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Abstract

Diffusion models are just at a tipping point for image
super-resolution task. Nevertheless, it is not trivial to capi-
talize on diffusion models for video super-resolution which
necessitates not only the preservation of visual appearance
from low-resolution to high-resolution videos, but also the
temporal consistency across video frames. In this paper, we
propose a novel approach, pursuing Spatial Adaptation and
Temporal Coherence (SATeCo), for video super-resolution.
SATeCo pivots on learning spatial-temporal guidance from
low-resolution videos to calibrate both latent-space high-
resolution video denoising and pixel-space video recon-
struction. Technically, SATeCo freezes all the parameters
of the pre-trained UNet and VAE, and only optimizes two
deliberately-designed spatial feature adaptation (SFA) and
temporal feature alignment (TFA) modules, in the decoder
of UNet and VAE. SFA modulates frame features via adap-
tively estimating affine parameters for each pixel, guaran-
teeing pixel-wise guidance for high-resolution frame syn-
thesis. TFA delves into feature interaction within a 3D local
window (tubelet) through self-attention, and executes cross-
attention between tubelet and its low-resolution counterpart
to guide temporal feature alignment. Extensive experiments
conducted on the REDS4 and Vid4 datasets demonstrate the
effectiveness of our approach.

1. Introduction
In recent years, diffusion models [11, 36, 37, 55] have
shown great progress in revolutionizing image genera-
tion. In between, a series of image super-resolution works
[36, 46, 52] benefit from leveraging knowledge prior em-
bedded in diffusion models to upscale low-resolution (LR)
images into high-resolution (HR) ones. Compared to 2D
images, videos have one more time dimension, bringing
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Figure 1. An illustration of video super-resolution by using dif-
ferent approaches of StableSR [46], VRT [23] and our SATeCo to
generate two adjacent frames. The region in the same local posi-
tion is presented in the zoom-in view.

more challenges when capitalizing on diffusion models for
video super-resolution (VSR). One natural way is to utilize
the pre-trained diffusion models for image super-resolution
(ISR), e.g., StableSR [46], to magnify each video frame.
The representative advances [46, 52] manifest that diffu-
sion models for ISR could synthesize more details than tra-
ditional regression models, e.g., VRT [23]. As depicted in
Figure 1, the edges of the windows in the building produced
by StableSR are much clearer than those generated by VRT.
Nevertheless, the inherent stochasticity of diffusion models
might jeopardize the spatial fidelity and hallucinate some
extra visual content. Moreover, the independent frame-wise
super-resolution overlooks the relation across consecutive
frames, resulting in the issue of frame inconsistency in the
high-resolution videos. For instance, the traffic signs in Fig-
ure 1 are totally different between the two adjacent frames
generated by StableSR.

In general, the difficulty of exploring diffusion models
for video super-resolution originates from two aspects: 1)
how to alleviate the stochasticity in diffusion process to pre-
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serve visual appearance? 2) how to guarantee the temporal
consistency across frames in the HR videos? We propose
to address the two issues through learning spatial-temporal
guidance from low-resolution videos to manage diffusion
procedure for video super-resolution. To regulate spatial
adaptation, we estimate affine parameters on the LR frame
features to modulate each pixel in HR frames. As such, the
pixel-wise guidance is employed to nicely learn the feature
of every pixel in HR frames and better improve spatial fi-
delity. In an effort to temporally cohere video frames, we
strengthen feature interaction across HR frames, and feature
calibration between HR frames and LR counterpart via the
attention mechanism. Moreover, large receptive field is at-
tained by conducting the self-attention and cross-attention
on the features within a 3D local window (tubelet), thereby
facilitating temporal feature alignment.

