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Figure 1. Comparisons of different vision and vision-language foundation models. (a) indicates the traditional vision foundation model,
e.g. ResNet [43] pre-trained on classification tasks. (b) represents the vision-language foundation models, e.g. CLIP [89] pre-trained on
image-text pairs. (c) is our InternVL, which presents a workable way to align the large-scale vision foundation model (i.e., InternViT-6B)
with the large language model and is versatile for both contrastive and generative tasks.

Abstract
The exponential growth of large language models

(LLMs) has opened up numerous possibilities for multi-
modal AGI systems. However, the progress in vision and
vision-language foundation models, which are also critical
elements of multi-modal AGI, has not kept pace with LLMs.
In this work, we design a large-scale vision-language foun-
dation model (InternVL), which scales up the vision foun-
dation model to 6 billion parameters and progressively
aligns it with the LLM, using web-scale image-text data
from various sources. This model can be broadly applied
to and achieve state-of-the-art performance on 32 generic
visual-linguistic benchmarks including visual perception
tasks such as image-level or pixel-level recognition, vision-
language tasks such as zero-shot image/video classification,
zero-shot image/video-text retrieval, and link with LLMs to
create multi-modal dialogue systems. It has powerful visual
capabilities and can be a good alternative to the ViT-22B.
We hope that our research could contribute to the develop-
ment of multi-modal large models.

† This work is done when they are interns at Shanghai AI Laboratory;
B corresponding author (daijifeng@tsinghua.edu.cn)

1. Introduction

Large language models (LLMs) largely promote the de-
velopment of artificial general intelligence (AGI) systems
with their impressive capabilities in open-world language
tasks, and their model scale and performance are still in-
creasing at a fast pace. Vision large language models
(VLLMs) [3, 5, 19, 21, 28, 69, 87, 113, 147], which leverage
LLMs, have also achieved significant breakthroughs, en-
abling sophisticated vision-language dialogues and interac-
tions. However, the progress of vision and vision-language
foundation models, which are also crucial for VLLMs, has
lagged behind the rapid growth of LLMs.

To bridge vision models with LLMs, existing VLLMs
[5, 61, 100, 138, 147] commonly employ lightweight “glue”
layers, such as QFormer [61] or linear projection [69], to
align features of vision and language models. Such align-
ment contains several limitations: (1) Disparity in param-
eter scales. The large LLMs [38] now boosts up to 1000
billion parameters, while the widely-used vision encoders
of VLLMs are still around one billion. This gap may lead
to the under-use of LLM’s capacity. (2) Inconsistent rep-
resentation. Vision models, trained on pure-vision data or
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Figure 2. Comparison results on various generic visual-linguistic tasks, including image classification, video classification, image-text
retrieval, image captioning, and multi-modal dialogue. The proposed InternVL achieves the best performance on all these tasks. Note that
only the models trained on public data are included. “IN” is an abbreviation for ImageNet [31].

aligned with the BERT series [52, 54, 70], often exhibit
representation inconsistencies with LLMs. (3) Inefficient
connection. The “glue” layers are usually lightweight and
randomly initialized, which may not capture the rich cross-
modal interactions and dependencies that are crucial for
multi-modal understanding and generation.

These limitations reveal a large gap in both parameter
scale and feature representation ability between the vision
encoder and the LLM. To bridge this gap, our inspiration
lies in elevating the vision encoder to align with the param-
eter scale of the LLM and subsequently harmonizing their
representations. However, the training of such large-scale
models necessitates a vast amount of image-text data ob-
tained from the Internet. The significant heterogeneity and
quality variations within this data pose considerable chal-
lenges to the training process. To enhance the efficacy of
the training, generative supervision is considered as a com-
plementary approach to contrastive learning, as depicted in
Figure 1. This strategy aims to provide additional guidance
to the model during training. Yet, the suitability of low-
quality data for generative training remains a concern. Be-
sides, how to effectively represent the users’ commands and
align the representations between the vision encoder and
LLM is another open question.

To address these issues, we formulate the InternVL, a
large-scale vision-language foundation model, which aligns
the representation of the scaled-up vision encoder with the
LLM and achieves state-of-the-art performance on various
visual and visual-linguistic tasks. As shown in Figure 1 (c),
InternVL has three key designs: (1) Parameter-balanced vi-
sion and language components: It includes a vision encoder
scaled up to 6 billion parameters and an LLM middleware
with 8 billion parameters, where the middleware functions
as a substantial “glue” layer to reorganize visual features.
Unlike previous vision-only (Figure 1 (a)) or dual-tower
(Figure 1 (b)) structures, our vision encoder and middleware
offer flexible combinations for both contrastive and genera-
tive tasks. (2) Consistent representations: To maintain the
consistency of representations between the vision encoder
and LLM, we employ a pre-trained multilingual LLaMA-

7B [26], to initialize the middleware and align the vision
encoder with it. (3) Progressive image-text alignment: We
leverage image-text data from diverse sources, ensuring
training stability through a progressive alignment strategy.
This strategy initiates contrastive learning on large-scale
noisy data and subsequently transitions to generative learn-
ing on fine-grained data. This approach ensures a consistent
enhancement of model performance and task scope.

These designs endow our model with several advantages:
(1) Versatile. It functions as a standalone vision encoder for
perception tasks, or collaborates with the language middle-
ware for vision-language tasks and multi-modal dialogue
systems. The language middleware bridges the gap be-
tween the vision encoder and the LLM decoder. (2) Strong.
By leveraging the training strategy, large-scale parameters,
and web-scale data, our model has a powerful represen-
tation that helps to achieve state-of-the-art results on var-
ious vision and vision-language tasks, as shown in Fig-
ure 2. (3) LLM-friendly. Due to the aligned feature space
with LLMs, our model can smoothly integrate with exist-
ing LLMs, such as LLaMA series [106, 107], Vicuna [145],
and InternLM [104]. These features distinguish our model
from the previous approaches and establish a leading vision-
language foundation model for various applications.

