀i ∈ S to these features, to improve the diversity in
predicted layouts. The BBox prediction is formulated by:

b̂i = fbbox(h
(T )
i ,hG, zi),∀i ∈ S. (4)

Each of the mapping functions f∗ above is an MLP on
the inputs [29, 30]. For each symbol, we obtain a 4-
dimensional rectangular box [x0, y0, x1, y1] in the [0, 1] co-
ordinate space, denoting the coordinates of the upper left
and lower right corners of the BBox border.

Layout Discriminator. The layout discriminator Dbox

is also composed of GEM [30], followed by an MLP to pre-
dict whether an input layout as real or fake. Dbox takes con-
catenations of the symbol embedding matrix V ∈ Rn×d

and the layout indices B ∈ Rn×4 as input. In the imple-
mentation, we use the least square version of adversarial
loss, i.e.

Lbox
adv = ||Dbox(V, B)||22 + ||1−Dbox(V, B̂)||22. (5)

Besides, we use the L2 distance between the predicted
BBox indices B̂ and the target (real) indices B as the lay-
out reconstruction loss, i.e. Lbox = ||B − B̂||1. We use
a weighted sum of Lbox and Lbox

adv as the objective of Gbox.
During training, Gbox and Dbox are alternatively optimized.

Less-is-More Learning (LiM) Strategy. A mathemat-
ical expression could includes arbitrary number of symbols
or relations between symbols. In other words, there are
infinite possible structures of symbol graphs. It’s difficult
to collect a complete training set. Besides, using compli-
cated graphs during training may add the difficulty in learn-
ing an effective model. We therefore propose a Less-is-
More (LiM) learning strategy [3]. Specially, we propose to
use symbol graphs with merely 1-degree connections dur-
ing training. In this way, the layout predictor is expected
to emphasize on local structures, i.e. generating rational
layout for locally connected symbols. While in the testing
stage, the learned model can be applied to arbitrary symbol
graphs, with arbitrary degrees of connections, and predict
the corresponding layout.

3.4. Sequential BBox-to-Mask Transformation

We next predict the pixel-level soft mask of an expression
based on the predicted bounding boxes. This procedure is
illustrated in Fig. 4, and consists of the following two steps:

(1) BBox-to-Grid Mapping. We first transform the BBox
indices to layout grids, as illustrated in Fig. 4. To this end,
we subscribe each index value from the coordinate matrices
X and Y in the [0, 1] coordinate space. For each symbol,
we obtain a 4× w × w tensor of grid.
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Figure 4. Illustration of the sequential BBox-to-Mask transforma-
tion (B2M) module.

(2) Grid-to-Mask Projection. Afterwards, we use a FCN
with a Sigmoid output layer (denoted by ϕmask) to estimate
a one-channel mask for each symbol, i.e.

Mi = ϕmask(X−xi,0,X−xi,1,Y− yi,0,Y− yi,1). (6)

Each value in Mi indicates the probability of a pixel be-
longing to symbol si. Specially, we first use two Convolu-
tional layers to predict a low-resolution mask of dimension
w × w, and then use two upsampling Convolutional layers
to sequentially upsampling the mask by a factor of 2. These
masks are used in the image decoder for generating an im-
age of the same size, respectively.

Note: Previous G2I generation works [9] also consists of
BBox-to-Grid mapping, but they merely use the grids to se-
lect patches of objects. Besides, they predict the mask from
the BBox indices B̂ or original embedding features (V,U).
Differently, we use the transformed grids for layout mask
prediction. Moreover, since the whole BBox-to-Mask pre-
diction module is differentiable, our whole model enables
training in an end-to-end manner.

3.5. Image Generation

Image Decoder. In the implementation, we adopt CRN
[4] as the image decoder. The input is a multiplication of
the whole layout mask M ∈ Rn×w×w with the embedding
vectors V ∈ Rn×d. Besides, we add Gaussian noise to the
feature maps to improve the diversity in image generation.
CRN includes three upsampling Convolutional layers, and
outputs a formula image with resolutions of w × w. Recall
that we actually predicts three masks at different scales. In
the implementation, we have three generated images, at the
resolution of 64 × 64, 128 × 128, and 256 × 256, respec-
tively. All these images are used to calculate the losses for
optimizing our model.