To materialize our idea, we present a new SATeCo
method to carry out Spatial Adaptation and Temporal Co-
herence for video super-resolution. Technically, SATeCo
uses a transformer-based video upscaler to up-sample the
input LR video. The VAE encoder then extracts the video
features and latent code of LR video, which are further ex-
ploited for diffusion calibration. SATeCo deliberately de-
vises spatial feature adaptation (SFA) and temporal feature
alignment (TFA) modules, and inserts the two modules into
each decoder block of UNet and VAE, for latent-space video
denoising and pixel-space video reconstruction. In the regu-
larization of latent-space video denoising, SFA exploits two
convolutional layers on the latent code of each up-sampled
LR frame, to predict a scale and bias to modulate the pixel-
wise feature of HR frame. TFA first executes self-attention
on HR video latent code within a tubelet to enhance feature
interaction, and further performs cross-attention between
the tubelet and its LR counterpart for feature calibration in
HR video. The LR video features are exploited in the same
way to regulate the HR video feature learning in pixel-space
video reconstruction. SATeCo finally refines the decoded
HR video by referring to the up-sampled LR video via a
neural network to balance synthesized quality and fidelity.

The main contribution of this paper is the proposal of
SATeCo to explore spatial adaptation and temporal coher-
ence in diffusion models for video super-resolution. The
solution also leads to the elegant views of how to leverage
pixel-wise information from LR videos for visual appear-
ance preservation, and how to achieve frame consistency
in HR video generation. Extensive experiments on REDS4
and Vid4 verify the superiority of SATeCo in terms of both
spatial quality and temporal consistency.

2. Related Work
Video super-resolution. Modern VSR approaches are
mainly based on deep neural networks and can be grouped
into two categories, i.e., sliding window-based methods and

recurrent methods. Early sliding window-based VSR tech-
niques [1, 22, 50, 51, 53] rely on 2D or 3D CNNs [19, 20]
which incorporate a sequence of LR frames to predict cen-
ter HR frame. To fully utilize the complementary informa-
tion across adjacent frames, the deformable convolutions
[43, 48] are employed for feature alignment. Inspired by
the success of transformer architecture in various computer
vision tasks [6, 27–29], self-attention emerges to be inte-
grated into the VSR frameworks [14, 23, 26, 47]. One
representative is VRT [23] which plugs the temporal mu-
tual attention block into transformer backbone to facilitate
motion estimation, feature alignment and fusion. Never-
theless, the sliding window-based approaches are difficult
to capture long-range dependencies which could limit the
performance of video super-resolution. In contrast to ag-
gregate information from adjacent frames in a short term,
recurrent approaches [2, 3, 15, 17, 18, 24, 38, 39, 54] uti-
lize a hidden state to sequentially propagate information
from all previous frames to the current frame, benefiting
the frame restoration. For instance, Chan et al. [2] adopt
a bidirectional propagation scheme with flow-based feature
alignment to maximize information gathering in super res-
olution. Despite having the great capacity of the recurrent
models for temporal information gathering, the local details
are still hard to be restored when the LR video encounters
significant degradation in a long temporal range.

Diffusion models for super-resolution. Impressive per-
formances of image synthesis achieved by diffusion models
[7, 11, 16, 30, 34, 55] encourage the deployment on im-
age super-resolution. These explorations [9, 10, 13, 21, 31,
42, 49, 57] leverage the knowledge prior embedded in the
pre-trained diffusion models to magnify images. For ex-
ample, StableSR [46] integrates a time-aware encoder into
Stable-Diffusion [36] model without altering the pre-trained
weights, and achieves promising super-resolution results.
To further enhance the reconstruction of image texture de-
tails, Yang et al. [52] introduce an attention-based control
module to maintain pixel consistency between LR and HR
images. Different from the advances which optimize a small
part of inserted parameters, several approaches [13, 21, 49]
fix all weights in the pre-trained synthesis model and at-
tempt to incorporate constraints into the reverse diffusion
process to guide image restoration. Although the effec-
tiveness of knowledge prior has been manifested in various
diffusion-based ISR methods, it is still a grand challenge
to employ diffusion models for video super-resolution and
preserve spatial fidelity and temporal consistency.

