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Abstract

Speech-preserving facial expression manipulation
(SPFEM) aims to modify facial emotions while meticu-
lously maintaining the mouth animation associated with
spoken content. Current works depend on inaccessible
paired training samples for the person, where two aligned
frames exhibit the same speech content yet differ in emo-
tional expression, limiting the SPFEM applications in
real-world scenarios. In this work, we discover that speak-
ers who convey the same content with different emotions
exhibit highly correlated local facial animations, providing
valuable supervision for SPFEM. To capitalize on this
insight, we propose a novel adaptive spatial coherent
correlation learning (ASCCL) algorithm, which models
the aforementioned correlation as an explicit metric and
integrates the metric to supervise manipulating facial
expression and meanwhile better preserving the facial
animation of spoken contents. To this end, it first learns
a spatial coherent correlation metric, ensuring the visual
disparities of adjacent local regions of the image belonging
to one emotion are similar to those of the corresponding
counterpart of the image belonging to another emotion.
Recognizing that visual disparities are not uniform across
all regions, we have also crafted a disparity-aware
adaptive strategy that prioritizes regions that present
greater challenges. During SPFEM model training, we
construct the adaptive spatial coherent correlation metric
between corresponding local regions of the input and
output images as addition loss to supervise the generation
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Reference Source NED ASCCL
Figure 1. Several examples are generated by the current advanced
NED with and without the proposed ASCCL algorithm. Incor-
porating the ASCCL can better manipulate the expressions and
meanwhile preserve mouth shapes.

process. We conduct extensive experiments on variant
datasets, and the results demonstrate the effectiveness of
the proposed ASCCL algorithm. Code is publicly available
at https://github.com/jianmanlincjx/ASCCL

1. Introduction
Speech-preserving facial expression manipulation
(SPFEM), which aims to manipulate facial emotions
while preserving the mouth animations in static images
or dynamic videos, can enhance human expressiveness
and thus benefit variant applications including virtual
avatars and film & television production. For example, it
requires lots of effects and repeated remakes to capture
an expected actor’s emotions in a movie & shooting. In
contrast, a robust SPFEM system can easily modify the
facial emotions to achieve comparable performance in the
post-production stage and thus is urgently expected.

Current SPFEM literature either predominantly previous
face reenactment algorithms [10, 28] or harnesses decou-
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pled semantic representations equipped by cyclic consis-
tency [23, 36]. The former category of works [10, 28] typ-
ically manipulates facial expressions through the exchange
of latent codes [17] or facial action units [13], and employs
the reference images as surrogate labels to construct frame-
by-frame construction supervision. However, these surro-
gate images are not perfect representations of the desired
outcomes and the reliance on them may lead to generating
sub-optimal results. The latter approach [23] posits a one-
to-one correspondence between images exhibiting varied
emotional expressions and employs cyclic consistency for
paired supervision. Despite achieving better performance,
the global cyclical consistency constraint makes it difficult
to capture alterations in fine-grained facial information un-
der different emotions. Consequently, these methods either
fail to accurately translate the intended emotions (as illus-
trated in the first and third examples in Figure 1) or do not
maintain the original mouth animation tied to the spoken
content (as evidenced in the first and second examples in
Figure 1).

To establish accurate information for additional super-
visory guidance, we investigate a plausible and reasonable
assumption: a single speaker articulating identical content
across varied emotional states exhibits a high degree of cor-
relation in local facial animations. Within the realm of
the SPFEM task, we posit that there exists a strong corre-
lation between adjacent local regions of the input images
and their corresponding counterparts in the output images.
For a more detailed analysis, we delve into the examination
of similarities and correlation coefficients between corre-
sponding local regions of the input and output images, and
those between non-corresponding local regions of the in-
put and output images. As depicted in Figure 2, there is a
notable presence of high similarities and correlation coeffi-
cients for corresponding local regions. Conversely, the non-
corresponding local regions demonstrate values approach-
ing zero. These observations provide robust empirical sup-
port for the previously stated assumption and underscore the
merit of modeling these correlations to facilitate SPFEM
performance.