In summary, our contribution has three folds:
(1) We present a large-scale vision-language foundation

model—InternVL, which aligns the large-scale vision en-
coder with LLMs from scratch for the first time. The
model demonstrates strong performance on a wide range of
generic visual-linguistic tasks, including visual perception
tasks, vision-language tasks, and multi-modal dialogue.

(2) We introduce a progressive image-text alignment
strategy for the efficient training of large-scale vision-
language foundation models. This strategy maximizes the
utilization of web-scale noisy image-text data for con-
trastive learning and fine-grained, high-quality data for gen-
erative learning.

(3) We extensively compare the proposed model with
the current state-of-the-art vision foundation models and
VLLMs. The results indicate that InternVL achieves
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leading performance on a broad range of generic visual-
linguistic tasks, including image classification (ImageNet),
semantic segmentation (ADE20K), video classification (Ki-
netics), image-text retrieval (Flickr30K & COCO), video-
text retrieval (MSR-VTT), and image captioning (COCO &
Flickr30K & NoCaps). Meanwhile, it is also effective for
multi-modal dialogue (MME & POPE & Tiny LVLM).

2. Related Work
2.1. Vision Foundation Models

The past decade has witnessed significant development in
foundation models within the field of computer vision.
Starting with the pioneering AlexNet [55], a variety of con-
volutional neural networks (CNNs) have emerged, continu-
ously refreshing the ImageNet benchmark [27, 32, 43, 47,
49, 72, 114, 124]. In particular, the introduction of residual
connections [43] effectively addressed the problem of van-
ishing gradients. This breakthrough led to an era of “big &
deep” neural networks, signifying that, with adequate train-
ing and data, larger and deeper models can achieve better
performance. In other words, scaling up matters.

In recent years, ViT [34] has opened up new possibilities
for network architectures in the computer vision field. ViT
and its variants [13, 23, 30, 71, 89, 111, 112, 125, 139, 140]
have significantly increased their capacity and excelled in
various important visual tasks. In the LLM era, these vi-
sion foundation models often connect with LLMs through
some lightweight “glue” layers [60, 69, 147]. However, a
gap exists as these models primarily derive from visual-only
datasets like ImageNet [31] or JFT [134], or are aligned
with the BERT series [52, 54, 70] using image-text pairs,
lacking direct alignment with LLMs. Additionally, the
prevalent vision models employed to connect with LLMs
are still limited to around 1 billion parameters [37, 51],
which also constrains the performance of VLLMs.

2.2. Large Language Models

Large language models (LLMs) have revolutionized the
field of artificial intelligence, enabling natural language pro-
cessing tasks that were previously thought exclusive to hu-
mans [1, 106, 118]. The emergence of GPT-3 [118] brought
a significant leap in capabilities, particularly in few-shot
and zero-shot learning, highlighting the immense potential
of LLMs. This promise was further realized with the ad-
vancements of ChatGPT and GPT-4 [1]. The progress in
the field has been further accelerated by the emergence of
open-source LLMs, including the LLaMA series [106, 107],
Vicuna [145], InternLM [104], MOSS [101], ChatGLM
[36], Qwen [4], Baichuan [6], and Falcon [86], among oth-
ers [26, 103, 119]. However, in real scenarios, interactions
are not limited to natural language. The vision modality
can bring additional information, which means more pos-

sibilities. Therefore, exploring how to utilize the excellent
capabilities of LLMs for multi-modal interactions is poised
to become the next research trend.

2.3. Vision Large Language Models

Recent advancements have seen the creation of vision large
language models (VLLMs) [3, 21, 56, 59, 62, 66, 100, 121,
128, 130, 136, 138, 141, 142, 148], which aim to enhance
language models with the capability to process and inter-
pret visual information. Flamingo [3] uses the visual and
language inputs as prompts and shows remarkable few-shot
performance for visual question answering. Subsequently,
GPT-4 [1], LLaVA series [68, 69, 76] and MiniGPT-4
[147] have brought in visual instruction tuning, to improve
the instruction-following ability of VLLMs. Concurrently,
models such as VisionLLM [113], KOSMOS-2 [87], and
Qwen-VL et al. [5, 19, 115] have improved VLLMs with
visual grounding capabilities, facilitating tasks such as re-
gion description and localization. Many API-based meth-
ods [73, 74, 95, 102, 120, 127, 129] have also attempted to
integrate vision APIs with LLMs for solving vision-centric
tasks. Additionally, PaLM-E [35] and EmbodiedGPT [83]
represent advanced efforts in adapting VLLMs for em-
bodied applications, significantly expanding their poten-
tial applications. These works showcase that VLLMs have
achieved significant breakthroughs. However, the progress
of vision and vision-language foundation models, equally
essential for VLLMs, has not kept pace.

3. Proposed Method
3.1. Overall Architecture

As depicted in Figure 3, unlike traditional vision-only back-
bones [43, 71, 114] and dual-encoder models [51, 89,
99], the proposed InternVL is designed with a vision en-
coder InternViT-6B and a language middleware QLLaMA.
Specifically, InternViT-6B is a vision transformer with 6 bil-
lion parameters, customized to achieve a favorable trade-
off between performance and efficiency. QLLaMA is a
language middleware with 8 billion parameters, initialized
with a pre-trained multilingual LLaMA-7B [26]. It could
provide robust multilingual representation for image-text
contrastive learning, or serve as a bridge to connect the vi-
sion encoder and the off-the-shelf LLM decoder.

