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Figure 1. Generated samples from our image neural field diffusion models. We show photorealistic high-resolution image generation
by rendering generated image neural fields at 2K resolution for single domain models (left and middle), as well as general text-to-image
models (right), with an efficient diffusion process on latent representation at only 64 × 64 resolution.

Abstract
Diffusion models have shown an impressive ability to

model complex data distributions, with several key advan-
tages over GANs, such as stable training, better coverage
of the training distribution’s modes, and the ability to solve
inverse problems without extra training. However, most dif-
fusion models learn the distribution of fixed-resolution im-
ages. We propose to learn the distribution of continuous
images by training diffusion models on image neural fields,
which can be rendered at any resolution, and show its ad-
vantages over fixed-resolution models. To achieve this, a
key challenge is to obtain a latent space that represents pho-
torealistic image neural fields. We propose a simple and
effective method, inspired by several recent techniques but
with key changes to make the image neural fields photo-
realistic. Our method can be used to convert existing la-
tent diffusion autoencoders into image neural field autoen-
coders. We show that image neural field diffusion mod-
els can be trained using mixed-resolution image datasets,
outperform fixed-resolution diffusion models followed by
super-resolution models, and can solve inverse problems
with conditions applied at different scales efficiently.

1. Introduction

Diffusion models [16, 34, 50] have recently become attrac-
tive alternatives to GANs. These likelihood-based models
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exhibit fewer artifacts, stable training, can model complex
data distributions, do not suffer from mode collapse, and
can solve inverse problems using the score function with-
out extra training. Since diffusion typically requires many
iterations at a fixed dimension, directly modeling the dif-
fusion process in the pixel space [17, 40, 43] can be in-
efficient for high-resolution image synthesis. Latent diffu-
sion models (LDMs) [41, 57] were proposed as a more ef-
ficient alternative. The key idea is to learn an autoencoder
to map images to a latent representation from which the im-
age can be decoded back, and train a diffusion model on
the lower-dimensional latent representation. Despite their
success, LDMs’ latent space still represents images at fixed
resolution (for example, 256 in LDM [41] and 512 in Stable
Diffusion). To generate higher-resolution images (e.g., 2K),
LDMs usually first generate a low-resolution image and up-
sample it using a separate super-resolution model.

In this work, we propose Image Neural Field Diffusion
models (INFD). Our method is based on the latent diffusion
framework, where we first learn a latent representation that
represents an image neural field (which can be rendered at
any resolution), then learn a diffusion model on this latent
representation. A key challenge of our approach is to learn a
latent space of photorealistic image neural fields where the
diffusion model is applied. We propose a simple and effec-
tive method that can convert an existing autoencoder of la-
tent diffusion models to a neural field autoencoder. We find
that directly implementing an autoencoder with LIIF [8]
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leads to blurred image details, and propose a Convolutional
Local Image Function (CLIF), which can render the latent
representation to photorealistic high-resolution images and
the image content is consistent at different resolutions. Our
neural field autoencoder is trained with L1 loss, perceptual
loss [60], and GAN loss following LDM [41], and is super-
vised from multi-scale patches similar to AnyResGAN [6].

We show that image neural field diffusion models have
several key advantages over fixed-resolution diffusion mod-
els: (i) They can be built from mixed-resolution datasets
without resizing images. The neural field decoder can ren-
der latent representation at any resolution and from patches,
which can take supervision from ground-truth images at
arbitrary high resolution without decoding the whole im-
age. (ii) The same latent representation can be supervised
with GAN loss from fixed-resolution patches at different
scales, with the content consistency across scales, the multi-
scale supervision helps high-resolution generation even if
all ground-truth images are at a fixed high resolution. (iii) It
does not require an extra Super-Resolution (SR) model for
high-resolution generation. Besides the advantage of sim-
plicity, since diffusion-generated low-resolution images do
not have high-resolution ground truth, separate SR models
are typically trained on real images, while the domain gap
between real and generated images could significantly harm
the performance of the SR model. (iv) Image neural field
diffusion models learn a resolution-agnostic image prior.
Therefore, it can be used to solve inverse problems with
a set of conditions defined at different scales efficiently.

In summary, our main contributions are:
• An image neural field autoencoder that can learn rep-

resentations from mixed-resolution datasets and renders
scale-consistent and photorealistic images.