Image and Symbol Discriminators Finally, we use
an image discriminator Dimg and a symbol discriminator
Dsym during training, to boost the realism of the generated
whole image Î and patches of symbols, respectively. We
use the grids to select patches of symbols, and input them
into Dsym. Both discriminators are fully CNNs with the
cross-entropy (CE) version of adversarial loss. In addition,

following AC-GAN [36], we have the symbol discrimina-
tor additionally predict category labels of symbols. In this
way, the generated symbols would be more recognizable
and real.

Loss Functions. Similar to previous G2I generation
works [24], we use a series of loss functions to optimize the
image generation. The losses are briefly introduced below.
• Pixel loss Lpix: First, we use the L1 distance between a

generated image and the target formula image and as the
pixel loss: Lpix = ||I − Î||1.

• Image adversarial loss Limg
adv : Second, we use the global

image discriminant loss from Dimg , to encourage the
generated HME images in the real handwritten style.

• Symbol adversarial loss Lsym
adv : Third, we use the symbol

discriminative loss from Dsym, to improve the fidelity of
generated symbols.

• Auxiliary Symbol Recognition Loss Lsym
aux : Finally, we use

the auxiliary symbol recognition loss from Dsym, to en-
force the generator producing recognizable symbols.
We use a combination of these loss functions above, to

train the B2M module and the image generation modules
together. The total loss is formulated by:

Limg = λ1Lpix + λ2Limg
adv + λ3Lsym

adv + λ4Lsym
aux , (7)

where λi, i = 1, ..., 4 are weighting factors and are set as 1,
0.01, 0.01, 0.001, respectively.

4. Experiments
4.1. Experimental Settings

Data. We use CROHME2014/2016/2019 [34] to vali-
date our HMEG method in terms of both generalization and
recognition. The dataset collects pen trajectories, and la-
bels them with symbols and symbol categories. The dataset
contains 126 different symbol categories, and 8 positional
relations, i.e. start, left superscript, superscript, subscript,
below, above, right and end. By restoring the pen trajectory
information, we can easily obtain the HME image and the
BBox of each symbol. We use the standard partition of each
dataset through all the experiments.

Implementation Details. In the implementation, due
to the limitation of our computing resources, we train our
model in two stages: we first train the layout prediction part
in the first stage, and then train the rest parts by fixing it. In
the first stage, we train the model with a batch size 64 and
a learning rate 5e5, for 40,000 iterations. In each iteration,
we random sample a batch of 1-degree sub-graphs from the
training set for learning the layout predictor. In the second
stage, we use a batch size 8, a learning rate 1e4, and train
for 600,000 iterations. Our codes are implemented by using
Pytorch and a NVIDIA TITAN XP GPU. We use Adam [26]
as the optimizer for all networks.
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Figure 5. Handwritten mathematical expressions generated by CycleGAN [71], FormulaGAN [41], Sg2im [24], and our method.

Criteria. We choose two image quality assessment in-
dices as the criteria. The former includes the Fréchet Incep-
tion distance (FID) [17] and Structural Similarity Measure
(SSIM) [49]. Lower values of FID indicate better realism of
synthesised images; while greater values of SSIM generally
indicate higher similarity between a synthesized image and
the corresponding real image. We here report the average
SSIM value of all the test samples. In addition, we use two
HMER indices, including the Word Error Rate (WER) and
the Expression Recognition Rate (ExpRate). Here we use
an open-source HMER method [19], to recognize HME im-
ages and compute the corresponding indices. Lower WER
and higher ExpRate values indicate better performance.

4.2. Comparison with SOTAs

We first compare with the existing GAN based HMEG
method, FormulaGAN [41], our baseline, Sg2im [24], and
the widely used unsupervised I2I translation method, Cy-
cleGAN [71], on CHROME2019. We train and test these
methods following the same experimental settings as ours.

Qualitative Comparison. Fig. 5 shows HME images
generated by different models. CycleGAN fails to trans-
form input formulas to the handwritten style. FormulaGAN
produces handwritten-style images, but with blurring and
unnatural strokes. In contrast, both Sg2im and our method
generate high quality images, with realistic styles and clear
strokes. In addition, the images generated by our method
present better layouts than those by Sg2im. Sg2im some-
times produce very small symbols, e.g. y0 in the first col-

Table 1. Comparison with existing methods on CHROME2019.