To align the two large-scale components with substan-
tial gaps in modalities and structures, we introduce a pro-
gressive alignment training strategy. The training strat-
egy is conducted progressively, beginning with contrastive
learning on large-scale noisy data, and gradually moving
towards generative learning on exquisite and high-quality
data. In this way, we ensure the effective organization and
full utilization of web-scale image-text data from a variety
of sources. Then, equipped with the aligned vision encoder
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Figure 3. The training strategy of the proposed InternVL model. It consists of three progressive stages, including vision-language
contrastive training, vision-language generative training, and supervised fine-tuning. These stages effectively leverage public data from
diverse sources, ranging from noisy image-text pairs on the web to high-quality caption, VQA, and multi-modal dialogue datasets.

name width depth MLP #heads #param (M)
ViT-G [134] 1664 48 8192 16 1843
ViT-e [21] 1792 56 15360 16 3926
EVA-02-ViT-E [99] 1792 64 15360 16 4400
ViT-6.5B [98] 4096 32 16384 32 6440
ViT-22B [30] 6144 48 24576 48 21743
InternViT-6B (ours) 3200 48 12800 25 5903

Table 1. Architecture details of the InternViT-6B model.

and language middleware, our model functions like a Swiss
Army knife. It boasts a flexible composition that can be
adapted for a wide array of generic visual-linguistic tasks.
These tasks range from visual perception and image/video-
text retrieval to image captioning, visual question answer-
ing, and multi-modal dialogue, among others.

3.2. Model Design

Large-Scale Vision Encoder: InternViT-6B. We imple-
ment the vision encoder of InternVL with vanilla vision
transformer (ViT) [34]. To match the scale of LLMs, we
scale up the vision encoder to 6 billion parameters, result-
ing in the InternViT-6B model. To obtain a good trade-off
between accuracy, speed, and stability, we conduct a hy-
perparameter search for InternViT-6B. We vary the model
depth within {32, 48, 64, 80}, the head dimension within
{64, 128}, and the MLP ratio within {4, 8}. The model
width and the head number are calculated based on the
given model scale and other hyperparameters.

We employ contrastive learning on a 100M subset of the
LAION-en dataset [91] to measure the accuracy, speed, and
stability of InternViT-6B variants with different configura-
tions. We report the following findings: (1) Speed. For dif-
ferent model settings, when computation is not saturated,
the models with smaller depths exhibit faster speed per im-
age. However, as the GPU computation is fully utilized, the

speed difference becomes negligible; (2) Accuracy. With
the same number of parameters, the depth, head dimension,
and MLP ratio have little impact on the performance. Based
on these findings, we identified the most stable configura-
tion for our final model, as shown in Table 1.
Language Middleware: QLLaMA. The language mid-
dleware QLLaMA is proposed to align visual and linguis-
tic features. As shown in Figure 3, QLLaMA is devel-
oped based on the pre-trained multilingual LLaMA [26],
and newly added 96 learnable queries and cross-attention
layers (1 billion parameters) that are randomly initialized.
This manner allows QLLaMA to smoothly integrate visual
elements into the language model, thereby enhancing the
coherence and effectiveness of the combined features.

Compared to recently popular approaches [61, 69] that
use lightweight “glue” layers, such as QFormer [61] and
linear layers [69] to connect vision encoder and LLMs, our
method has three advantages: (1) By initializing with the
pre-trained weights of [26], QLLaMA can transform im-
age tokens generated by InternViT-6B into the representa-
tion that is aligned with the LLMs; (2) QLLaMA has 8 bil-
lion parameters for vision-language alignment, which are
42 times larger than the QFormer. Therefore, even with a
frozen LLM decoder, InternVL can achieve promising per-
formance on multi-modal dialogue tasks. (3) It can also be
applied to contrastive learning, providing a powerful text
representation for image-text alignment tasks, such as zero-
shot image classification and image-text retrieval.
“Swiss Army Knife” Model: InternVL. By flexibly com-
bining the vision encoder and the language middleware, In-
ternVL can support various vision or vision-language tasks.
(1) For visual perception tasks, the vision encoder of In-
ternVL, i.e. InternViT-6B, can be used as the backbone for
vision tasks. Given an input image I ∈ RH×W×3, our
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characteristics stage 1 stage 2dataset language original cleaned remain cleaned remain
LAION-en [91]

English

2.3B 1.94B 84.3% 91M 4.0%
LAION-COCO [92] 663M 550M 83.0% 550M 83.0%
COYO [12] 747M 535M 71.6% 200M 26.8%
CC12M [18] 12.4M 11.1M 89.5% 11.1M 89.5%
CC3M [94] 3.0M 2.6M 86.7% 2.6M 86.7%
SBU [85] 1.0M 1.0M 100% 1.0M 100%
Wukong [41] Chinese 100M 69.4M 69.4% 69.4M 69.4%
LAION-multi [91] Multi 2.2B 1.87B 85.0% 100M 4.5%
Total Multi 6.03B 4.98B 82.6% 1.03B 17.0%

Table 2. Details of the training data for InternVL in stage 1
and stage 2. Among them, LAION-en [91], LAION-multi [91],
COYO [12], and Wukong [41] are web-scale image-text pairs data.
LAION-COCO [92] is a synthetic dataset with high-quality cap-
tions from LAION-en. CC12M [18], CC3M [94], SBU [85] are
academic caption datasets. “Multi” means multilingual.

task #samples dataset
Captioning 588K COCO Caption [20], TextCaps [96]