In this work, we design a novel adaptive spatial co-
herent correlation learning (ASCCL) algorithm, which dis-
cerns the correlations between adjacent local regions within
images that display varying emotional states and incorpo-
rates these correlations as additional guidance to supervise
the manipulation of expressions in a manner that is attuned
to difficulty. Formally, we leverage visual disparities as
a means to characterize the interactions between adjacent
local regions, given that local motion disparities are criti-
cal to the realism of facial animations. Then, we formu-
late a spatial coherent correlation metric ensuring the visual
disparities of adjacent local regions of the image belong-
ing to one emotion are similar to those of the correspond-

ing counterpart of the image belonging to another emotion.
Recognizing the variable complexity across different facial
regions, we introduce a disparity-aware adaptive strategy,
which preferentially weights more challenging regions with
higher values while proportionally reducing the weight for
less complex areas. During SPFEM model training, we es-
tablish a network of dense correlations between local re-
gions of the input and output images, employing this adap-
tive spatially coherent correlation metric as an auxiliary su-
pervision. ASCCL is trained using a set of paired data and
can be used to construct supervision for any other persons to
facilitate generating high-quality results in a plug-and-play
manner.

The contributions can be summarized into three folds.
Firstly, we introduce an adaptive spatial coherent correla-
tion learning (ASCCL) algorithm, which learns the con-
sistent correlations between input and generated images in
terms of the visual disparities of adjacent local regions. It
can be seamlessly integrated into current SPFEM meth-
ods to improve their performance in a plug-and-play man-
ner. Secondly, we introduce a difficult-aware adaptive strat-
egy that weights more challenging regions with higher con-
straints while proportionally reducing the weight for less
complex areas. Lastly, we conduct extensive experiments
that integrate the ASCCL algorithms into current advanced
methods, demonstrating the effectiveness of the proposed
ASCCL algorithm.

2. Related Works
Video-based face manipulation. To modify talk-
ing/moving faces, video-based face manipulation algo-
rithms frequently employ conditionally Generative Adver-
sarial Networks (GANs) [14, 19, 29, 31, 33] or 3DMM
[2, 9, 11, 12, 27]. For example, GANimation [25] lever-
ages adversarial learning conditioning on action unit [13]
annotations to describe facial movements in a continuous
manifold. [29] apply StyleGAN [18] to learn low-frequency
information to accomplish temporal coherency. DSM [26]
learns disentangled representation and controls facial ex-
pressions via semantic representation. SPFEM is more dif-
ficult than simple face manipulation since it requires not
only modifying facial expressions but also retaining the fa-
cial motion of original speech contents.
Face reenactment. Facial reenactment, in which a spe-
cific actor imitates speech and expressions from a reference
video [4, 8, 10, 28, 34] and other [35]. For example, IC-
face [28] controls the pose and expression with interpretable
control signals such as head pose angles and action units.
To create temporally consistent videos, Head2Head++ [10]
employs a sequential generator and a customized dynamics
discriminator. StyleHEAT [34] extends the latent code of
StyleGAN [17] to aid in motion and expression generation
and animation. SPFEM is similar to this task in expression
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Figure 2. (a) Average similarities and (b) Average Pearson corre-
lation coefficients of the positive and negative samples.

manipulation, but it also requires preserving mouth move-
ment of original speech contents, making SPFEM a more
difficult task.
Speech-preserving facial expression manipulation.
SPFEM seeks to alter the given source video to the desired
emotion while keeping the voice content’s facial anima-
tion. Previous research has adapted facial reenactment
algorithms such as ICface [28] to this job. However, facial
reenactment can keep both the expression and the mouth
form, but not the speech substance. To accomplish this
challenge, [23] propose combining the 3DMM parameters
of source identification and target emotion. Despite making
significant progress, these works lack paired supervision,
resulting in sub-optimal performance in emotion ma-
nipulation and speech preservation. Different from the
above-mentioned works, we present in-depth analyses
about the spatial coherent correlations across images
belonging to different emotions and find there exist strong
correlations between adjacent local regions of the input
image of one emotion and their corresponding counterparts
in the output image of another emotion. We propose to
learn adaptive spatial coherent correlations to construct
additional supervision for SPFEM.

3. Motivation

As discussed above, we make a plausible and reasonable
assumption that a single speaker articulating identical con-
tent across varied emotional states exhibits a high degree
of correlation in local facial animations. To present a more
in-depth and direct analysis, we further conduct statistical
experiments to validate this assumption.