• A method to build diffusion models on mixed-resolution
datasets and synthesize high-resolution images without
extra SR models. Image synthesis is up to 2K resolution
with an efficient latent diffusion process at only 64 × 64
resolution (see samples in Figure 1).

• A framework to solve inverse problems with conditions
applied at different scales of the same image.

2. Related Work
Diffusion Models. Diffusion models are first proposed
by Sohl-Dickstein et. al. [50]. They were recently con-
nected to score-based generative models [51–53] and have
been greatly improved [16, 34] for architectures and other
training details, achieving state-of-the-art results on both
unconditional and conditional image synthesis [11, 17, 33,
42, 44]. Compared to prior GAN-based methods [14, 21,
22, 38, 62], diffusion models have shown nice properties
such as stable training, not suffering from mode collapse,
and can perform image-to-image translation [28, 29] or be
used to solve inverse problems [54], even with an uncondi-

tional model. One of the main drawbacks of current diffu-
sion models is slow inference speed, as it relies on iterative
reverse diffusion steps. While this can be remedied with
faster sampling methods [23, 27, 46], performing the dif-
fusion process in the pixel space of high-resolution images
remains computationally expensive.

Our work is most closely related to latent diffusion mod-
els, which learn to map images to latent representation and
train diffusion model on the latent space [41, 47, 57]. A
key design in this direction is to choose the latent repre-
sentation where the diffusion model is learned. Different
from prior works that learn an autoencoder, where the la-
tent representation corresponds to a fixed resolution image,
we design a decoder and a renderer to learn a latent space
that represents image neural fields. Since our latent space
represents image neural fields, our autoencoder can learn a
representation from high-resolution images in varied sizes
with multi-scale patches, and can synthesize images at high
resolution without relying on extra super-resolution models.
Our method follows LDM [41], which trains in two stages.

Neural Fields for Image Synthesis. Neural field is also
known as Implicit Neural Representations (INR), which
represents signals as coordinate-based neural networks. It
serves as a compact and powerful differentiable represen-
tation and achieves state-of-the-art results mainly for rep-
resenting 3D shapes [9, 30, 36] and scenes [2, 5, 19, 31,
37, 45, 48]. Applications of neural fields for images are ex-
plored in early works [32, 55] and proposed for more appli-
cations such as image super-resolution [8] and image syn-
thesis [1, 49]. Several recent works [6, 22] relax the pixel-
independent assumption and perform convolutions on the
coordinate map to render the output for image synthesis.

The idea of using neural fields for training with any-
resolution images is explored in LIIF [8] for autoencoding
with an L1 loss, AnyResGAN [6] and ScaleParty [35] for
GANs with adversarial loss. Our work aims at building the
resolution-agnostic learning framework for diffusion mod-
els, which is a different model family of generative models.

Image Super-Resolution. Image Super-Resolution [7,
12, 24, 26, 56, 58, 61] (SR) aims at upsampling a
low-resolution image to higher resolution. Many recent
works [8, 18, 25, 59] explore Arbitrary-Scale SR (ASSR)
with a single network. While they are related to our method,
the differences include: (i) Instead of learning an autoen-
coder and an extra SR model, our implementation can be
viewed as making a bottleneck in a single ASSR model and
training diffusion models on the bottleneck. (ii) Our de-
coder is decoding from latent space to RGB space while
super-resolution is upsampling from RGB space to RGB
space. (iii) Our input can potentially have any higher res-
olution information (e.g. crops from high resolution), we
choose it as a fixed-low-resolution image for efficiency.
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Figure 2. Method overview. Given a training image at an arbitrary resolution, we first downsample it to a fixed resolution and pass it into
the encoder E to get a latent representation z. A decoder D then takes z as input and produces a feature map ϕ that drives a neural field
renderer R, which can render images by querying with the appropriate grid of pixel coordinates c and pixel sizes s. The autoencoder is
trained on crops from a randomly downsampled image ground truth, generating image crops at the corresponding coordinates. At test time,
a diffusion model generates a latent representation z, which is then decoded and used to render a high-resolution image.

IDM [13] uses a diffusion model for ASSR where the output
is at a medium resolution.

3. Preliminaries
Our algorithm builds on diffusion models and neural fields.
We introduce the core concepts and notation below.