VQAv2 [40], OKVQA [79], A-OKVQA [93],VQA 1.1M IconQA [75], AI2D [53], GQA [48]
OCR-VQA [82], ChartQA [80], DocVQA [25],
ST-VQA [11], EST-VQA [116], InfoVQA [81],OCR 294K
LLaVAR [143]

Grounding 323K RefCOCO/+/g [78, 132], Toloka [108]
Grounded Cap. 284K RefCOCO/+/g [78, 132]

LLaVA-150K [69], SVIT [144], VisDial [29],Conversation 1.4M LRV-Instruction [67], LLaVA-Mix-665K [68]

Table 3. Details of the training data for InternVL in stage 3.
We collect a wide range of high-quality instruction data, totaling
approximately 4 million samples. For a fair comparison, we only
use the training split of these datasets.

model can generate a feature map F ∈ RH/14×W/14×D for
dense prediction tasks, or work with global average pooling
and linear projection to make image classification.
(2) For contrastive tasks, we introduce two inference
modes: InternVL-C and InternVL-G, using the vision en-
coder InternViT or the combination of InternViT and QL-
LaMA to encode visual features. Specifically, we apply at-
tention pooling to the visual features of InternViT or the
query features of QLLaMA, to calculate the global visual
feature If . Besides, we encode text as Tf by extracting the
feature from the [EOS] token of QLLaMA. By computing
similarity scores between If and Tf , we support various
contrastive tasks such as image-text retrieval.
(3) For generative tasks, unlike QFormer [60], QLLaMA
inherently has promising image captioning abilities thanks
to its scaled-up parameters. The queries of QLLaMA re-
organize the visual representations from InternViT-6B and
play as the prefix texts for QLLaMA. The subsequent text
tokens are generated one by one sequentially.
(4) For multi-modal dialogue, we introduce InternVL-
Chat, leveraging InternVL as the visual component to con-
nect with LLMs. For this purpose, we have two distinct
configurations. One option is to employ the InternViT-6B
independently, akin to the approach in LLaVA-1.5 [68]. The
alternative is to employ the complete InternVL model con-
currently, as illustrated in Figure 3.

3.3. Alignment Strategy

As shown in Figure 3, the training of InternVL consists of
three progressive stages. These stages effectively leverage
public data from diverse sources, ranging from noisy image-
text pairs on the web to high-quality caption, VQA, and
multi-modal dialogue datasets.
Vision-Language Contrastive Training. In the first stage,
we conduct contrastive learning to align InternViT-6B with
a multilingual LLaMA-7B [26] on web-scale, noisy image-
text pairs. The data are all publicly available and comprise
multilingual content, including LAION-en [91], LAION-
multi [91], LAION-COCO [92], COYO [12], Wukong [41],
etc. We use the combination of these datasets and filter
out some extremely low-quality data to train our model.
As summarized in Table 2, the original dataset contains
6.03 billion image-text pairs, and 4.98 billion remains af-
ter cleaning. More details about data preparation will be
provided in the supplementary materials.

During training, we adopt the LLaMA-7B to encode the
text as Tf , and use InternViT-6B to extract the visual feature
If . Following the objective function of CLIP [89], we mini-
mize a symmetric cross-entropy loss on the similarity scores
of image-text pairs in a batch. This stage allows InternVL
to excel on contrastive tasks like zero-shot image classifica-
tion and image-text retrieval, and the vision encoder of this
stage can also perform well on visual perception tasks.
Vision-Language Generative Training. In the second
stage of training, we connect InternViT-6B with QLLaMA
and adopt a generative training strategy. Specifically, QL-
LaMA inherits the weights of LLaMA-7B in the first stage.
We keep both InternViT-6B and QLLaMA frozen and only
train the newly added learnable queries and cross-attention
layers with filtered, high-quality data. Table 2 summarizes
the datasets for the second stage. It can be seen that we fur-
ther filtered out data with low-quality captions, reducing it
from 4.98 billion in the first stage to 1.03 billion.

Following the loss function of BLIP-2 [61], the loss
in this stage is computed as the sum of three compo-
nents: image-text contrastive (ITC) loss, image-text match-
ing (ITM) loss, and image-grounded text generation (ITG)
loss. This enables the queries to extract powerful visual rep-
resentations, and further align feature space with LLMs, at-
tributable to the effective training objectives and the utiliza-
tion of our large-scale, LLM-initialized QLLaMA.
Supervised Fine-tuning. To demonstrate the benefits of
InternVL in creating multi-modal dialogue systems, we
connect it with an off-the-shelf LLM decoder (e.g., Vi-
cuna [145] or InternLM [104]) through an MLP layer, and
conduct supervised fine-tuning (SFT). As detailed in Table
3, we collect a wide range of high-quality instruction data,
totaling approximately 4 million samples. For non-dialogue
datasets, we follow the format described in [68] for con-
version. Owing to the similar feature space of QLLaMA
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method #param IN-1K IN-ReaL IN-V2 IN-A IN-R IN-Ske avg.
OpenCLIP-H [51] 0.6B 84.4 88.4 75.5 − − − −
OpenCLIP-G [51] 1.8B 86.2 89.4 77.2 63.8 87.8 66.4 78.5
DINOv2-g [84] 1.1B 86.5 89.6 78.4 75.9 78.8 62.5 78.6
EVA-01-CLIP-g [37] 1.1B 86.5 89.3 77.4 70.5 87.7 63.1 79.1
MAWS-ViT-6.5B [98] 6.5B 87.8 – – – – – –
ViT-22B∗ [30] 21.7B 89.5 90.9 83.2 83.8 87.4 − −
InternViT-6B (ours) 5.9B 88.2 90.4 79.9 77.5 89.8 69.1 82.5

