
Learning Triangular Distribution in Visual World

Ping Chen†1, Xingpeng Zhang†4, Chengtao Zhou1, Dichao Fan1, Peng Tu3, Le Zhang1, Yanlin Qian1,2*

1MicroBT Inc. 2Waseda University, IPS. 3RuqiMobility Inc.
4School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu, China

Abstract

Convolution neural network is successful in pervasive vi-
sion tasks, including label distribution learning, which usu-
ally takes the form of learning an injection from the non-
linear visual features to the well-defined labels. However,
how the discrepancy between features is mapped to the label
discrepancy is ambient, and its correctness is not guaran-
teed.To address these problems, we study the mathematical
connection between feature and its label, presenting a gen-
eral and simple framework for label distribution learning.
We propose a so-called Triangular Distribution Transform
(TDT) to build an injective function between feature and
label, guaranteeing that any symmetric feature discrepancy
linearly reflects the difference between labels. The proposed
TDT can be used as a plug-in in mainstream backbone net-
works to address different label distribution learning tasks.
Experiments on Facial Age Recognition, Illumination Chro-
maticity Estimation, and Aesthetics assessment show that
TDT achieves on-par or better results than the prior arts.
Code is available at https://github.com/redcping/TDT.

1. Introduction
Label distribution learning (LDL) utilizes the advantages
of distribution to solve the task of quasi-continuous la-
bel or inner-correlation between labels [22, 58]. LDL as-
signs a distribution over label value to an instance, which
can be obtained by fitting a Gaussian or Triangle distribu-
tion whose peak indicates the label and represents the rela-
tive importance of each label describing an instance [58].
Hence, LDL has an impact on many real-world applica-
tions, such as facial age estimation [22], head-pose esti-
mation [20, 23], crowd counting [76], zero-shot learning
[35], facial beauty prediction [51], hierarchical classifica-
tion [68], partial multi-label learning [69] and so on.

When LDL was first proposed, it mainly used maximum
entropy and Kullback-Leibler divergence to learn label dis-
tribution [22]. Then, a more efficient optimization method
BFGS is proposed to replace the IIS method [19]. The
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LDL is also widely combined with other algorithms, such as
random forest [57], deep convolution neural network [71],
hashing method [77], Bayesian [79], metric learning [80]
and so on. Although LDL has wide applications, it encoun-
ters some challenges, i.e. the feature space and label (solu-
tion) space are inhomogeneous [57]. To be more specific,
the feature space generated by the model is nonlinear, while
the label information is gradually changing. In addition, the
existing label distribution is mainly based on label informa-
tion to construct the distribution, placing the label informa-
tion for one instance over the whole label distribution.

Therefore, this article proposes a Triangular Distribution
Transform (TDT) method, aiming to linearly map the trans-
formed feature information to its corresponding label infor-
mation concisely and efficiently. Inspired by label distribu-
tion learning [57], we propose using symmetric triangular
distributions to represent this symmetric linear transforma-
tion. Specifically, the high-dimensional features obtained
by feature extraction networks will reflect the relationship
between labels through symmetric triangular distributions.
To better achieve this goal, we draw inspiration from the
paradigm of comparative learning and supply two sets of
images to the feature extraction network each time. One set
is the prior knowledge that needs to be compared, and the
other set is the training sample. Our method is more suit-
able for visual tasks with linearly continuous changing label
information, such as age, aesthetics, lighting intensity, etc.
Our TDT can be used as a plug-in in mainstream backbone
networks. Therefore, our method has achieved excellent re-
sults on multiple visual tasks, such as facial age estimation,
image aesthetics estimation, and illumination estimation.

The contribution of this article is summarized as follows:

• We analyze to lay the theoretical foundation for the
Triangular Distribution Transform, enabling feature
discrepancy to explain label difference.

• We show with the proposed symmetry-related loss
and commutativity-related loss, TDT can be learnt by
mainstream backbone networks.