In summary, our work mainly focuses on diffusion mod-
els for video super-resolution. The proposal of SATeCo
contributes by exploring not only how to preserve spatial fi-
delity through modulating HR frame features, but also how
to calibrate HR video features with LR counterpart for bet-
ter temporal feature alignment.
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Figure 2. An overview of our SATeCo architecture. The input LR video XL is first up-sampled to the target resolution via a transformer-
based video upscaler. Then, the up-sampled video Xu is fed into the VAE encoder to extract the video features and latent code Z. Next,
the Gaussian noise is added into Z according to the diffusion scheduler, and the noisy video latent code is then restored by UNet for quality
enhancement. In latent space, a latent encoder extracts the LR latent feature maps G on the LR latent code Z, followed by spatial feature
adaptation (SFA) and temporal feature alignment (TFA) modules in each decoder block of UNet for spatial-temporal guidance learning.
Given the denoised video latent code Z0, the VAE decoder decodes the video Xd based on the guidance learnt by SFA and TFA on LR
video features. Finally, the decoded video Xd is adjusted by a video refiner via referring to Xu for final HR video XH synthesis.

3. Our Approach

In this section, we present our newly-minted SATeCo, pur-
suing Spatial Adaptation and Temporal Coherence in diffu-
sion models for video super-resolution. Figure 2 depicts
an overview of the architecture. SATeCo begins with a
video upscaler to increase the resolution of the input LR
video. Then, the up-sampled video is fed into VAE en-
coder for video feature extraction and latent code predic-
tion. After that, a spatial feature adaptation (SFA) and a
temporal feature alignment (TFA) module are leveraged to
learn spatial-temporal guidance on latent code and features
of LR video, to calibrate latent-space video denoising and
pixel-space video reconstruction. As such, the two mod-
ules are plugged into each block of the decoder in UNet
and VAE. In procedure of video latent code denoising, SFA
estimates the affine parameters on LR video latent code to
modulate each pixel of the HR video latent code. TFA first
performs self-attention on the HR video latent code within a
tubelet, and further enhances latent code by executing cross-
attention between the tubelet and its LR counterpart. Sim-
ilarly, SFA and TFA are conducted in the VAE decoder to
guide HR video reconstruction with the LR video features.
Finally, SATeCo designs a video refiner to adjust the de-
coded HR video by referring to the up-sampled video for a
good trade-off between synthesized quality and fidelity.

3.1. Video Upscaler

Most existing VSR approaches [39, 51] first upscale the in-
put LR videos through a resampling operation, and then
improve their visual quality. Nevertheless, the widely
adopted resampling operations, e.g., Bilinear and Bicubic
sampling, might damage the original visual patterns [39]
in LR frames, having a negative impact on the subsequent
video enhancement. Therefore, we exploit the recipe of re-
ducing frame degradation ahead of the feature learning [4]
in neural networks and propose a video upscaler, which gen-

erates more accurate up-sampled videos for the following
quality enhancement by diffusion models.

Given the input LR video XL, we utilize a transformer-
based video upscaler for video up-scaling as illustrated in
Figure 3(a). It consists of two cascaded temporal mutual
self-attention (TMSA) blocks [23] to temporally aggregate
video features, and a pixel-shuffle layer [40] to increase
video spatial resolution via feature reshaping. The up-
sampled video Xu = {xi

u}Li=1 with L frames is then fed
into the diffusion model for video quality enhancement.

3.2. Spatial Feature Adaptation Module

The inherent stochasticity [52] of diffusion models might
result in the distortion of texture details in image super-
resolution. A natural way of employing diffusion models
for super-resolution is to learn the spatial-level condition
via convolution-based [46] or transformer-based [52] struc-
ture to guide latent code denoising in UNet. Such kind
of mechanism only manages feature regularization in la-
tent space, posting difficulty to learn sufficient inductive
bias and provide precise guidance for high-resolution im-
age restoration. The similar issue also exists in video super-
resolution. To alleviate this, we introduce a spatial feature
adaptation (SFA) module which dynamically learns pixel-
wise guidance from the input LR videos for diffusion cal-
ibration. In the meanwhile, the SFA module emphasizes
the inductive bias learning in both of the latent-space video
denoising (i.e., training of UNet) and pixel-space video re-
construction (i.e., training of VAE).