Table 4. Linear evaluation on image classification. We report
the top-1 accuracy on ImageNet-1K [31] and its variants [9, 45,
46, 90, 109]. ∗ViT-22B [30] uses the private JFT-3B dataset [134].

method #param crop size 1/16 1/8 1/4 1/2 1

ViT-L [105] 0.3B 5042 36.1 41.3 45.6 48.4 51.9
ViT-G [134] 1.8B 5042 42.4 47.0 50.2 52.4 55.6
ViT-22B [30] 21.7B 5042 44.7 47.2 50.6 52.5 54.9
InternViT-6B (ours) 5.9B 5042 46.5 50.0 53.3 55.8 57.2

(a) Few-shot semantic segmentation with limited training data. Following
ViT-22B [30], we fine-tune the InternViT-6B with a linear classifier.

method decoder #param (train/total) crop size mIoU
OpenCLIP-Gfrozen [51] Linear 0.3M / 1.8B 5122 39.3
ViT-22Bfrozen [30] Linear 0.9M / 21.7B 5042 34.6
InternViT-6Bfrozen (ours) Linear 0.5M / 5.9B 5042 47.2
ViT-22Bfrozen [30] UperNet 0.8B / 22.5B 5042 52.7
InternViT-6Bfrozen (ours) UperNet 0.4B / 6.3B 5042 54.9
ViT-22B [30] UperNet 22.5B / 22.5B 5042 55.3
InternViT-6B (ours) UperNet 6.3B / 6.3B 5042 58.9

(b) Semantic segmentation performance in three different settings, from
top to bottom: linear probing, head tuning, and full-parameter tuning.

Table 5. Semantic segmentation on ADE20K. Results show that
InternViT-6B has better pixel-level perceptual capacity.

and LLMs, we can achieve robust performance even when
freezing the LLM, choosing to train just the MLP layer or
both the MLP layer and QLLaMA. This approach not only
expedites the SFT process but also maintains the original
language capabilities of the LLMs.

4. Experiments
4.1. Implementation Details

Stage 1. In this stage, the image encoder InternViT-6B is
randomly initialized [7], and the text encoder LLaMA-7B
is initialized with the pre-trained weights from [26]. All
parameters are fully trainable.
Stage 2. In this stage, InternViT-6B and QLLaMA in-
herit their weights from the first stage, while the new learn-
able queries and cross-attention layers in QLLaMA are ran-
domly initialized. We keep both InternViT-6B and QL-
LaMA frozen and only train the new parameters.
Stage 3. At this stage, we have two different configurations.
One is to use InternViT-6B separately, similar to LLaVA-
1.5 [68]. The other is to use the entire InternVL model si-
multaneously, as shown in Figure 3. More details will be
provided in the supplementary materials.

4.2. Visual Perception Benchmarks

First of all, we validate the visual perception capabilities of
InternViT-6B, the most core component of InternVL.

Transfer to Image Classification. We evaluate the qual-
ity of visual representation produced by InternViT-6B using
the ImageNet-1K [31] dataset. Following common prac-
tices [30, 44, 84], we adopt the linear probing evaluation,
i.e. training a linear classifier while keeping the backbone
frozen. In addition to the ImageNet-1K validation set, we
also report performance metrics on several ImageNet vari-
ants [9, 45, 46, 90, 109], to benchmark the domain gen-
eralization capability. As shown in Table 4, InternViT-
6B achieves a very significant improvement over previous
state-of-the-art methods [37, 51, 84] on linear probing. To
our knowledge, this represents the currently best linear eval-
uation results without the JFT dataset [134].
Transfer to Semantic Segmentation. To investigate the
pixel-level perceptual capacity of InternViT-6B, we con-
duct extensive experiments of semantic segmentation on the
ADE20K [146] dataset. Following ViT-22B [30], we be-
gin with few-shot learning experiments, i.e. fine-tuning the
backbone with a linear head on a limited dataset. As in-
dicated in Table 5a, InternViT-6B consistently outperforms
ViT-22B across five experiments with varying proportions
of training data. Additionally, Table 5b presents our fur-
ther verification in three distinct settings, including linear
probing, head tuning [122], and full-parameter tuning. No-
tably, in the case of linear probing, InternViT-6B attains
47.2 mIoU, a substantial +12.6 mIoU improvement over
ViT-22B. These results underscore the strong out-of-the-
box pixel-level perceptual capacity of our InternViT-6B.