• TDT outperforms other methods on age estimation,
aesthetics estimation, and illumination estimation.
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Figure 1. The overall structure of our TDT. Our pipeline (b) diverges from the general pipeline (a) by incorporating a parameter-free TDT
(Triangular Distribution Transform), enabling converting the nonlinear feature to the one which vary “linearly” as per Eq.4. Consequently,
a linear head module alone suffices to establish the mapping between image features and their respective labels, with clear explanation
which is missing for a conventional network head. For detailed information on the TDT loss, please refer to Figure.2.

2. Related works
2.1. Label distribution learning

The label distribution method learns the relevance between
labels to reflect the relative importance of different la-
bels [21, 22, 29, 58], which can also be seen as a spe-
cial facial age classification method. Label distribution
learning methods learn a label distribution that represents
the relative importance of each label when describing an
instance[21]. The label distribution covers a certain number
of labels. Each label has its description degree, representing
the degree to which each label describes the instance[62].
The description degrees of all the labels sum up to 1
[62]. Due to the advantages of label distributed learning,
it has achieved very excellent performance in tasks such
as facial age estimation[22], head-pose estimation [20, 23],
crowd counting [76], zero-shot learning[35], facial beauty
prediction[51], hierarchical classification[68], and partial
multi-label learning [69]. The label distribution learning
method is very consistent with the potential law of big data.
Nevertheless, acquiring distributional labels for thousands
of face images itself is a non-trivial task[58].

2.2. Facial Age estimation

The regression methods [45], classification methods [53],
and ranking methods [7, 9] for age estimation pay more

attention to putting forward different research methods ac-
cording to label information. The age regression methods
consider labels as continuous numerical values. To handle
the heterogeneous data, researchers also proposed hierar-
chical models [26] and the soft-margin mixture of regres-
sion [33]. And age classification regards labels as indepen-
dent values[53]. It regards each age as a separate category
and ignores the similarity of the same person between dif-
ferent ages. While the ranking approaches treat labels as
rank-order data and use multiple binary classifiers to deter-
mine the age rank in a facial image[7, 9]. Besides, some
scholars also focus on the objective optimization function
[12, 46]. ML-loss [46] proposed mean-variance loss for
robust age estimation via distribution learning. Deng et
al. [12] proposed progressive margin loss (PML) for long-
tailed age classification. These methods gradually consider
that aging is a slow and continuous process, which also
means that the processing of label information is significant.

2.3. Aesthetic Assessment

An aesthetic assessment task refers to evaluating the vi-
sual beauty and artistic value of given image. Early stud-
ies rely on handcrafted features [13, 43, 44], which ignore
the spatial features and semantics in assessing aesthetics. In
data-driven learning-based methods, NIMA[63] uses Earth
Mover’s Distance to optimize aesthetic distribution predic-
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tion. A-lamp[42] and MPada[59] both achieve good results
with a multi-patch approach. Hierarchical Layout-aware
Graph Convolution Network (HGCN)[56] captures layout
information. TANet [27] adaptively learns aesthetic predic-
tion rules based on identified themes, using Mean Squared
Error as the metric. Transformer [28] assign attention lev-
els to color spaces, enabling segmentation learning. Yi et
al. [72] effectively combine feature style and general aes-
thetic information using AdaIN [34] and self-supervised
pre-training for accurate aesthetic assessment.

2.4. Illumination Estimation

Illumination Estimation is often dubbed as Auto White Bal-
ance verbally and aims at measuring the normalized illumi-
nation vector given at least one single image. There exists
a bunch of traditional methods that are easy to implement
but easily fail due to the over-optimistic assumption, for
example, White Patch [4], General Gray World [1], Gray
Edge [65], Shades-of-Gray [16], LSRS [17], PCA [10] and
Grayness Index [49], etc. Relying on labeled data, a bunch
of learning-based methods with tunable inner weight e.g.
[2, 5, 6, 15, 18, 24, 25, 32, 36, 48, 61] leads the leaderboard
by a large gap generally. All aforementioned methods out-
put a single illumination vector in a deterministic way. A
few works deal with label distribution learning; Egor et al.
[14] proposed an efficient illumination distribution estima-
tion method; FFCC [3] from Barron outputs a unique illu-
mination vector which can be modified as a distribution.