Formally, given two images of the same speaker express-
ing the same content with two different emotions, denoted
as x and y, we use the output of the last convolution layer

of pre-trained network [7] to compute their feature xf and
yf . Here, we use visual disparity to denote the relationship
of regions at locations i and j, and the similarity between
visual disparities of corresponding and non-corresponding
adjacent local regions, formulated as:

spi→j = φ(xf
i→j , y

f
i→j)

sni→k = φ(xf
i→j , y

f
i→k,k ̸=j)

(1)

xf
i→j and yfi→j denote visual disparities of regions i and j of

the images x and y. φ represents the cosine similarity func-
tion. For each emotion pair, we retrieve thousands of corre-
sponding and non-corresponding adjacent local regions and
compute their average similarities. As shown in Figure 2
(a), we present the average similarities of corresponding and
non-corresponding adjacent local regions according to the
emotion pairs of neural to other six emotions. We find the
average similarities of the non-corresponding adjacent local
regions approach 0, and that of the corresponding adjacent
local regions range from 0.43 to 0.49. Moreover, we fur-
ther compute Pearson correlation coefficients [6] between
visual disparities of visual disparities of corresponding and
non-corresponding adjacent local regions. Similarly, we use
thousands of corresponding and non-corresponding adja-
cent local regions and compute their average Pearson cor-
relation coefficients. As presented in Figure 2 (b), a similar
phenomenon is observed. These results suggest there ex-
ist strong correlations between the corresponding adjacent
local regions between two images expressing the same con-
tent while differing in emotions. Thus, it is worth investi-
gating to learn the correlations and integrate the correlations
to facilitate the SPFEM performance.

4. Method
It first learns the spatially coherent correlation metric, en-
suring the alignment between the visual disparity of adja-
cent local regions of the source input image and that of
the corresponding counterpart of the output generated im-
age. Then, it designs a disparity-aware adaptive strategy to
weigh more challenging regions with higher values while
reducing the weight for less complex regions. The ASCCL
algorithm can be used to supervise generating visual con-
tents, including intermediate results (e.g., 3DMM [1]) and
final rendered images in a plug-and-play manner. An over-
all pipeline for incorporating ASCCL into the two-stage
NED [23] method is illustrated in Figure 3.

4.1. Spatial Coherent Correlation Metric Learning

As suggested in Section 3, there inherently exist strong cor-
relations between adjacent regions of two images that one
speaker expresses the same content while differing in dif-
ferent emotions. Indeed, we can further strengthen the cor-
relations by learning the spatial coherent correlation (SCC)
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Figure 3. An overall pipeline of incorporating the proposed ASCCL algorithm to the current advanced NED [23] method to supervise gen-
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local regions between the source and generated images, followed by the disparity-aware adaptive strategy to obtain the final loss to super-
vise final image generation. An identical process is performed on the source and generated 3DMM meshes to supervise the intermediate
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Figure 4. An illustration of spatial coherent correlation metric
learning. It retrieves the corresponding adjacent local regions
of the input and output images as positive samples and the non-
corresponding counterparts as negative samples. The process is
performed in the feature maps to construct dense positive and neg-
ative samples to train the metric.

metric using paired data, which can assign a higher value
to the correlation between corresponding adjacent regions
and assign a smaller value to the correlation between non-
corresponding counterparts. In this way, it can provide
better-synchronized signals to supervise the generation pro-
cess. Here, we introduce the SCC metric learning in detail.

Formally, given two images of the same speaker express-
ing the same content with two different emotions, we need
to extract corresponding regions i and j of both two images.
However, pose bias typically exists between these two im-
ages, potentially compromising the calculation accuracy. To
address this issue, we first introduce a pose alignment mod-
ule that extracts landmark coordinates using a pre-trained
model in the OpenCV library for both two images and uti-
lizes these coordinates to compute an affine transformation
matrix. This matrix is subsequently applied to align the
pose information between the two images and obtain two
images x and y that ensure geometric correspondence.

Figure 4 exhibits the detailed computation process of
the SCC metric. Owing to the locality and translation in-
variance characteristics of convolutional neural networks

[7, 15], the mapping of pixels in the feature space back to
the original image is approximately equivalent to a local re-
gion, and as the depth of the network increases, the recep-
tive field also expands. Leveraging these characteristics, we
employ the output of multiple convolutional layers to ob-
tain the multi-scale features. Formally, we can extract the
feature of layer l as:

xf,l = ϕl(x)

yf,l = ϕl(y)
(2)