SSIM ↑ FID ↓ WER ↓ ExpRate ↑

CycleGAN [71] 0.757 84.14 0.671 0.026
FormulaGAN [41] 0.724 74.68 0.601 0.066
Sg2im [24] 0.787 10.02 0.393 0.219
Ours 0.793 10.98 0.326 0.316

umn and p in the second column. Besides, Sg2im may pro-
duce overlapped symbols, e.g. 1

2 (
1
a+

1
b ) in the third column.

Finally, Sg2im produces more unrecognisable symbols than
ours, e.g. Sin and π in last column. In contrast, the sym-
bols generated by our method present reasonable sizes and
clear structures. Besides, symbols are reasonably placed
in relation to each other, neither overlapping nor far apart.
This is similar to real formulas written by humans. Such
observations demonstrate the superiority of our method in
generating both high-quality layouts and HME images.

Quantitative Comparison. Table 1 shows the quan-
titative performance indices. Both Sg2im and our method
achieves significant better indices than CycleGAN or For-
mulaGAN. This is consistent with the qualitative compar-
ison results. According to SSIM and FID, Sg2im and our
method almost perform equality in term of image quality.
However, our method decreases the WER by 6.5 percent
and improves the ExpRate by 10 percent, absolutely. Such
distinct superiority in recognition implies that, the hand-
written expressions generated by our method are signifi-
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Figure 7. Comparison with diffusion models. DiffSketcher and
DiffAE generate HMEs conditioned on print formulas; while Con-
troleNet and SD+LoRA take both the print formula and a tex-
tual prompt (“a handwritten mathematical expression of latex
code”) as input. We use official diffusion models, and fine-tune
DiffAE and SD+LoRA using HMEs.

cantly better than Sg2im, in terms of clarity and structure.
Comparison with Diffusion Models. We additionally

compare with ControlNet [67], Stable Diffusion (SD) [39]
+ LoRA [20], DiffSketcher [56], and DiffAE [38]. As
shown in Fig. 7, these diffusion models cannot generate
high-quality HMEs with realistic handwritten styles or rec-
ognizable symbols. Besides, their computational complex-
ity is much heavier than ours. Some recent methods, e.g.
ChiroDiff [8] and SDT [7], can only generate handwritten
images of one single character. Such comparison results
demonstrate the advantage of our method in HMEG.

4.3. Ablation Study

We further analyse the impact of (i) the LiM training strat-
egy, (ii) the layout discriminator (Dbox), and (iii) the B2M
module. To this end, we build model variants by:
• Using original training graphs, instead of sampled mini-

mal graphs, to train the layout predictor (w/o LiM);
• Removing B2M from our full model, but using grids for

embedding selection (w/o B2M);
• Removing both LiM and B2M from our full model (w/o

LiM/B2M);

Table 2. Performance indices w.r.t. the ablation study on
CHROME19. The model variant in the last row is our baseline.

SSIM ↑ FID↓ WER↓ ExpRate ↑ mIOU ↑

Ours (full) 0.793 10.98 0.326 0.316 0.364
w/o LiM 0.790 11.55 0.327 0.315 0.335
w/o B2M 0.790 11.46 0.332 0.308 0.354
w/o LiM/B2M 0.786 13.30 0.365 0.279 0.338
Sg2im (base) 0.787 10.08 0.393 0.219 0.324

• Training the whole model following Sg2im, without us-
ing LiM, Dbox, and B2M (Sg2im (base)).

We additionally report the mean Intersection over Union
(mIoU) between the predicted layouts and the target ones.

As shown in Table 2, removing LiM or B2M slightly
changes the indices about image quality, decreases the IoU.
Specially, removing LiM decreases the mIoU by about 3
percent absolutely. This implies the significance of LiM
in generating good layouts. In addition, if we removing
Dbox or B2M, along with LiM, the performance seriously
decreases, almost in terms of all performance indices. This
implies that our Dbox and B2M are significant for boost-
ing the quality of generated images from all aspects, includ-
ing the fidelity (SSIM), the usability for recognition (WER
& ExpRate), and the layout (mIoU). Fig. 6 illustrates the
layouts and images generated by different model variants.
All the model variants, except the full model, produce over-
lapped symbols or symbols in unnatural sizes. The image
generated by our model presents no obvious defects and are
easy to recognize. Such observations further demonstrate
the significance of LiM, B2M, and layout discriminator in
layout prediction and image generation.