3. Proposed Method
The pipeline of proposed Triangular distribution learning is
illustrated in Fig.1. Fig.1(a) depicts the general pipeline for
CNN tasks, where non-linear head modules are employed to
map non-linear features to labels due to the linear indepen-
dence of image features. These non-linear head modules
can include modules that combine convolution with non-
linear activation functions, Gaussian Mixture Model, and
others. In Fig.1(b), we propose a novel pipeline that dif-
fers from the general pipeline. We introduce a parameter-
free TDT (Triangular Distribution Transform) after the non-
linear image features, allowing for the possibility of trans-
forming linearly independent image features into linearly
correlated ones. As a result, we only need to utilize a lin-
ear head module, such as a fully connected (FC) module, in
combination with the relevant loss function to achieve lin-
ear correlation learning among the features. Additionally,
we employ a contrastive learning-like approach to guide the
predictions of unknown samples based on known samples.

3.1. Triangular Distribution Transform on Latent
Feature

With some ambiguity, vision regression problems can be
classified into linear-label problems and nonlinear-label

ones. The mapping from the original information modality
(for example 2D images, text, voice, video etc.) to the cor-
responding labels is usually non-linear and hard to model
in a fixed rule. Take facial age recognition as an example,
age label varies linearly while the visual feature of the facial
image usually does not work in the same way. The majority
of works on distribution learning mainly focus on learning
a mapping from visual features to the label in a nonlinear
way, such as the deep net, with its interpretability remaining
in suspense. In this article, we discuss the relationship be-
tween the feature and its label and present a so-called Trian-
gular Distribution Transform (TDT) to rigidly connect the
feature and its label, so that the connection is injective.

Starting with an input X ∈ RN×3×H×W (N is the batch
size, 3, H,W denotes the channel, height, and width respec-
tively) and it label Y , we extract feature by some net module
g(parameterized by Θ) as follows:

Xg = g(X ,Θ) (1)

where Xg ∈ RN×C×h×w is a C-channel feature extracted
from some backbone nets (e.g., ResNet18). The mean and
standard deviation are calculated along the h and w dimen-
sions, referred to as µ(Xg) ∈ RN×C×1×1 and σ(Xg) ∈
RN×C×1×1 respectively.

Based on the Central Limit Theorem, we assume Xg

follows Gaussian distribution and denote the probability
density function (PDF) as ϕ(Xg). Given features for two
samples (X 1

g and X 2
g ), we define their ”feature difference”

based on the Gaussian distribution of X 1
g as:

∆(X 1
g ,X 2

g ) = ϕ(X 1
g )− ϕ(X 2

g ) (2)

∝ N0,1(
X 1

g − µ(X 1
g )

σ(X 1
g )

)−N0,1(
X 2

g − µ(X 1
g )

σ(X 1
g )

)

The last part of Eq.2 is the normalized feature difference
using the standard Gaussian distribution N0,1. We give our
first assumption:

Assumption 1: There exists a function transforming Xg

to X ′
g , whose change linearly w.r.t. the label.

To better fit Assumption 1, considering ∆(X 1
g ,X 2

g ) does
not correlate linearly with the label, we approximate the
Gaussian distribution in Eq.2 using a symmetric Triangu-
lar distribution τ(·|b) following [55], formulated as:

∆(X 1
g ,X 2

g ) ≈ ∆τ (X 1
g ,X 2

g ) (3)

= τ(
X 1

g − µ(X 1
g )

σ(X 1
g )

|b)− τ(
X 2

g − µ(X 1
g )

σ(X 1
g )

|b),

τ(s|b) =

{
1
b · (1−

|s|
b ), −b ≤ s ≤ b

0, otherwise
(4)

where the scalar b controls the approximation error and is
set to

√
6 (b is obtained via the method of moments in [55]).
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Figure 2. TDT is learned relying on the commutativity-related loss and symmetry-related loss, while the latter plays the primary role. The
feature difference, associated with the symmetry-related loss, is used for result prediction. MSE is the mean square error.