4.3. Vision-Language Benchmarks

In this section, we evaluate the inherent capabilities of In-
ternVL on various vision-language tasks.
Zero-Shot Image Classification. We conduct thorough
validation of the zero-shot image classification capabil-
ity of InternVL-C. As depicted in Table 6a, InternVL-
C attains leading performance on various ImageNet vari-
ants [31, 45, 46, 90, 109] and ObjectNet [8]. Compared
to EVA-02-CLIP-E+ [99], it exhibits stronger robustness to
distribution shift, manifesting in a more consistent accuracy
across ImageNet variants. Additionally, as shown in Ta-
ble 6b, our model showcases robust multilingual capabili-
ties, outperforming competing models [14, 24, 51, 126] on
the multilingual ImageNet-1K benchmark.
Zero-Shot Video Classification. Following previous meth-
ods [89, 99, 117], we report the top-1 accuracy and the mean
of top-1 and top-5 accuracy on Kinetics-400/600/700 [15–
17]. As shown in Table 8, when sampling only a single
center frame in each video, our method achieves an av-
erage accuracy of 71.0%, 71.3%, and 65.7% on the three
datasets, surpassing EVA-02-CLIP-E+ [99] by +1.2, +2.0,
and +2.3 points, respectively. Additionally, when uniformly
sampling 8 frames in each video, InternVL-C is even better
than ViCLIP [117] that trained using web-scale video data.
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method IN-1K IN-A IN-R IN-V2 IN-Sketch ObjectNet ∆↓ avg.
OpenCLIP-g [51] 78.5 60.8 90.2 71.7 67.5 69.2 5.5 73.0
OpenAI CLIP-L+ [89] 76.6 77.5 89.0 70.9 61.0 72.0 2.1 74.5
EVA-01-CLIP-g [99] 78.5 73.6 92.5 71.5 67.3 72.3 2.5 76.0
OpenCLIP-G [51] 80.1 69.3 92.1 73.6 68.9 73.0 3.9 76.2
EVA-01-CLIP-g+ [99] 79.3 74.1 92.5 72.1 68.1 75.3 2.4 76.9
MAWS-ViT-2B [98] 81.9 – – – – – – –
EVA-02-CLIP-E+ [99] 82.0 82.1 94.5 75.7 71.6 79.6 1.1 80.9
CoCa∗ [131] 86.3 90.2 96.5 80.7 77.6 82.7 0.6 85.7
LiT-22B∗ [30, 135] 85.9 90.1 96.0 80.9 − 87.6 − −
InternVL-C (ours) 83.2 83.8 95.5 77.3 73.9 80.6 0.8 82.4

(a) ImageNet variants [31, 45, 46, 90, 109] and ObjectNet [8].

method EN ZH JP AR IT avg.
M-CLIP [14] − − − − 20.2 −
CLIP-Italian [10] − − − − 22.1 −
Japanese-CLIP-ViT-B [77] − − 54.6 − − −
Taiyi-CLIP-ViT-H [137] − 54.4 − − − −
WuKong-ViT-L-G [41] − 57.5 − − − −
CN-CLIP-ViT-H [126] − 59.6 − − − −
AltCLIP-ViT-L [24] 74.5 59.6 − − − −
EVA-02-CLIP-E+ [99] 82.0 3.6 5.0 0.2 41.2 −
OpenCLIP-XLM-R-H [51] 77.0 55.7 53.1 37.0 56.8 55.9
InternVL-C (ours) 83.2 64.5 61.5 44.9 65.7 64.0

(b) Multilingual ImageNet-1K [31, 57].

Table 6. Comparison of zero-shot image classification performance. “∆↓”: The gap between the averaged top-1 accuracy and the IN-1K
top-1 accuracy. ∗CoCa [131] and LiT-22B [30] use the private JFT-3B dataset [134] during training. Multilingual evaluation involves 5
languages, including English (EN), Chinese (ZH), Japanese (JP), Arabic (AR), and Italian (IT).

Flickr30K (English, 1K test set) [88] COCO (English, 5K test set) [20]
multi- Image → Text Text → Image Image → Text Text → Imagemethod lingual R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 avg.

Florence [133] × 90.9 99.1 − 76.7 93.6 − 64.7 85.9 − 47.2 71.4 − −
ONE-PEACE [110] × 90.9 98.8 99.8 77.2 93.5 96.2 64.7 86.0 91.9 48.0 71.5 79.6 83.2
OpenCLIP-g [51] × 91.4 99.2 99.6 77.7 94.1 96.9 66.4 86.0 91.8 48.8 73.3 81.5 83.9
EVA-01-CLIP-g+ [99] × 91.6 99.3 99.8 78.9 94.5 96.9 68.2 87.5 92.5 50.3 74.0 82.1 84.6
CoCa [131] × 92.5 99.5 99.9 80.4 95.7 97.7 66.3 86.2 91.8 51.2 74.2 82.0 84.8
OpenCLIP-G [51] × 92.9 99.3 99.8 79.5 95.0 97.1 67.3 86.9 92.6 51.4 74.9 83.0 85.0
EVA-02-CLIP-E+ [99] × 93.9 99.4 99.8 78.8 94.2 96.8 68.8 87.8 92.8 51.1 75.0 82.7 85.1
BLIP-2† [61] × 97.6 100.0 100.0 89.7 98.1 98.9 − − − − − − −
InternVL-C (ours) ✓ 94.7 99.6 99.9 81.7 96.0 98.2 70.6 89.0 93.5 54.1 77.3 84.6 86.6
InternVL-G (ours) ✓ 95.7 99.7 99.9 85.0 97.0 98.6 74.9 91.3 95.2 58.6 81.3 88.0 88.8

method Flickr30K-CN (Chinese, 1K test set) [58] COCO-CN (Chinese, 1K test set) [63] avg.
WuKong-ViT-L [41] × 76.1 94.8 97.5 51.7 78.9 86.3 55.2 81.0 90.6 53.4 80.2 90.1 78.0
R2D2-ViT-L [123] × 77.6 96.7 98.9 60.9 86.8 92.7 63.3 89.3 95.7 56.4 85.0 93.1 83.0
Taiyi-CLIP-ViT-H [137] × − − − − − − − − − 60.0 84.0 93.3 −
AltCLIP-ViT-H [24] ✓ 88.9 98.5 99.5 74.5 92.0 95.5 − − − − − − −
CN-CLIP-ViT-H [126] × 81.6 97.5 98.8 71.2 91.4 95.5 63.0 86.6 92.9 69.2 89.9 96.1 86.1
OpenCLIP-XLM-R-H [51] ✓ 86.1 97.5 99.2 71.0 90.5 94.9 70.0 91.5 97.0 66.1 90.8 96.0 87.6
InternVL-C (ours) ✓ 90.3 98.8 99.7 75.1 92.9 96.4 68.8 92.0 96.7 68.9 91.9 96.5 89.0
InternVL-G (ours) ✓ 92.9 99.4 99.8 77.7 94.8 97.3 71.4 93.9 97.7 73.8 94.4 98.1 90.9

Table 7. Comparison of zero-shot image-text retrieval performance. We evaluate the retrieval capability in English using the
Flickr30K [88] and COCO [20], as well as in Chinese using Flickr30K-CN [58] and COCO-CN [63]. †BLIP-2 [61] is finetuned on
COCO and zero-shot transferred to Flickr30K, contributing to the enhanced zero-shot performance on Flickr30K.