Diffusion Models. Given a sample x0 from a data distri-
bution q(x0), forward diffusion progressively destroys the
information in x0 in T steps, xt−1 7→ xt, each adding some
small Gaussian noise. The process can be concisely rewrit-
ten as xt =

√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I), and

ᾱ0...T−1 gradually decreases from 1 to 0. The final distri-
bution is approximately normal, q(xT ) ∼ N (0, I). A diffu-
sion model learns to reverse this diffusion process. Once
trained, new samples can be generated by first sampling
xT ∼ q(xT ) and reversing each step of the diffusion pro-
cess using a learned transition probability pθ(xt−1|xt), pa-
rameterized by a neural network. Many prior works on im-
age generation are based on maximizing a reweighted vari-
ational lower-bound of pθ(x0), which is shown by [16] to
lead to the following training objective:

L = Ex0,t,ϵ

[
||ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)− ϵ||2

]
, (1)

where t is sampled in {0, . . . , T − 1}, and ϵθ is the network
trained to reverse the diffusion process.

Neural Fields. Neural Fields represent a signal using a
coordinate-based neural network. For example, a neural
field can represent an image as a function c = f(x;ϕ),
where x ∈ [−1, 1]2 are the spatial coordinates in the im-
age domain, c ∈ R3 is the RGB color at the corresponding
continuous coordinate, and ϕ denotes the parameters of the
neural field f . Since x can take continuous values, the RGB
value can be decoded at arbitrary coordinates. Accordingly,
an image neural field can be rendered at arbitrary resolution
by sampling the corresponding pixel coordinates.

4. Method

Similar to LDM [41], our approach has two stages. First, we
train an autoencoder that converts images to latent represen-
tations of 2D neural fields (§ 4.1), which can be rendered to
images at any given resolution (§ 4.2). Second, we train a
diffusion model to generate samples from this latent space
(§ 4.3). Figure 2 illustrates our pipeline.

4.1. Image Neural Field Autoencoder

In the first stage, we seek to convert every image in our
training set into a photorealistic image neural field. We do
this by training an autoencoder, made of an encoder E, a
decoder D, and a neural field renderer R. The encoder maps
an RGB input image I to a latent code z = E(I), which is
decoded by the decoder to a feature tensor ϕ = D(z) used
by the neural field renderer to produce the final image.

Patch-wise decoding. For training efficiency, we want to
avoid decoding the whole image, because the ground truth
can be at a very high resolution. We take advantage of the
coordinate-based decoding property of neural fields, to train
with constant-size crops from mixed-resolution data, which
is amenable to batching. Specifically, we crop a random
patch pGT at a fixed P × P resolution (the red box in Fig-
ure 2) from a randomly downsampled ground-truth. Since
pGT is a fixed-size patch, downsampling the global ground
truth lets the patch pGT cover regions at varying scales of
the image. This provides supervision at multiple scales to
the latent representation, from local details to global struc-
ture. We discuss this further in § 5.2. Let c denote the
coordinates of pixel centers in the patch within the image,
and s denote their pixel sizes relative to the whole ground-
truth image. Our renderer R takes as input the features
ϕ = D(z) decoded from the latent representation, and the
coordinates and pixel sizes c, s to synthesize an output patch
p = R(c, s;ϕ).
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Figure 3. Convolutional Local Image Function (CLIF). Given
a feature map ϕ (yellow dots), for each query point x (green dot),
we fetch the nearest feature vector, along with the relative coor-
dinates and the pixel size. The grid of query information is then
passed into a convolutional network (right) that renders an RGB
grid. Different than the pointwise function LIIF, CLIF has a higher
generation capacity and is learned to be still scale-consistent.

Training objective. We compare the synthesized patch to
the ground truth using a sum of an L1 loss, a perceptual loss
Lperc [60], and an adversarial loss LGAN [14]. The discrim-
inator is simultaneously trained to distinguish between the
distributions of p and pGT . Thus, we minimize the follow-
ing objective to train E, D, and R:

LAE = ||p− pGT ||1 + Lperc(p, pGT ) + LGAN(p). (2)

Our implementation follows the autoencoder architec-
ture of LDM [41], with the same encoder and decoder (re-
moved the last layer) architectures to facilitate comparisons.
Since training images have arbitrary resolutions, we resam-
ple the encoder’s input to a fixed resolution 256 × 256.
Note that despite this downsampling, we still train against
mixed-resolution references. The encoder and decoder are
with a spatial downsampling/upsampling rate of 4 corre-
spondingly, therefore the latent representation is in 64×64.
A vector-quantization (VQ) layer is prepended to the first
layer of the decoder to regularize the latent space. ϕ is
256× 256 with 128 channels. We set patch size P = 256.