Figure 3(c) illustrates our SFA module. Given the up-
sampled LR video Xu, the VAE encoder first encodes Xu

into the video latent code Z = {zi}Li=1. Next, we ex-
ploit a convolution-based latent encoder Ez to extract the
LR latent feature maps G = Ez(Z), which are further uti-
lized to guide the HR feature learning in UNet decoder.
Formally, we denote the HR intermediate feature maps in
UNet and the LR latent feature maps in latent encoder as
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Figure 3. An illustration of (a) video upscaler, (b) video refiner, (c) spatial feature adaptation and (d) temporal feature alignment module.

F = {f i}Li=1 and G = {gi}Li=1, respectively. For the i-th
frame, we measure a scale ratio Si ∈ RH×W×C and a bias
M i ∈ RH×W×C for each pixel of HR intermediate feature
map f i ∈ RH×W×C based on the LR latent feature map
gi ∈ RH×W×C via two 2D convolution layers:

M i = Conv2D(gi), Si = Conv2D(gi). (1)

Then, the output HR feature map f̃ i in UNet is generated
by modulating the normalized HR intermediate feature map
f i with Si and M i as:

f̃ i = Si ⊙ f i − µi

σi
+M i, (2)

where ⊙ denotes point-wise multiplication. µi and σi are
the mean and standard deviation values of the feature map
f i. Hence, the affine parameters estimated on the latent fea-
ture maps of LR videos calibrate the intermediate feature
maps of HR videos in latent code denoising, which adap-
tively injects the pixel-wise information into the video la-
tent code to preserve the visual appearance. For video fea-
ture learning in pixel space, SFA module is inserted into
each block of VAE decoder. Similarly, the extracted video
features of LR videos are taken as the guidance to estimate
the affine parameters in SFA module to adjust HR video
feature learning for video reconstruction. We take all the
modulated intermediate feature maps f̃ i from SFA module
as F̃ = {f̃ i}Li=1, which is employed for the following tem-
poral feature alignment in the UNet and VAE decoders.

3.3. Temporal Feature Alignment Module

Frame-wisely conducting ISR models for video super-
resolution could amplify the differences of blurry patterns
[39] across frames, leading to content inconsistency such
as the object shape deformation. The issue originated from
solely relying on spatial level super-resolution and lacking
temporal coherence modeling across frames. To facilitate
visual content alignment in video super-resolution, a tem-
poral feature alignment (TFA) module is devised after each
SFA module in UNet and VAE decoder, for the temporal
feature interaction and calibration.

Figure 3(d) depicts the learning procedure of TFA mod-
ule. Given the input HR intermediate feature maps F̃ =
{f̃ i}Li=1 from the SFA module in UNet decoder, we first
partition the feature map f̃ i of each frame into N non-
overlapping windows with the spatial resolution of h × w.
N = HW

hw is the total window number. Then, we link all
features within a local window across L frames to form a
HR feature tubelet F̃tub ∈ RL×h×w×C . We reshape the
dimension of each HR feature tubelet into hwL× C and
execute the standard self-attention on it:

Q,K, V = Conv3D(F̃tub),

F̂tub = Attention(Q,K, V ),
(3)

where Q,K, V ∈ RhwL×C are the query, key and value
matrices, respectively. Each of them is predicted by a 3D
convolution layer. The self-attention conducted on the HR
feature tubelet enables the feature interaction across differ-
ent frames, mitigating the temporal feature misalignment in
local regions. To further conduct the temporal feature cali-
bration, we leverage the counterpart of HR feature tubelet,
i.e., the feature tubelet Gtub of the LR latent feature maps,
as a reference for feature adjustment. We perform the cross-
attention between F̂tub and Gtub to obtain the output feature
tubelet F̄tub:

Q′ = Conv3D(F̂tub), K ′, V ′ = Conv3D(Gtub),

F̄tub = Attention(Q′,K ′, V ′),
(4)

where the query Q′ is learnt on the HR feature tubelet F̂tub

and the key/value K ′/V ′ is estimated on the LR counterpart
via 3D convolution layers, respectively. We collect all the
output feature tubelets from the TFA module and reshape
them into the original size as F̄ ∈ RL×H×W×C . The output
feature F̄ is then fed into the next block of the decoder in
UNet or VAE for video latent denoising or reconstruction.