K400 [15] K600 [16] K700 [17]method #F top-1 avg. top-1 avg. top-1 avg.
OpenCLIP-g [51] 1 − 63.9 − 64.1 − 56.9
OpenCLIP-G [51] 1 − 65.9 − 66.1 − 59.2
EVA-01-CLIP-g+ [99] 1 − 66.7 − 67.0 − 60.9
EVA-02-CLIP-E+ [99] 1 − 69.8 − 69.3 − 63.4
InternVL-C (ours) 1 − 71.0 − 71.3 − 65.7
ViCLIP [117] 8 64.8 75.7 62.2 73.5 54.3 66.4
InternVL-C (ours) 8 69.1 79.4 68.9 78.8 60.6 71.5

Table 8. Comparison of zero-shot video classification results on
Kinetics 400/600/700. We report the top-1 accuracy and the mean
of top-1 and top-5 accuracy. “#F” denotes the number of frames.

Zero-Shot Image-Text Retrieval. InternVL exhibits a
powerful multilingual image-text retrieval capability. In Ta-
ble 7, we evaluate these capabilities in English using the
Flickr30K [88] and COCO [20] datasets, as well as in Chi-
nese using the Flickr30K-CN [58] and COCO-CN [63].
In summary, InternVL-C achieves state-of-the-art perfor-
mance across most retrieval metrics, and with the second
stage of pre-training, InternVL-G further enhances zero-
shot image-text retrieval performance. These improvements
indicate a more effective alignment between visual and lin-
guistic features by using the QLLaMA.

Zero-Shot Image Captioning. Benefiting from vision-
language generative training on a vast collection of high-
quality image-text pairs, our QLLaMA possesses promising
capability in zero-shot image captioning. As shown in Ta-
ble 10, QLLaMA surpasses other models in zero-shot per-
formance on the COCO Karpathy test set [20]. When In-
ternVL is linked with an LLM (e.g., Vicuna-7B/13B [145])
and subjected to SFT, a notable enhancement in zero-shot
performance is observed for both Flickr30K [88] and No-
Caps [2] datasets, as shown in Table 9.

4.4. Multi-Modal Dialogue Benchmarks

Beyond the traditional multi-modal tasks, the emergence
of ChatGPT [1] has led to a growing focus on evaluating
the performance of multi-modal models in real usage sce-
narios, specifically within the realm of multi-modal dia-
logue. We conducted testing of InternVL-Chat models on
two prominent multi-modal dialogue benchmarks, includ-
ing MME [39] and POPE [65]. As shown in Table 9, it
clearly demonstrates that our models exhibit superior per-
formance compared with previous methods.
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visual glue train. image captioning visual question answering dialogue
method encoder layer LLM Res. PT SFT param COCO Flickr NoCaps VQAv2 GQA VizWiz VQAT MME POPE
InstructBLIP [28] EVA-g QFormer Vicuna-7B 224 129M 1.2M 188M – 82.4 123.1 – 49.2 34.5 50.1 – –
BLIP-2 [61] EVA-g QFormer Vicuna-13B 224 129M – 188M – 71.6 103.9 41.0 41.0 19.6 42.5 1293.8 85.3
InstructBLIP [28] EVA-g QFormer Vicuna-13B 224 129M 1.2M 188M – 82.8 121.9 – 49.5 33.4 50.7 1212.8 78.9
InternVL-Chat (ours) IViT-6B QLLaMA Vicuna-7B 224 1.0B 4.0M 64M 141.4∗ 89.7 120.5 72.3∗ 57.7∗ 44.5 42.1 1298.5 85.2
InternVL-Chat (ours) IViT-6B QLLaMA Vicuna-13B 224 1.0B 4.0M 90M 142.4∗ 89.9 123.1 71.7∗ 59.5∗ 54.0 49.1 1317.2 85.4
Shikra [19] CLIP-L Linear Vicuna-13B 224 600K 5.5M 7B 117.5∗ 73.9 – 77.4∗ – – – – –
IDEFICS-80B [50] CLIP-H Cross-Attn LLaMA-65B 224 1.6B – 15B 91.8∗ 53.7 65.0 60.0 45.2 36.0 30.9 – –
Qwen-VL [5] CLIP-G VL-Adapter Qwen-7B 448 1.4B† 50M† 9.6B – 85.8 121.4 78.8∗ 59.3∗ 35.2 63.8 – –
Qwen-VL-Chat [5] CLIP-G VL-Adapter Qwen-7B 448 1.4B† 50M† 9.6B – 81.0 120.2 78.2∗ 57.5∗ 38.9 61.5 1487.5 –
LLaVA-1.5 [68] CLIP-L336 MLP Vicuna-7B 336 558K 665K 7B – – – 78.5∗ 62.0∗ 50.0 58.2 1510.7 85.9
LLaVA-1.5 [68] CLIP-L336 MLP Vicuna-13B 336 558K 665K 13B – – – 80.0∗ 63.3∗ 53.6 61.3 1531.3 85.9
InternVL-Chat (ours) IViT-6B MLP Vicuna-7B 336 558K 665K 7B – – – 79.3∗ 62.9∗ 52.5 57.0 1525.1 86.4
InternVL-Chat (ours) IViT-6B MLP Vicuna-13B 336 558K 665K 13B – – – 80.2∗ 63.9∗ 54.6 58.7 1546.9 87.1
InternVL-Chat (ours) IViT-6B QLLaMA Vicuna-13B 336 1.0B 4.0M 13B 146.2∗ 92.2 126.2 81.2∗ 66.6∗ 58.5 61.5 1586.4 87.6