4.2. Neural Field Renderer

Our renderer R, shown in Figure 3, is a neural field
coordinate-based decoder, which we dubbed Convolutional
Local Image Function (CLIF). To decode an image patch
with CLIF, each query point c (green dot) fetches the spa-
tially nearest feature vector from the feature map ϕ (yellow
dots). We concatenate the nearest feature vector with the
query coordinates c and pixel size s, then process the grid
of query information using a convolutional network to out-
put an RGB image. Intuitively, the concatenated feature is
the field information at a point. By changing the query coor-
dinates and pixel sizes, we can decode images at any resolu-
tion. LIIF [8] decodes with similar information, but it uses
a pointwise function. We found this limits LIIF’s ability
to produce realistic high-frequency details (see supplemen-
tary material). CLIF remedies this issue by exploiting more
local feature context. Our CLIF renderer is learned to be

scale-consistent, i.e., details are consistent when decoding
at different resolutions (see supplementary material).

4.3. Latent diffusion

Once the autoencoder is trained, we map every image I in
the training dataset to its latent representation z, and train a
diffusion model by optimizing the DDPM [16] objective

LDM = Ez∼E(I),t,ϵ

[
||ϵθ(

√
ᾱtz+

√
1− ᾱtϵ, t)−ϵ||2

]
, (3)

using the distribution over z induced by the encoder. After
training, the encoder can be discarded. The diffusion model
generates a latent representation z, which is then decoded
to ϕ = D(z) and rendered at a resolution specified by the
pixel coordinates R(c, s;ϕ) as described next.

4.4. Patchwise Image Generation

Despite being trained with small patches for efficiency, our
method can generate high-resolution images. For this, we
first generate a global feature map ϕ from a sampled z,
then generate sub-tiles of a large image by querying the
renderer at the corresponding coordinates, as described in
§ 4.2. To avoid discontinuities at tile boundaries, we expand
the query region for each tile by a fixed padding size larger
than CLIF’s receptive field (8 in our experiments). We then
crop the output tiles by the same amount and assemble the
tiles into a seamless composite. Our renderer is fully con-
volutional, it can also generate the image at once, as long as
memory is sufficient to hold intermediate buffers.

5. Experiments
We evaluate our method on several datasets and compare it
to LDM [41] with super-resolution models (§ 5.1). Sections
§ 5.2 and § 5.3 presents model ablations. We show results
in solving multi-scale inverse problems in § 5.5, and text-
to-image generation in § 5.6.

Data. The FFHQ [20] used in LDM [41] contains 70K
high-resolution images (1024×1024) and several baselines
use it for comparison. When comparing to LDM, we follow
their training and validation split: 60K images for training
and 10K for validation. Since our method is flexible and not
limited to a fixed-resolution dataset, we also follow a con-
trolled setting in prior work [6], which constructs a varied-
resolution dataset from FFHQ by constructing and merging
three sets: (i) all images at 256 low-resolution; (ii) a subset
of 5K samples in varied-resolution from 512 to 1024; (iii)
a subset of 1K images at 1024 resolution. We denote this
setting as FFHQ 6K-Mix. Besides FFHQ, we evaluate our
method on the Mountains dataset [6], which contains a low-
resolution subset, with about 500K samples around 1024
resolution, and a high-resolution subset, with about 9K im-
ages at resolutions beyond 2048. Figure 4 shows examples
of our generated results on these datasets.
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1024×1024 512×512
Figure 4. Generated samples from our method on FFHQ and Mountains dataset.

pFID metric. Standard FID evaluation first resizes im-
ages to 299, which evaluates the global structure of images
regardless of their original resolution, but is insufficient to
measure the quality of details from high-resolution gener-
ators. Patch-FID [6] (pFID) addresses this limitation. It
computes the FID between fixed-resolution patches cropped
from arbitrary resolution ground-truth and generated im-
ages, thus evaluating local details in synthesized images.

The original pFID reports the metric on random crops
from images at varying resolutions. Since our practical fo-
cus is on high-resolution synthesis, we evaluate pFID be-
tween patches cropped from fixed-high-resolution images.
To further disentangle the evaluation for image details at
different scales, we separately report pFID for patches at
different resolutions. P /1K will denote the FID between
random crops at resolution P from ground truth and syn-
thesized images at resolution 1024. For example, pFID-
256/1K evaluates the local details, pFID-1K/1K evaluates
the global structure and is the same as standard FID applied
to 1024-resolution images. We generate 50K samples to
compute FID in most experiments. In some experiments,
we use 5K samples if it suffices to observe the performance
gap (specified after FID@ in Tables).