In this way, the coupled SFA and TFA modules in UNet
and VAE decoder not only emphasize the pixel-wise fea-
ture adaptation for visual appearance preservation but also
strengthen the temporally feature interaction and calibration
for temporal coherence modeling.
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Table 1. Performance comparisons in terms of pixel-based (PSNR and SSIM) and perception-based (LPIPS, DISTS, NIQE and CLIP-IQA)
evaluation metrics on the REDS4 and Vid4 datasets. The width and height of the LR videos are rescaled by 4 times through different VSR
approaches. We follow VRT [23] to set the frame number as 6 in each clip for HR video inference.

Datasets Metrics Bicubic StableSR [46] TOFlow [51] EDVR-M [48] BasicVSR [2] VRT [23] IconVSR [2] SATeCo

REDS4

PSNR↑ 26.14 24.79 27.98 30.53 31.42 31.60 31.67 31.62
SSIM↑ 0.7292 0.6897 0.7990 0.8699 0.8909 0.8888 0.8948 0.8932
LPIPS↓ 0.3519 0.2412 0.3104 0.2312 0.2023 0.2077 0.1939 0.1735
DISTS↓ 0.1876 0.0755 0.1468 0.0943 0.0808 0.0823 0.0762 0.0607
NIQE↓ 7.257 4.116 6.260 4.544 4.197 4.252 4.117 4.104
CLIP-IQA↑ 0.6045 0.6579 0.6176 0.6382 0.6353 0.6379 0.6162 0.6622

Vid4

PSNR↑ 23.78 22.18 25.89 27.10 27.24 27.93 27.39 27.44
SSIM↑ 0.6347 0.5904 0.7651 0.8186 0.8251 0.8425 0.8279 0.8420
LPIPS↓ 0.3947 0.3670 0.3386 0.2898 0.2811 0.2723 0.2739 0.2291
DISTS↓ 0.2201 0.1385 0.1776 0.1468 0.1442 0.1372 0.1406 0.1015
NIQE↓ 7.536 5.237 7.229 5.528 5.340 5.242 5.392 5.212
CLIP-IQA↑ 0.6817 0.7644 0.7365 0.7380 0.7410 0.7434 0.7411 0.7451

3.4. Video Refiner

Recent advance [8] reveals that images synthesized by dif-
fusion model conditioning on visual contents might loss
some original color information in local regions. To address
this problem, StableSR [46] performs a non-parametric
post-processor to refine the generation with reference to
original input for achieving color preservation. Instead, we
propose a trainable video refiner to emphasize the adjust-
ment of decoded HR video from VAE decoder, by leverag-
ing the information from up-sampled LR video.

Figure 3(b) details the structure of our video refiner. We
first concatenate the decoded video Xd and the up-sampled
LR video Xu along channel dimension, and then feed it into
a residual block. The refined HR video XH is generated by
fusing Xu, Xd and the output feature mapping of residual
block as:

XH = wXu + (1− w)Xd +ResBlock([Xu, Xd]), (5)

where w is a trade-off parameter. The devised video refiner
balances the original visual contents of the up-sampled LR
video and the synthesized contents of decoded HR video
via feature fusion learning. Accordingly, our design is more
powerful in terms of color preservation, and achieves a good
trade-off between the synthesized quality and fidelity.

3.5. Training Strategy

We construct our SATeCo for video super-resolution based
on the Stable Diffusion [36] model. There are four training
stages to optimize the whole architecture. In the first stage,
we train the video upscaler using the Charbonnier loss [5] to
optimize the video reconstruction of HR videos. After that,
we follow the standard setting in [36] to train UNet for the
optimization of the inserted SFA and TFA modules. We fix
all parameters of UNet except for the two kinds of modules
during training. For the optimization of SFA and TFA mod-
ules in VAE decoder, we take the video latent codes of the

HR videos as the input, and optimize the similarity between
the decoded videos and ground-truth HR videos. Finally,
we freeze all the parameters in video upscaler, UNet and
VAE, and train the video refiner using the pairs of decoded
and ground-truth HR videos.