Here, ϕl(·) is feature extractor for layer l. We adopt the
Arcface network [7], and use the output of four convolu-
tional layers with dimension decline and thus l ∈ [1, 2, 3, 4].
Given two regions i and j, we compute the visual disparity
using a mapping of the feature difference, denoted as:

xf,l
i→j = f(xf,l

i − xf,l
j )

yf,li→j = f(yf,li − yf,lj )
(3)

where f(·) denotes a mapping function and it is imple-
mented using two stacked fully-connected layers cooper-
ated with the rectified linear unit non-linear function. In-
spired by the recent progress in previous works [3, 16, 22,
32], we define an identical contrastive loss, formulated as:

ℓl,i→j
xy =

exp(
xf,l
i→j ·y

f,l
i→j

τ )

exp(
xf,l
i→j ·y

f,l
i→j

τ ) + exp(
∑m

k=1,k!=j

xf,l
i→j ·y

f,l
i→k

τ )

(4)

where τ stands for a temperature hyper-parameter set to
0.07 by default. The final loss can be defined as the summa-
tion of all image pairs, corresponding region pairs, and four
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layers, formulated as:

Lsccl =
∑
l=1

∑
i,j

∑
x,y

ℓl,i→j
xy (5)

By minimizing losses through backpropagation, we can
align the visual disparities of y to x with different emo-
tions, and thus provide visual consistency correlations to
supervise SPFEM model training.

4.2. Disparity-Aware Adaptive Strategy

Once the SCCL metric is learned, we can use to Lsccl loss
between the input source (source 3DMM) and output gen-
erated (generated 3DMM) images as additional supervision.
Here, we observe a notable phenomenon that the complex-
ity varies across different facial regions. For example, it is
more complex and challenging for the mouth regions as it
change dramatically when the speaker is talking. In con-
trast, when the regions are positioned at the cheek area,
the visual disparity is reduced, promoting a faster conver-
gence. This underscores the region-specific sensitivity of
visual disparity. Consequently, by enabling the SCC metric
to independently discern and dynamically modulate learn-
ing strategies for specific regions, we can enhance the ex-
traction of spatially coherent correlation information in an
adaptive manner.

Inspired by the idea of [20], DAAS is engineered to en-
able the SCC metric to discern this variability and tailor its
learning strategies based on the characteristics of the re-
gions, prioritizing those with higher learning complexity.
Specifically, when the visual disparity xf,l

i→j is larger, this
region is deemed a challenging region, to which we assign
a larger weight value. Conversely, when xf,l

i→j is small, it
is considered a simple region that can achieve rapid conver-
gence, we reduce the weight for those simple regions. To
this end, we propose to assign different weights according
to the visual disparity, formulated as:

wl
ij = λ · sigmoid(xf,l

i→j)
r (6)

where wl
ij represents the weight value of adjacent regions

i → j for images x and y at the feature map layer l. λ and
r are hyper-parameters, both of which are set to 2 to ensure
a reasonable weight. The final loss function can be defined
as:

Lasccl =
∑
l=1

∑
i,j

∑
x,y

wl
ij · ℓl,i→j

xy (7)

Current SPFEM algorithms can be divided into two types.
The first involves a two-stage generation: initially creating
3DMM parameters and then using them to render final im-
ages [23]. The second method directly produces rendered
images [28]. Visual information here refers to either the
3DMM parameters or the final images. Lasccl can be used

for both these two types of algorithms as shown in Figure 3.
Due to page limit, we present more implementation details,
including network architectures, integration to current NED
and ICface method, and training details.

5. Experiments
5.1. Dataset

We performed experiments on the MEAD dataset [30],
which contains 60 speakers, and each speaker records 30
videos in each emotional state (i.e., neutral, happy, an-
gry, surprised, fear, sad, and disgusted). Here, we se-
lected videos of 36 speakers that have 7,560 videos to train
the ASCCL algorithm. To evaluate the SPFEM model’s
performance, we select 6 non-overlapped speakers (M003,
M009, W029, M012, M030, and W015) that have 1,260
videos. We randomly selected 90% as the training set and
the rest 10% as the test set similar to previous works [23].
We additionally employ the ASCCL algorithm on the well-
established RAVDESS dataset [21] without the need for re-
training. Specifically, we focus on 6 speakers (actors 1-6)
encompassing 168 videos. Similarly, 90% of the videos are
randomly chosen for the training set, while the remaining
10% constitute the test set.