5.1. Comparison to LDM

LDM [41] trains an autoencoder for images at 256×256 res-
olution and learns a diffusion model on its latent space. For
a fair comparison, we used the same encoder and decoder
architectures as LDM. Our method only adds a lightweight

CLIF renderer, which contains 2 convolution layers and 2
ResNet [15] blocks.

Even though LDM’s denoiser is fully convolutional and
can generate high-resolution images simply by diffusing
from a larger noise map, it is known that this approach
generates repetitive patterns (e.g., distorted faces with du-
plicate features), we show examples in the supplementary
material. As a result, we follow the standard approach
to generate high-resolution images with LDM by running
an independent super-resolution model on its output. We
combine LDM with several recent state-of-the-art arbitrary-
scale super-resolution methods: LIIF [8], ITSRN [59],
LTE [25], which allow for inference at continuous upsam-
pling scales, and Real-ESRGAN [58], a super-resolution
model for a fixed upsampling scale that has state-of-the-
art perceptual quality. We report qualitative results in Fig-
ure 5, and the pFID in Table 1 on FFHQ. As Real-ESRGAN
shows the most competitive results, we also compare to it on
Mountains dataset in Table 2.

We find that for standard FID at 256 resolution (i.e. pFID
256/256), the image neural field diffusion model is compet-
itive with the original LDM, which can only generate im-
ages at 256. Our retraining of LDM reaches a slightly worse
FID than the officially reported scores, which we attribute
to implementation differences and training variance. At all
higher resolutions, our method outperforms LDM followed
by super-resolution, which is consistent with our qualitative
observation and suggests we achieve better image quality
for high-resolution detail at different scales.

8011



OursLDM + Real-ESRGANLDM + LIIF

Figure 5. Qualitative comparison with LDM followed by super-resolution on FFHQ. LIIF shows noise in details, while Real-ESRGAN
tends to be smooth and results lack rich details. Our approach generates images with more realistic details.

Model #Params Coordinate-based Decoder pFID@50K

256/256 256/1K 512/1K 1K/1K

LDM [41] 33.0M 4.98 - - -
LDM + LIIF [8] 33.0M + 22.3M ✓ - 56.65 17.83 8.97

LDM + ITSRN-RDN [59] 33.0M + 22.6M ✓ - 51.73 17.94 8.02
LDM + SwinIR-LTE [25] 33.0M + 12.1M ✓ - 52.62 17.72 9.09

LDM + Real-ESRGAN [58] 33.0M + 16.7M - 18.38 18.46 16.04

LDM (our reimplementation) 33.0M 6.02 - - -

INFD (ours) 35.7M ✓ 5.34 8.07 6.64 5.57

Table 1. Comparison to Latent Diffusion Model (LDM) with super-resolution models for high-resolution image synthesis on FFHQ dataset.
#Params counts for the decoder, and the renderer or super-resolution model if it exists, which are used in image generation.

We hypothesize that the main issues for extra super-
resolution models are that: (i) LDM with an extra super-
resolution model can be viewed as first decoding the la-
tent representation to RGB space, then upsample to an-
other RGB space, where the first RGB space becomes a
bottleneck that contains much less information than feature
space; (ii) the artifacts generated by LDM, even inconspic-
uous, can cause a domain shift to the input of the super-
resolution models, which could significantly degrade their
performance. The super-resolution models can not be di-
rectly trained to upsample the generated low-resolution im-
ages since no paired high-resolution ground truth is avail-
able. In our method, the domain shift from real to generated
samples happens in the latent space (with VQ or KL regu-
larization). We hypothesize that latent space is much more
robust than RGB space to the domain shift. We observe that
when replacing the latent space with RGB space, the gen-
erated images become overly smooth similar to LDM with
Real-ESRGAN super-resolution, which is consistent with
our hypothesis (see supplementary material).

5.2. Effect of scale-varied training

Randomly downsampling the global image before extract-
ing fixed-resolution training patches would make patches
cover all scales. With the scale consistency of CLIF, an im-
age neural field is supervised to be realistic in all scales via
the perceptual and GAN losses. We conduct an ablation on

Model pFID@50K

256/1K 512/1K 1K/1K

LDM + Real-ESRGAN [58] 17.36 15.11 10.39
INFD (ours) 7.53 6.84 5.13

Table 2. Comparison to Latent Diffusion Model (LDM) with
super-resolution models on Mountains dataset.