In contrast to Eq.2, Eq.4 has the property of linearly de-
scribing the corresponding label difference. Then we can
search a linear function f(∆(X 1

g ,X 2
g )) that transforming

the feature difference to the label difference |Y 1 − Y 2|, in
a linear, symmetric and commutative way1.

3.2. Optimization towards Triangular Distribution
Transform and Vision Tasks

The learned feature does not follow Triangular distribution
unless we optimize the net towards it. Then we state the op-
timization loss towards TDT and related task-specific loss.
The optimization loss of TDT, shown in Fig.2, aims to grad-
ually transform the non-linear correlation among image fea-
tures into a linear correlation through label-guided learning.

Loss for Triangular Distribution
Given two sets of nonlinear features X 1

g and X 2
g ex-

tracted from backbone network, we use multiple con-
volution layers to learn to make a feature that follows
symmetric Triangular distribution, formulated as Xs =
Convs(Concat(X 1

g ,X 2
g ), θ), where the concatenation hap-

pens in the batch dimension. We calculate the mean and
standard deviation separately for Xs, X 1

g and X 2
g along

the spatial dimensions. Via Eq.4, we get ∆(Xs,X 1
g ) and

∆(Xs,X 2
g ).

To guide the net to reach a state that X 1
g and X 2

g are sym-
metrical around the “center” Xs, a symmetry-related loss is
introduced:

LS = ∥∆(Xs,X 1
g )−∆(Xs,X 2

g )∥2, (5)

where the operator ∥ · ∥2 is a L2 loss. Analogously, the

1Linearity: given ∆τ (X 1
g ,X 2

g ) = ∆τ (X 2
g ,X 3

g ), we have Y 1−Y 2 =

Y 2 − Y 3.
Symmetry: ∆τ (X 1

g ,X 1
g + δXg) = ∆τ (X 1

g ,X 1
g − δXg).

Commutativity: ∆τ (X 1
g ,X 2

g ) = ∆τ (X 2
g ,X 1

g ).

commutativity-related loss is designed as:

LM = ∥∆(X 1
g ,X 2

g )−∆(X 2
g ,X 1

g )∥2, (6)

Then, to facilitate the learning of the linear function
f(∆), we adopt a comparative approach and design a rel-
evant supervised loss:

LP = ∥δ(Y )− 2 · f(∆(Xs,X 1
g ) · sgn(Xs,X 1

g ))∥1
+ ∥δ(Y ) + 2 · f(∆(Xs,X 2

g ) · sgn(Xs,X 2
g ))∥1, (7)

Here, ∥ · ∥1 refers to smooth L1 operator, δ(Y ) = Y 2−Y 1,
sgn(Xs,Xg) represents the sign of ∆(Xs,Xg). When Xg

in the distribution of Xs has a cumulative distribution func-
tion (CDF) less than 0.5, sgn(Xs,Xg) is considered posi-
tive, and vice versa. The first part of Eq.7 represents using
samples labeled as Y 2 to predict samples labeled as Y 1, and
the other term follows the same principle.

Therefore, the final loss function for learning the trian-
gular distribution can be formulated as follows:

LT = LS + LM + LP , (8)

Loss for Vision Tasks
To quickly validate the effectiveness of TDT, we have

selected three common visual tasks: facial age recognition,
aesthetic assessment, and illumination estimation. Below
are the descriptions and loss definitions for these three tasks.

Facial Age Recognition: Age variation can be consid-
ered linear, and we can utilize TDT to draw the relationship
between visual feature differences among different images
and the corresponding age variation. Therefore, we can di-
rectly employ Eq.8 for optimizing age estimation.