5.2. Evaluation Protocol

In this work, we use these metrics for evaluation: 1) Frechet
Arcface Distance (FAD) gauges video realism by compar-
ing feature vectors of generated and real videos using ad-
vanced face recognition technology [7]. Lower FAD val-
ues indicate better realism. 2) Cosine Similarity (CSIM)
assesses emotional similarity between generated and target
emotional videos using a state-of-the-art expression recog-
nition network, with higher CSIM values denoting greater
similarity. 3) Lip Sync Error Distance (LSE-D) [24] eval-
uates lip-audio accuracy using a pre-trained model [5] to
measure the disparities between lip and audio represen-
tations, with smaller LSE-D indicates a higher lip-audio
accuracy. We present the results of two settings: inter-
identification, where emotion reference and source video
share the same speaker, and cross-identification, involving
different speakers.

5.3. Comparison with Baseline Methods

5.3.1 Quantitative Comparisons

We first present the performance comparisons on MEAD in
Table 1. When ASCCL is integrated into NED, the resulting
image sequences are greatly improved in FAD, LSE-D, and
CSIM. In the Cross-ID setting, compared with NED itself,
FAD, LSE-D, and CSIM have all improved to a certain ex-
tent, with FAD reduced from 4.448 to 4.264, LSE-D from
9.906 to 9.238, and CSIM from 0.773 to 0.791. Among

7271



Settings Emotions ICface Ours (ICface) NED Ours (NED)
FAD↓ LSE-D↓ CSIM↑ FAD↓ LSE-D↓ CSIM↑ FAD↓ LSE-D↓ CSIM↑ FAD↓ LSE-D↓ CSIM↑

Inter-ID

Neutral 7.114 9.760 0.779 7.158 9.382 0.781 0.906 9.264 0.883 0.891 9.113 0.911
Angry 6.420 10.483 0.741 6.195 9.766 0.803 2.177 9.579 0.802 1.195 9.550 0.896

Disgusted 7.383 10.433 0.805 6.265 9.266 0.809 3.838 9.128 0.772 1.679 9.416 0.854
Fear 6.567 9.855 0.754 6.698 9.481 0.800 1.659 10.172 0.848 1.330 10.039 0.900

Happy 6.213 10.180 0.775 6.191 9.556 0.837 1.939 9.137 0.839 1.326 8.975 0.930
Sad 7.301 10.017 0.755 6.727 9.293 0.779 2.538 9.074 0.812 1.162 8.906 0.906

Surprised 6.567 9.851 0.817 7.470 9.271 0.795 1.700 9.821 0.864 1.056 9.382 0.902
Avg. 6.795 10.083 0.775 6.672 9.431 0.801 2.108 9.454 0.831 1.234 9.340 0.900

Cross-ID

Neutral 10.560 11.226 0.705 9.745 10.604 0.671 2.022 9.812 0.841 1.865 9.134 0.852
Angry 9.470 11.073 0.648 9.271 10.456 0.693 4.851 9.904 0.717 4.853 9.239 0.748

Disgusted 9.230 11.184 0.637 9.323 10.338 0.764 5.094 10.121 0.791 4.840 9.347 0.814
Fear 9.122 11.204 0.727 9.273 10.221 0.729 4.983 9.741 0.750 4.820 9.239 0.761

Happy 8.493 11.322 0.717 9.505 10.421 0.793 3.919 9.936 0.842 3.383 9.178 0.866
Sad 10.364 11.526 0.664 9.710 10.314 0.664 5.665 10.179 0.691 5.475 9.427 0.720

Surprised 9.541 11.133 0.721 9.534 10.273 0.766 4.600 9.646 0.780 4.615 9.105 0.779
Avg. 9.540 11.238 0.688 9.480 10.375 0.726 4.448 9.906 0.773 4.264 9.238 0.791

Table 1. Comparision results of FAD, CSIM, and LSE-D of NED, ICFACE with and without our ASCCL on the inter-IDentification and
cross-IDentification settings on the MEAD dataset.