FFHQ to evaluate the impact of this random downsampling
strategy. Specifically, we disable it during training, keeping
all ground-truth images at 1024 resolution. The results are
shown in Table 3. Without random downsampling, the pFID
is worse especially for 512/1K and 1K/1K, suggesting that
random downsampling of the ground truth improves qual-
ity, even if we only aim at generating images at 1024 high
resolution, because it helps supervise every single image to
be realistic at all scales. For Mountains dataset, we observe
that there will be obvious artifacts without random down-
sampling (see supplementary material). This contrasts with
the observation in LIIF [8], which found that random down-
sampling hurts performance at a fixed highest scale when it
is only using an L1 loss.

5.3. Training with limited high-resolution images

While previous experiments use high-resolution training
images, a key advantage of our method is that it can
learn from mixed-resolution datasets and still generate
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Downsample pFID@50K

256/1K 512/1K 1K/1K

Fix 1024 8.19 6.82 6.04
256–1024 8.07 6.64 5.57

∆ 0.12 0.18 0.47

Table 3. FFHQ dataset. Random downsampling during training
improves image generation quality even for fixed high resolution.

Data pFID@50K

256/1K 512/1K 1K/1K

All HR 8.07 6.64 5.57

6K-Mix 16.27 10.8 11.3
6K-Mix, bal. 12.41 7.74 6.9

Table 4. FFHQ dataset. Our method can learn from mixed-
resolution images with a limited number of full-resolution images.

high-resolution outputs, even when the number of high-
resolution images is limited. We quantify this in Table 4
using FFHQ 6K-Mix, where most images are at low reso-
lution 256, 5K images are at 512–1024, and 1K images are
at 1024. Training with the mixed-resolution dataset as-is
(also with random downsampling) already yields a model
that performs decently at 1024, but with worse details than
the model trained with all images at 1024. We suspect that
the model is optimized for too few steps using images at
1024, since the number of high-resolution images is small
and they go through random downsampling. We balance
the training resolution by sampling images from the 5K +
1K high-resolution subset with a probability of 0.5. This
largely closes the performance gap (6K-Mix, bal.) with the
model train on high-resolution images only.

5.4. Image generation beyond 1024

We explore going beyond the 1024 resolution and train our
model on a collected dataset of faces at varied resolutions
between 1024 to 2048, and on Mountains dataset including
a higher-resolution subset (a generated sample is shown in
Figure 1). We observe that our method can be effectively
applied to resolutions up to 2K. More samples and details
are in the supplementary material.

5.5. Inverse problems with conditions at any scale

Our method builds a diffusion model on a latent space that
represents image neural fields. A key property of image
neural fields is that they can be efficiently rendered for
any sub-region at any given resolution without decoding
the whole image at full resolution. With the image prior
learned by diffusion models, it enables efficiently solving
inverse problems where conditions can be defined on any
scale of the image based on coordinates. We take zero-shot
any-scale layout-to-image generation as an example. It uses

Mountains	(2048×2048)

“cloud”
(1000×1000)

“sun”
(500×500)

Mountains	(2048×2048)

“grass”
(800×800)

“rocks”
(600×600)

Figure 6. Solving inverse problems with multi-scale condi-
tions per image. We can solve for an image that satisfies multi-
scale conditions, defined as square regions and a text prompt
(left). For this, we decode the corresponding region and pass
it to a pre-trained CLIP [39] model operating at fixed-resolution
(224× 224), and maximize the CLIP similarity to the correspond-
ing text prompt. This enables layout-to-image generation without
extra training. We show generated solutions on the right.

CLIP [39] similarity as the constraint for image generation
with semantic bounding boxes at arbitrary scales.