4. Experiments

4.1. Experimental Settings

Datasets. We empirically evaluate the effectiveness of our
SATeCo on two widely-used datasets: REDS [33] and Vid4
[25]. The REDS dataset consists of 240, 30 and 30 video
clips for training, validation and testing. Each video clip
contains 100 frames with the resolution of 1, 280 × 720.
We employ the standard protocols in [2, 3, 48] and select
four video clips from the validation set as the testing data,
namely REDS4. The Vid4 dataset also includes four video
clips, and there are about 40 frames in each clip with the
resolution of 720 × 480. Following the standard settings
[3, 23], we employ all the videos in Vid4 for evaluation and
choose the video data in the training set of Vimeo-90K [51]
for model optimization. There are 64, 612 training clips and
each clip has 7 frames with the resolution of 448× 256.

Implementation Details. We implement our SATeCo on
the PyTorch platform by using Diffusers [44] library. The
noise scheduler is set as linear scheduler (β1 = 0.00085,
βT = 0.0120, and T = 1, 000). The trade-off parameters w
in video refiner is determined as 0.5 by cross validation. We
empirically set the window size in TFA as h = 8, w = 8.
The frame number L of input clip is 6. The model is trained
with AdamW optimizer and the learning rate is 5.0× 10−5.

Evaluation Metrics. We evaluate the VSR models via
two kinds of metrics, i.e., pixel-based and perception-based
metrics. The pixel-based metrics include PSNR and SSIM
which calculate the similarity of every pixel between the
generated and ground-truth HR videos. There are also some
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Figure 4. Six visual examples of video super-resolution results by different approaches on the REDS4 and Vid4 datasets. The region in the
red box is presented in the zoom-in view for comparison.

perception-based evaluation metrics for super-resolution.
These metrics mainly measure video quality from the view-
point of human perceptual preference, and we adopt LPIPS
[56], DISTS [12], NIQE [32] and CLIP-IQA [45] in this
paper. Specifically, LPIPS utilizes VGG [41] model to ex-
tract frame features and measures the feature similarity be-
tween the synthesized and ground-truth videos. DISTS also
computes the feature similarity between video pairs via a
variant of VGG model, but the emphasis is on image tex-
ture. For NIQE and CLIP-IQA, the scores are directly pre-
dicted by the learnt models without using the ground-truth
HR videos. NIQE measures the similarity of feature dis-
tribution between synthesized frames and a realistic image
set [32], while CLIP-IQA computes cosine similarity be-
tween generated frames and text prompts (e.g., “High Res-
olution”) via CLIP model [35]. In addition, we conduct a
user study to verify human preference on different models.

4.2. Comparisons with State-of-the-Art Methods

We compare our SATeCo with several state-of-the-art tech-
niques, including Bicubic Interpolation, StableSR [46],
TOFlow [51], EDVR-M [48], BasicVSR [2], VRT [23] and
IconVSR [2], on REDS4 and Vid4 datasets.

Quantitative Evaluation. Table 1 summarizes the per-
formances of different VSR approaches in terms of the six

metrics over the two datasets. Overall, SATeCo achieves the
best performances across all perception-based metrics (i.e.,
LPIPS, DISTS, NIQE and CLIP-IQA) on REDS4. These
metrics emphasize the quality judgment from human per-
ceptual aspect and the results demonstrate the advantage of
exploiting abundant knowledge prior in the pre-trained dif-
fusion models to generate high-quality HR videos with bet-
ter visual perception. In terms of pixel-based metrics, re-
cent advances [46, 52] manifest that the stochasticity in dif-
fusion models could hurt the preservation of visual appear-
ance in HR videos, resulting in inferior performances to tra-
ditional regression models. Our SATeCo, by capitalizing on
pixel-wise guidance from LR videos to modulate HR frame
feature synthesis, alleviates the downsides and obtains the
PSNR of 31.62dB. Notably, such performance is very com-
parable to that of IconVSR [2], which is the SOTA baseline
of regression VSR models. The performance trends on Vid4
are similar with those on REDS4. In particular, SATeCo at-
tains the DISTS of 0.1015, which relatively reduces that of
the best competitor VRT [23] by 26.0%. The results indi-
cate that SATeCo benefits from learning pixel-wise spatial
adaption in diffusion to preserve frame-wise image texture
for achieving better video fidelity.