them, the LSE-D has seen significant improvements, and
these notable advancements in the LSE-D metric can be at-
tributed to ASCCL’s pivotal role in supervising the training
of the SPFEM model. This supervision accentuates the in-
trinsic visual correlations between the SPFEM model’s in-
put and output, ensuring the visual disparity of the input
and output align closely thereby enhancing consistency in
mouth shape modifications related to emotion. Addition-
ally, the betterment in FAD and CSIM further attests that
ASCCL not only maintains but can also elevate the model’s
training quality, steering it towards superior optimization.
In the inter-ID setting, these three indicators are also im-
proved to a certain extent, indicating that the proposed AS-
CCL algorithm has strong generalization and can adapt to
the emotional migration of inter-ID and cross-ID. When in-
corporating the ASCCL into the single-stage method IC-
face can also obtain significant performance improvement.
In the Inter-ID setting, compared with ICface itself, FAD,
LSE-D, and CSIM have all improved to a certain extent,
with FAD reduced from 6.795 to 6.672, LSE-D from 10.083
to 9.431, and CSIM from 0.775 to 0.801. Cross-ID is a more
general and practical setting, and incorporating the ASCCL
also achieves evident improvement on FAD, LSE-D, and
CSIM of different expression manipulation as well as the
average FAD, LSE-D, and CSIM as shown in Table 1

To demonstrate the generalization ability of the trained
ASCCL, we also present the performance comparisons on
the RAVDESS [21] dataset without retraining ASCCL. As
shown in Table 2, incorporating ASCCL can also obtain ob-
vious improvement for different expression manipulation in
both settings. when using the ICface baseline in the inter-
ID setting, it decreases the average FAD, LSE-D by 1.142,
0.436, and increases the average CSIM by 0.01. In the
Cross-ID setting, it decreases the average FAD, LSE-D by
0.521, 1.226, and the average CSIM remains the same. Sim-
ilar performance improvement is obtained when using the
NED baseline. The experiment corroborates ASCCL’s ro-
bustness across different methods and data domains.

Figure 5. Qualitative comparisons of NED with and without the
proposed ASCCL algorithm. The samples are selected from the
MEAD dataset.

5.3.2 Qualitative Comparisons
In this section, we exhibit some visualization results of the
baseline NED methodology, both with and without the AS-
CCL algorithm, as illustrated in Figure 5. Analogous to the
quantitative metrics, we also dissect the qualitative compar-
isons from three dimensions. 1) Realism: The eye region
tends to be more closed as a consequence of the NED [23]
application, as exemplified in the third column of the sec-
ond and fifth rows. Furthermore, the mouth region is dis-
torted due to the imprecise prediction of the mouth shape as
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Settings Emotions ICface Ours (ICface) NED Ours (NED)
FAD↓ LSE-D↓ CSIM↑ FAD↓ LSE-D↓ CSIM↑ FAD↓ LSE-D↓ CSIM↑ FAD↓ LSE-D↓ CSIM↑

Inter-ID

Neutral 9.816 8.209 0.749 8.302 7.239 0.762 2.041 7.376 0.847 2.810 7.567 0.853
Angry 7.047 9.504 0.703 6.182 9.453 0.711 3.288 7.757 0.805 3.722 7.601 0.799

Disgusted 8.689 8.295 0.775 7.066 8.649 0.783 4.144 7.822 0.786 3.194 8.100 0.836
Fear 8.413 8.523 0.722 7.406 8.625 0.741 2.635 7.452 0.842 2.588 7.821 0.831

Happy 8.413 8.902 0.797 7.403 7.924 0.797 3.714 7.742 0.793 3.025 6.678 0.826
Sad 8.086 8.346 0.766 7.337 7.018 0.781 2.595 7.560 0.855 2.525 7.086 0.842

Surprised 8.636 7.578 0.772 7.411 7.402 0.781 2.980 7.226 0.848 3.410 7.299 0.824
Avg. 8.443 8.480 0.755 7.301 8.044 0.765 3.057 7.562 0.825 3.039 7.450 0.830

Cross-ID

Neutral 10.478 10.736 0.677 10.343 9.302 0.682 3.558 7.856 0.820 3.160 7.458 0.813
Angry 8.704 12.415 0.646 8.242 10.522 0.706 5.546 8.085 0.766 4.851 8.513 0.739

Disgusted 9.260 11.860 0.717 8.948 10.234 0.652 7.388 8.107 0.741 7.443 7.848 0.689
Fear 9.106 11.279 0.649 9.062 10.382 0.753 5.008 8.151 0.749 4.160 7.842 0.799

Happy 9.061 11.150 0.738 9.063 9.706 0.676 5.648 8.073 0.804 4.910 7.951 0.796
Sad 9.639 11.305 0.666 9.043 9.916 0.634 5.588 8.006 0.726 4.847 7.545 0.741

Surprised 9.718 12.028 0.644 8.903 10.313 0.677 5.145 7.962 0.713 4.284 7.581 0.748
Avg. 9.424 11.539 0.677 8.903 10.313 0.677 5.412 8.034 0.760 4.808 7.820 0.761