Specifically, we take a pre-trained CLIP model, which
takes 224 × 224 fixed-resolution images as inputs. Given
a layout and our image neural field diffusion model (un-
conditional), in each diffusion step, let z denote the current
denoised latent representation, for each semantic bounding
box i in the input layout we render z for the correspond-
ing sub-region to a patch at the resolution 224 × 224, i.e.
patch pi = R ◦ D(z; ci, si), with our decoder D and ren-
derer R, where ci, si denote the coordinates and scale of a
224× 224 pixel grid of bounding box i. The clip similarity
loss li = CLIP(pi, Ti) is computed between patch pi and
the given text Ti. The gradients ∂li

∂z are back-propagated
and then used to modify the diffusion score for each dif-
fusion step. We follow the techniques in DPS [10] as the
inverse problem solver. Figure 6 shows the results of using
our mountains model (2K resolution). Note that without
image neural field diffusion models, a fixed-resolution dif-
fusion model needs to decode the whole region at full res-
olution (e.g. 1000 × 1000 “cloud” region in a 2048 × 2048
canvas) before passing it as 224 × 224 input to CLIP, which
would have very intensive computation and memory cost.

5.6. Qualitative results for text to image generation

We explore a preliminary application of our method for text-
to-image generation by finetuning a pre-trained Stable Dif-
fusion model [41]. Because of the high computational cost
of training Stable Diffusion, we freeze the encoder and only
finetune the decoder from publicly available pre-trained
weights on a high-resolution subset of LAION-5B, which
contains samples at resolutions higher than 2K. Our ren-
derer has the same architecture as in previous experiments
and is jointly trained from scratch. We show some qualita-
tive samples from our fine-tuned model and compare them
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“A cute corgi sleeping on a book, 4k” “A huge mushroom in the jungle, 4k” “A Shiba Inu dog wearing sunglasses, 4k”
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Figure 7. Samples of our method finetuned from Stable Diffusion (LDM) compared to Stable Diffusion with an extra super-resolution
model. Our approach yields finer, high-frequency textures.

to upsampling the Stable Diffusion’s 512×512 output using
Real-ESRGAN in Figure 7. We observe that the compari-
son is similar to the experiments on FFHQ and Mountains:
our method generates more details than the Real-ESRGAN
applied to Stable Diffusion’s outputs. More samples and
details are in the supplementary material.

6. Discussion
Comparison to GANs with any-resolution learning. In
this work, we propose a method to build diffusion mod-
els on a resolution-agnostic space and show its applica-
tions. The any-resolution learning framework has also been
developed for different generative model families in prior
works, for example, AnyresGAN [6]. We observe that the
comparison between image neural field diffusion models
and AnyresGAN matches the comparison between typical
fixed-resolution diffusion models and GANs. A detailed
comparison is in the supplementary material. In summary,
we observe that GANs are still state-of-the-art on FID value
(which is not always consistent with image quality [3, 4])
for the single-class generation, while image neural field dif-
fusion model has better visual quality and diversity than
AnyRes-GAN. Image neural field diffusion models are also
free of the artifacts that commonly affect AnyRes-GAN’s
outputs, such as black dots and grid-like patterns. Finally,
image neural field diffusion models can be directly applied
for text-to-image synthesis, which remains a challenge for
any-resolution GANs. Solving inverse problems based on
the score functions of diffusion models is also not yet avail-
able in GANs.

Limitations. Our current method assumes that the train-
ing data are scale-consistent, i.e., low-resolution images fol-
low the same distribution as downsampled high-resolution

images (see supplementary material). This assumption is
violated by datasets that contain a low-resolution subset
with noisy, compressed images, and a high-resolution sub-
set with clean images (e.g., Birds, Churches datasets [6]).

Due to limited resources, our text-to-image synthesis
model only fine-tunes an existing Stable Diffusion check-
point on a small subset of the LAION dataset containing
high-resolution images. This causes two issues. First, the
training set of the pre-trained model includes noisy images,
but our high-resolution fine-tuning dataset only contains
clean images; this violates our scale consistency assump-
tion. As a result, we found that our model requires extra
prompts such as “4k” to generate detailed high-resolution
images. Second, our fine-tuning LAION subset does not
cover all possible object categories, so our model may
not perform optimally on some out-of-distribution objects.
Training from scratch on the full LAION dataset might re-
solve these limitations. Researching efficient any-resolution
encoders is also a promising avenue for future work.

7. Conclusion
We proposed image neural field diffusion models, the dif-
fusion models on a resolution-agnostic latent space, and
demonstrated its advantages over fixed-resolution models.
We presented a simple yet effective framework as an im-
plementation, which can be easily applied to convert from
an existing latent diffusion model. Our method can build
diffusion models from mixed-resolution datasets, achiev-
ing high-resolution synthesis without extra super-resolution
models. The resolution-agnostic image prior learned by the
diffusion model also enables solving inverse problems with
conditions applied at different scales of the same image.
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