Qualitative Evaluation. Figure 4 visualizes the video
super-resolution with six examples from REDS4 and Vid4.
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Figure 5. Video super-resolution results of two videos in the Vid4 dataset. The region in the same local position across two adjacent frames
(i.e., regions highlighted by red and blue boxes) is scaled up to show more details.
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Figure 6. Human evaluation of user preference ratios between
SATeCo and other baselines on REDS4 and Vid4.

Compared to other baselines, SATeCo can successfully re-
store more local details (e.g., the sharp edges in the eave
and spoke of the 2nd and 3rd case) in frames with high
fidelity. Even with large blurriness (e.g., the 4th case),
SATeCo still exhibits the strong restoration ability for video
super-resolution, which again confirms the effectiveness of
leveraging rich knowledge prior of diffusion models and
learning spatial adaptation. To further validate the tempo-
ral coherence learnt by SATeCo, we visualize two adjacent
frames of two synthesized HR videos by using different
diffusion-based super-resolution approaches in Figure 5. As
observed in the figure, LDM and StableSR synthesize dif-
ferent visual contents across the two frames, e.g., the small
windows in the building. In contrast, our SATeCo predicts
the HR videos with higher frame consistency and preserves
the visual fidelity. That basically validates the merit of per-
forming tubelet-based self-attention within HR videos and
cross-attention between HR videos and LR counterparts to
achieve better temporal feature interaction and calibration.

Human Evaluation. Next, we further conduct human
study to verify the HR video generation quality by using

Table 2. Performance comparisons on REDS4 among variants
with different integration of SFA and TFA modules.

Model
UNet VAE

PSNR↑ SSIM↑ LPIPS↓ DISTS↓ NIQE↓
SFA TFA SFA TFA

A 28.56 0.7925 0.2159 0.0758 4.404
B ✓ 28.93 0.8087 0.2042 0.0693 4.349
C ✓ ✓ 29.45 0.8398 0.1892 0.0620 4.324
D ✓ ✓ ✓ ✓ 31.62 0.8932 0.1735 0.0607 4.104

different VSR approaches with respect to the user prefer-
ence. We invite 100 evaluators on the Amazon MTurk plat-
form, and ask each evaluator to choose the better one from
two synthetic HR videos generated by two different meth-
ods given the same LR video. Figure 6 depicts the user
preference ratios on all eight videos in the REDS4 and Vid4
datasets. SATeCo clearly wins the traditional regression
models of IconVSR, BasicVSR and VRT, and the diffu-
sion model of StableSR. The results indicate SATeCo nicely
magnifies LR videos with better visual quality and temporal
coherence through the spatial feature adaptation and tempo-
ral feature alignment design in video diffusion procedure.

4.3. Model Analysis

Analysis on SFA and TFA modules. We first investigate
how the SFA and TFA modules influence the overall perfor-
mances of video super-resolution. Table 2 lists the perfor-
mance comparisons among variants with different integra-
tion ways of SFA and TFA modules. We start from the ba-
sic diffusion model A, which leverages the zero-initialized
convolution [55] in UNet/VAE to learn the spatial guidance
from LR videos for super-resolution. The model B and C
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Table 3. Ablation studies on the design of video upscaler and video
refiner in SATeCo. The performances are reported on REDS4.