Aesthetic Assessment: The aesthetic assessment varia-
tion in scores can be considered linear, similar to the op-
timization for the age estimation task, we can also choose
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Table 1. Experiments setting for three tasks evaluated.

Task Baseline Dataset Input size
Facial Age Recognition DAA(Resnet18)[8] MegaAge-Asian[75] 96× 96
Aesthetic Assessment SAAN(Resnet50+VGG19) [72] TAD66K[27] 256× 256

Illumination Estimation FC4(FC, SqueezeNet)[31] Reprocessed Color Checker [18, 60] 512× 512

Eq.8 as the overall optimization. In this case, the label cor-
responds to the aesthetic score.

Illumination Estimation: In illumination estimation, a
key step of automatic white balance, we consider the vari-
ation of the illumination to be approximately linear. Addi-
tionally, to better capture the differences in illumination an-
gles, we combine Eq.8 and the angle error [31] as the over-
all optimization function Lill = LT + 180

π · arccos(p · p
∗),

where the p and p∗ represent the normalized estimation and
ground truth of illumination color, respectively.

Algorithm 1 The training process of our method

1: Input: Sample set X and corresponding labels Y
2: Output: Loss
3: Prior Set Selection: Randomly select N samples X2

from the training set with labels Y2.
4: for each sample X1 in forward pass do
5: # Feature fusion and distribution generation
6: X 1

g ,X 2
g ← g(X1,Θ), g(X2,Θ) # Extract features

7: N,C, h,w ← X 2
g .shape # C is distribution number

8: X 1
g ← X 1

g .repeat(N, 1, 1, 1)
9: Xs ← conv(concat(X 1

g ,X 2
g , 1), C)

10: # Perform TDT operation on X 1
g based on Xs

11: µ(Xs), σ(Xs)← calc mean std(Xs)

12: ∆(Xs,X 1
g )← τ(Xs−µ(Xs)

σ(Xs)
|b)− τ(

X 1
g−µ(Xs)

σ(Xs)
|b)

13: # Feature-to-Label Difference Mapping
14: sgn(Xs,X 1

g )← (−1)cdf(X
1
g )>0.5

15: δY1 ← f(∆(Xs,X 1
g ) · sgn(Xs,X 1

g )) # via Eq.7
16: where f(·) = fc(gap(·))
17: Optimize TDT, including LS , LM , and LP

18: end for

3.3. TDT Algorithm Process

To be more clear, we provide pseudocode 1, in 5 parts.
Prior Samples Selection: Prior samples are several se-

lected training samples, providing comparison with those
samples used for training/testing. Features for the prior
samples can be pre-computed and integrated into the model.

Distribution generation: We obtain Xs and form its
high-dimensional Normal Distribution using µ(Xs) and
σ(Xs). After standardizing and approximating, we get a
zero-symmetric high-dimensional Triangular Distribution
to linearly represent feature differences.

TDT Operation: It calculates the PDF differences be-
tween Xs and Xg based on the distribution of Xs meet

|∆(X 1
g ,X 2

g )| = 2 · |∆(Xs,X 1
g )| = 2 · |∆(Xs,X 2

g )|. Re-
markably, TDT is entirely formulaic, parameter-free, and
fit any net outputting feature maps.

Difference Mapping: Base on distribution of Xs, Xs

generally has a higher PDF than Xg , meaning ∆(Xs,Xg) =
pdf(Xs) − pdf(Xg) ≥ 0. We infer feature difference signs
from cdf(Xg) > 0.5 and linearly map them to label differ-
ence via global average pooling and a linear layer.

Optimization: For commutativity loss, we utilize the
mean and std of X 1

g and X 2
g . For symmetry and supervisory

losses, those of Xs are computed.

4. Experiments

4.1. Notes and Implementation Details

We perform TDT validation on the baseline in three tasks,
whose configuration details are shown in Table 1.