Table 2. Comparision results of FAD, CSIM, and LSE-D of NED, ICFACE with and without our ASCCL on the inter-IDentification and
cross-IDentification settings on the RAVDESS dataset.

shown in the third column for the first rows. The ASCCL
ameliorates this NED shortcoming by aligning the visual
consistency between inputs and outputs, as demonstrated in
the fourth column. 2) Emotional Similarity: Existing works
fall short in manipulating facial expressions to communi-
cate the emotions of the reference subject; they generally
favor direct replication of facial components into the source,
as depicted in the third column in the second, and fifth rows.
The ASCCL, by maximizing the alignment of visual dis-
parities between input and output, directs the model to pri-
oritize the extraction of emotional information rather than
merely duplicating facial components from the reference
into the source, as demonstrated in the fourth column. By
incorporating the ASCCL, the NED methodology is more
proficient in preserving the source’s contours while accom-
plishing emotional transference. 3) Lip-Audio Preserving
Accuracy: The proposed DAAS is designed to focus on re-
gions around with mouth area, which exhibits considerable
changes in the input and output of the SFPEM model. Thus,
the ASCCL can achieve consistency of the mouth shape by
constraining the maximum consistency of the visual dispar-
ities for this particular region in the positive samples, as
depicted in Figure 5. The results presented in the fourth
column demonstrate a superior ability to retain the source’s
mouth shape compared to those in the third column. We will
represent more visualization results of NED and ICface with
and without ASCCL algorithm on the MEAD and RAVDESS
dataset in the Supplementary materials. We also present
some video comparisons for more direct comparison in the
Supplementary materials

5.3.3 User study
We conducted web-based user studies to compare the per-
formance of NED with and without the ASCCL algorithm.
The study comprises three segments corresponding to the
previously mentioned metrics: realism, emotion similar-
ity with the reference emotion, and mouth shape similar-
ity with the source video, covering seven basic emotions.

Emotion Realism Emotion
similarity

Mouth shape
similarity

NED ASCCL NED ASCCL NED ASCCL
Neutral 28% 72% 24% 76% 31% 69%
Angry 28% 72% 36% 64% 30% 70%

Disgusted 35% 65% 34% 66% 26% 74%
Fear 28% 72% 35% 65% 29% 71%

Happy 28% 72% 33% 67% 28% 72%
Sad 35% 65% 28% 72% 25% 75%

Surprised 30% 70% 27% 73% 24% 76%
Avg. 30% 70% 31% 69% 27% 73%

Table 3. Realism, emotion similarity, and mouth shape similarity
ratings of the user study on NED and our ASCCL.

For each emotion, we carefully selected 10 videos for both
inter-identification and cross-identification settings, totaling
70 videos. Involving 25 participants, each participant was
tasked with assessing the three aspects of each video. As
detailed in Table 3, the inclusion of the ASCCL algorithm
consistently outshines the baseline NED method across all
seven emotions in all three metrics. On average, the inte-
gration of the ASCCL algorithm demonstrates significant
improvement, achieving a 40% higher rating in realism, a
38% higher rating in emotion similarity, and an impressive
46% higher rating in mouth shape similarity compared to
the NED baseline. Supplementary materials include user
studies utilizing the ICface baseline on MEAD and employ-
ing both NED and ICface baselines on RAVDESS.

5.4. Ablation Study

In the ablation experiment section, we first investigate the
effect of pre-training ASCCL with paired data on the final
result. Following that, the pre-trained ASCCL is integrated
into the NED, with an analysis of supervision on different
results(3DMM or render image) and an examination of the
impact of DAAS.

5.4.1 Analyses of ASCCL metric learning
Our statistical analysis demonstrates an inherent spatially
coherent correlation between the input and output of the
SPFEM model. Even untrained, the ASCCL can approx-
imate this correlation, as depicted in Figure 2. By pre-
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training ASCCL with paired data, we enhance the ASCCL’s
ability to discern inherent visual consistency. As shown
in Figure 6, there is a notable improvement in the similar-
ity and correlation coefficients for positive samples. Fur-

0.94

0.96

0.96

0.94

0.93

0.97

-0.01

-0.02

-0.01

-0.02

-0.01

0.01

Ang
ry

Disg
ust

ed Fear
Hap

py Sad

Surp
ris

ed

Positive Sample Negative Sample

0.95

0.96

0.94

0.95 0.92

0.93

0.01

0.01

0.02

0.01

0.01

0.01

Ang
ry

Disg
ust

ed Fear
Hap

py Sad

Surp
ris

ed

Positive Sample Negative Sample

(a) (b)