Model PSNR↑ SSIM↑ LPIPS↓ DISTS↓ NIQE↓

Upscaler
PixelShuffle 29.77 0.8426 0.1979 0.0720 4.298

Ours 31.62 0.8932 0.1735 0.0607 4.104

Refiner
w = 0 30.36 0.8572 0.1581 0.0339 3.457
w = 0.5 31.62 0.8932 0.1735 0.0607 4.104
w = 1.0 28.99 0.8001 0.1815 0.0652 4.488

gradually upgrade the basic model A through plugging SFA
and TFA modules into the UNet, which improves the PSNR
from 28.56dB to 29.45dB. Compared to zero-initialized
convolution which simply conducts weighted summation of
LR frame features and HR ones to guide spatial-level dif-
fusion learning, the combination of SFA and TFA not only
enhances the spatial adaptation via feature modulation but
also strengthens temporal feature alignment by the tubelet-
based attention. As such, the higher PSNR and SSIM which
measure the spatial fidelity is attained by the model C. Fi-
nally, the model D, i.e., our SATeCo, by further exploiting
SFA and TFA in VAE to regulate pixel-space video recon-
struction, shows the best performances in PSNR and SSIM.
In view of perception-based evaluation metrics, SATeCo
also constantly obtains improvements over other variants,
indicating the potential benefit from spatial-temporal guid-
ance learning to enhance visual perception in HR videos.
Furthermore, Figure 7 showcases video super-resolution
in a local region of one example in two adjacent frames.
SATeCo reconstructs the HR videos with high-quality vi-
sual appearance and promising temporal consistency among
adjacent frames, proving the impact of exploring feature
adaptation and alignment in diffusion for super-resolution.

Analysis on Video Upscaler. Then, we study the effec-
tiveness of the video upscaler in the SATeCo. One alterna-
tive is to employ the pre-trained Pixel Shuffle layer [40] as
the video upscaler. The upper part of Table 3 details the per-
formances of the two approaches on REDS4. Our approach
exhibits better performances against PixelShuffle across all
evaluation metrics, especially in PSNR and SSIM. Techni-
cally, PixelShuffle resamples videos via directly conduct-
ing a 2D convolution layer on the input frames. Instead,
ours delves into the formulation of frame-wise correlation
through temporal mutual self-attention, which is more ef-
fective in pixel feature enhancement for video resampling.
As such, ours effectively preserves the visual contents in LR
videos and facilitates the subsequent video diffusion.

Analysis on Video Refiner. The video refiner in
SATeCo aims for adjusting the decoded HR videos from
diffusion model by referring up-sampled original LR videos
to alleviate color degradation. The trade-off parameter w in
video refiner balances the impact of the visual contents be-
tween the decoded videos and the LR videos. To evaluate
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Figure 7. Zoom-in view of two adjacent frames in one video super-
resolution result synthesized by variants of SATeCo.

the influence of the parameter w, we list the VSR perfor-
mances by varying w in the lower part of Table 3. When w
is 0, the performances on perception-based metrics are the
best, but there is a slight performance drop on PSNR and
SSIM. The performances indicate that the synthesized vi-
sual contents by diffusion models are more acceptable for
human visual system. In contrast, employing a large value
of w (e.g., 1.0) for video refinement considers the infor-
mation of LR videos more and weakens the contribution
of diffusion models, affecting the quality of visual content
generation. Therefore, we empirically set the w as 0.5 to
seek a good trade-off between the synthesized contents and
original visual appearance.

5. Conclusions
We have presented SATeCo that explores spatial adaptation
and temporal coherence in diffusion models for video super-
resolution. In particular, we study the problem of learn-
ing spatial-temporal guidance from low-resolution videos to
calibrate high-resolution video diffusion procedure. To ma-
terialize our idea, SATeCo freezes all the parameters in the
pre-trained UNet/VAE, and plugs the spatial feature adapta-
tion (SFA) and temporal feature alignment (TFA) modules
in each decoder block to regulate latent-space video denois-
ing and pixel-space video reconstruction. Through learning
affine parameters on the guidance of low-resolution videos,
SFA modulates the high-resolution features of each pixel
to achieve spatial adaptation. TFA performs self-attention
within a tubelet to enhance feature interaction and further
conducts cross-attention between the tubelet and its low-
resolution counterpart to guide temporal feature alignment
learning. Experiments conducted on two video datasets,
i.e., REDS4 and Vid4, validate the effectiveness of the pro-
posed SATeCo for video super-resolution in terms of both
spatial fidelity and temporal consistency.
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