4.4. Applications

Mathematical Expression Manipulation. In addition,
we apply the previous learned model to expression manipu-
lation using symbol graphs. Given a source symbol graph,
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Figure 8. Illustration of expression manipulation using symbol
graphs (LaTeX sequences).

we edit it by adding, deleting, or changing symbol nodes
in it, and apply the previously learned generator to produce
the corresponding HME image. As shown in Fig. 8, the
generated image changes consistently with the editing op-
eration. Besides, the manipulated images present natural
layouts, recognizable symbols, and clear strokes.

Data Augmentation for HMER. Finally, we validate
the possible application of HMEG in augmenting HMER
models, since the generated data could improve the amount
and diversity of training data. To this end, we conduct ex-
periments on CROHME2014/2016/2019 [34], and use CAN
[27] as the HMER model. Here, we train CAN with (1) the
standard training data (denoted by CAN); or (2) with previ-
ous data augmentation, e.g. rotation, (denoted by CAN∗);
or (3) with our sythetic data augmentation, using 6,000 ad-
ditional generated samples (denoted by CAN†); or (4) both
previous and our data augmentation (denoted by CAN∗†).
The model is trained for 120 epochs under each setting, us-
ing the official training parameters. Afterward, we apply
the learned HMER model to both generated and real data.

As shown in Table 3, our method achieves 5-11% abso-
lute improvement over the baseline, and performs compa-
rably to previous data augmentation, across all the datasets.
Besides, our method can be jointly used with previous aug-
mentation to further boost the performance (i.e. CAN∗†).
We additionally report the HMER performance, as well as
the SSIM and StruRate, of our generated samples. The
SSIM and StruRate values are high, and the ExpRate val-
ues (by CAN∗/CAN†) approach those of real data, on all
datasets. These results demonstrate the robustness of our
method, in generating high-quality HMEs, with correct lay-
outs and recognizable symbols.

Note: Previous HME synthesis methods [10, 25] syn-
thesize HMEs by shuffling the symbols and layouts con-
tained in original HME datasets. Neither of them is a gen-
erative method. And they may cause overfitting to existing
datasets. In contrast, our pipeline allows excellent flexibil-

Table 3. Results on CROHME14/16/19 testing sets and our gener-
ated images. ∗, †, ∗† denote using previous data augmentation, our
synthetic data augmentation, and both, respectively.

HMEG (generated) HMER (real)
SSIM CAN∗ CAN† StruRate CAN CAN∗ CAN† CAN∗†

CROHME14 0.789 52.1 54.1 98.1 44.7 52.9 50.2 55.4
CROHME16 0.798 51.4 55.8 96.5 42.8 52.4 53.9 57.6
CROHME19 0.793 55.4 56.4 97.7 39.3 48.4 49.6 58.5

ity in generating diverse new samples. The experimental
results also demonstrate the advantages of our approach in
both HMEG and HMER.

5. Conclusions

In this paper, we propose a novel method to solve the chal-
lenging task of generating HMEs from LaTeX sequences.
We formulate it as a graph-to-image generation task, and
focus on boosting the layout prediction without mask super-
vision. Experimental results demonstrate the effectiveness
of our method, and its possible applications in expression
manipulation and the challenging inverse task, i.e. HMER.
Inspired by the remarkable process of generative augmenta-
tion in visual understanding [35], we believe that: the novel
HMEG task we explore here has great potential to signifi-
cantly boost HMER.

Due to computational limitations, we merely use naive
networks in the implementation. The generated symbols are
occasionally unrecognizable, especially in complex formu-
las. It’s promising to boost the generation quality by using
advanced networks (e.g. VQ-GAN [11] or diffusion mod-
els [15]). Besides, we will extend the proposed techniques
to natural/artistic image generation by exploring the inspir-
ing capacity of diffusion models, and other tasks of struc-
tured graph data. Finally, to further boost the HMER perfor-
mance, it’s promising to use the triples of {LaTeX, predicted
layout, generated image} in HMEG as pseudo labeled data,
or to use the layout discriminator for enhancing the layout
detection module in an HMER pipeline.
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