Figure 6. (a) Average similarities and (b) Average Pearson correla-
tion coefficients of the positive and negative samples after training
the SCCL metric

thermore, we employ both trained and untrained ASCCL
to guide the SPFEM model’s training, as depicted in Ta-
ble 4. Irrespective of whether the ASCCL has been pre-
trained, it can serve as a guide when integrated into the
SFPEM model. The pre-trained ASCCL demonstrated su-
perior performance to the untrained ASCCL on measures
including FAD, LSE-D, and CSIM. This indicates that by
utilizing paired data to train the ASCCL, we can more effec-
tively capture the spatial coherent correlations between the
SFPEM’s input and output, thereby enhancing the model’s
guidance.

Settings Methods FAD↓ LSE-D↓ CSIM↑

Inter-ID

NED 2.108 9.454 0.831
Ours untrained 1.509 9.434 0.861
Ours trained 1.234 9.340 0.900

Cross-ID

NED 4.448 9.906 0.773
Ours untrained 4.306 9.458 0.784
Ours trained 4.264 9.238 0.791

Table 4. The performance of ASSCL with and without training.

5.4.2 Analysis of supervision on different outputs

ASCCL can supervise either the intermediate 3DMM pa-
rameters or the final rendered images. In this section, we
present two additional baselines that solely utilize the ob-
jective on the 3DMM parameters (Ours 3DMM) or final
rendered images (Ours Image). As depicted in Table 5, in-
corporating the objective solely to either 3DMM parameters
or images results in significant improvements across vari-
ous metrics. Moreover, introducing the objective to both the
3DMM parameters and rendered images yields even greater
improvement.

Settings Methods FAD↓ LSE-D↓ CSIM↑

Inter-ID

NED 2.108 9.454 0.831
Ours 3DMM 1.332 9.388 0.887
Ours image 1.313 9.394 0.889

Ours 1.234 9.340 0.900

Cross-ID

NED 4.448 9.906 0.773
Ours 3DMM 4.309 9.311 0.787
Ours image 4.276 9.321 0.785

Ours 4.264 9.238 0.791

Table 5. Comparision results of average FAD, CSIM, and LSE-D
of NED, with supervision on different outputs.

5.4.3 Analysis of Disparity-Aware Adaptive Strategy

Settings Methods FAD↓ LSE-D↓ CSIM↑

Inter-ID

NED 2.108 9.454 0.831
Ours w/o DAAS 1.342 9.402 0.885

Ours DAAS 1.234 9.340 0.900

Cross-ID

NED 4.448 9.906 0.773
Ours w/o DAAS 4.318 9.330 0.786

Ours DAAS 4.264 9.238 0.791

Table 6. Comparision results of average FAD, CSIM, and LSE-D
of NED, with or w/o DAAS

Through empirical analysis, we observed that visual dis-
parities are sensitive to regions. We employed DAAS to
direct the ASCCL’s attention toward those challenging re-
gions, thereby enhancing the consistency of mouth move-
ments between input and output. In this section, We ex-
amined the influence of incorporating DAAS into the out-
come. As depicted in Table 6, in the absence of DAAS,
our approach outperforms NED across all metrics. More-
over, when DAAS is integrated into our method, ASCCL
achieves even more optimal results by dynamically adapt-
ing the learning strategy to different regions.

6. Conclusion
In this work, we propose an adaptive spatial coherent corre-
lation learning (ASCCL) algorithm to investigate the inher-
ent visual correlations between the SPFEM model’s input
and output to construct paired supervision to improve facial
expression manipulation and meanwhile better preserve the
facial animation of speech content. It first characterizes the
visual disparities, and then constrains the visual disparities
in adjacent local regions of the input image to align with
those in corresponding adjacent regions of the output im-
age from the SPFEM model, together with a disparity-aware
adaptive strategy to adaptively learn based on the visual dis-
parity of each adjacent region. ASCCL is implemented by
a plug-and-play loss that can be seamlessly integrated into
any advanced methods to facilitate SPFEM performance.
We conduct extensive experiments that integrate ASCCL to
two advanced SPFEM models and carry out variant quanti-
tative and qualitative comparisons as well as user studies to
demonstrate the effectiveness.
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