Table 9. Comparison with SoTA methods on 9 benchmarks. Image captioning datasets include: COCO Karpathy test [20], Flickr30K
Karpathy test [88], NoCaps val [2]. VQA datasets include: VQAv2 test-dev [40], GQA test-balanced [48], VizWiz test-dev [42], and
TextVQA val [97]. ∗The training annotations of the datasets are observed during training. “IViT-6B” represents our InternViT-6B.

method glue layer LLM COCO Flickr30K NoCaps
Flamingo-80B [3] Cross-Attn Chinchilla-70B 84.3 67.2 –
KOSMOS-2 [87] Linear KOSMOS-1 – 66.7 –
PaLI-X-55B [22] Linear UL2-32B – – 126.3
BLIP-2 [61] QFormer Vicuna-13B – 71.6 103.9
InstructBLIP [28] QFormer Vicuna-13B – 82.8 121.9
Shikra-13B [19] Linear Vicuna-13B – 73.9 –
ASM [115] QFormer Husky-7B – 88.0 116.9
Qwen-VL [5] VL-Adapter Qwen-7B – 85.8 121.4
Emu-I [100] QFormer LLaMA-13B 117.7 – –
DreamLLM [33] Linear Vicuna-7B 115.4 – –
InternVL-G (ours) Cross-Attn QLLaMA 128.2 79.2 113.7

Table 10. Comparison of zero-shot image captioning.

name width depth MLP #heads #param FLOPs throughput zs IN
variant 1 3968 32 15872 62 6051M 1571G 35.5 / 66.0 65.8
variant 2 3200 48 12800 50 5903M 1536G 28.1 / 64.9 66.1
variant 3 3200 48 12800 25 5903M 1536G 28.0 / 64.6 66.2
variant 4 2496 48 19968 39 5985M 1553G 28.3 / 65.3 65.9
variant 5 2816 64 11264 44 6095M 1589G 21.6 / 61.4 66.2
variant 6 2496 80 9984 39 5985M 1564G 16.9 / 60.1 66.2

Table 11. Comparison of hyperparameters in InternViT-6B.
The throughput (img/s) and GFLOPs are measured at 224×224
input resolution, with a batch size of 1 or 128 on an A100 GPU.

4.5. Ablation Study

Hyperparameters of InternViT-6B. As discussed in Sec-
tion 3.2, we explored variations in model depth {32, 48,
64, 80}, head dimension {64, 128}, and MLP ratio {4,
8}, resulting in 16 distinct models. In selecting the op-
timal model, we initially narrowed down our focus to 6
models, chosen based on their throughput, as listed in Ta-
ble 11. These models underwent further evaluation using
contrastive learning on a 100M subset of LAION-en [91]
over 10K iterations. For the experimental setup, the primary
difference was the use of a randomly initialized text encoder
from CLIP-L [89], in order to speed up the training. For the
sake of accuracy, inference speed, and training stability, we
ultimately chose variant 3 as the final InternViT-6B.
Consistency of Feature Representation. In this study, we
validate the consistency of the feature representation of In-
ternVL with LLMs. We adopt a minimalist setting, i.e.
conducting a single-stage SFT using only the LLaVA-Mix-

visual glue LLM dataset dialogue caption visual question answering
encoder layer MME NoCaps OKVQA VizWizval GQA
EVA-E MLP V-7B 665K [68] 970.5 75.1 40.1 25.5 41.3
IViT-6B MLP V-7B 665K [68] 1022.3 80.8 42.9 28.3 45.8
IViT-6B QLLaMA V-7B 665K [68] 1227.5 94.5 51.0 38.4 57.4
IViT-6B QLLaMA V-7B Ours 1298.5 120.5 51.8 44.9 57.7
IViT-6B QLLaMA V-13B Ours 1317.2 123.1 55.5 55.7 59.5

Table 12. Ablation of InternVL’s feature representations. V-7B
and V-13B denote Vicuna-7B and Vicuna-13B [145], respectively.

665K [64]. Moreover, only the MLP layers are trainable,
thereby confirming the inherent alignment level among fea-
tures from various vision foundation models and LLMs.
The results are shown in Table 12. These significant im-
provements clearly delineate that the feature representation
of InternVL is more consistent with the off-the-shelf LLM.

5. Conclusion
In this paper, we present InternVL, a large-scale vision-
language foundation model that scales up the vision founda-
tion model to 6 billion parameters and is aligned for generic
visual-linguistic tasks. Specifically, we design a large-
scale vision foundation model InternViT-6B, progressively
align it with an LLM-initialized language middleware QL-
LaMA, and leverage web-scale image-text data from vari-
ous sources for efficient training. It bridges the gap between
vision foundation models and LLMs, and demonstrates pro-
ficiency in a wide range of generic visual-linguistic tasks,
such as image/video classification, image/video-text re-
trieval, image captioning, visual question answering, and
multi-modal dialogue. We hope this work could contribute
to the development of the VLLM community.
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