Train and Test notes: As observed in pseudocode 1, our
TDT aims to guide the learning of unknown samples us-
ing prior samples, resembling contrastive learning. There-
fore, for each task experiment, we randomly select a prior
set from the training dataset. During training and testing,
each batch comprises both the prior set samples used to ob-
tain X 2

g and the unknown samples used to obtain X 1
g . Each

unknown sample undergoes TDT operations with all prior
samples to make predictions, and the average of these pre-
dictions is considered as the final prediction. To reduce fea-
ture extraction time during testing, we encapsulate all the
features from the prior set into the model parameters, re-
sulting in an optimized model with accelerated inference.

Common Setting: For all experiments, we used the
Adam optimizer, where the weight decay and the momen-
tum were set to 0.0005 and 0.9, respectively. The initial
learning rate was set to 0.001 and changed according to co-
sine learning rate decay. We trained our model using Py-
Torch on a cluster of 8 RTX 3090 GPUs. In an online man-
ner, we augment all images with random horizontal flipping,
scaling, rotation, and translation.

Facial Age Recognition: We utilize the FG-Net [47]
dataset, which comprises 1002 facial images from 82 sub-
jects, spanning an age range from 0 to 69. We follow the
setup described in the papers [8, 12, 40], employing leave-
one-person-out (LOPO) cross-validation. We report the av-
erage performance over 82 splits using the Mean Absolute
Error (MAE) as the evaluation metric.

Additionally, we also use the MegaAge-Asian [75]
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Table 2. CA on MegaAge-Asian.

Methods Pre-trained CA(3) CA(5) CA(7)
Posterior [75] IMDB-WIKI 62.08 80.43 90.42

MobileNet [54] IMDB-WIKI 44.0 60.6 -
DenseNet [70] IMDB-WIKI 51.7 69.4 -
SSR-Net [70] IMDB-WIKI 54.9 74.1 -

UVA [38] - 60.47 79.95 90.44
LRN(ResNet10) [39] IMDB-WIKI 62.86 81.47 91.34
LRN(ResNet18) [39] IMDB-WIKI 64.45 82.95 91.98
VGG16(norm) [78] ImageNet, IMDB-WIKI, AFAD 65.58 83.01 89.17
PVP+VGG16 [78] ImageNet, IMDB-WIKI, AFAD 72.65 87.24 93.16

DAA(single channel) [8] - 67.97 84.06 92.40
DAA(multi-channel) [8] - 68.29 84.84 92.47

DAA [8] - 68.82 84.89 92.70
TDT (ours) - 69.60 85.42 93.26

Table 3. MAEs on FG-Net dataset.

Methods MAE Year
DEX[52] 3.09 2015
MV[46] 2.68 2018

C3AE[74] 2.95 2019
DRFs[58] 3.85 2021
PML[12] 2.16 2021
DAA [8] 2.19 2023

TDT(ours) 2.12 -

Dataset, consisting of 40,000 age-labeled samples spanning
0 to 70 years and 3,945 images for testing. For this dataset,
we choose cumulative accuracy (CA) [75] as the evaluation
metric, defined as CA(n) = Kn

K × 100, where K is to-
tal number of testing images and Kn is the number whose
absolute errors are smaller than n.

We adopt the official implementation of DAA[8] as the
baseline for this task while replacing its DAA mapping with
our TDT. The output size of Xg is set to 3× 3.

In this task, 256 images are randomly picked from the
training set serves as the prior set for all experiments.

Aesthetic Assessment: We use TAD66K (Theme and
Aesthetics Dataset with 66K images) Dataset [27], a large-
scale aesthetic quality assessment database with 47 themes.
Images belonging to each theme are annotated indepen-
dently, with each image containing a minimum of 1200
valid annotations. The aesthetic score of each image is
treated as the label. Following TANet[27], the evaluation
metric is the Mean Squared Error (MSE). We adopt the
same train-test split setting. For the prior set, we select sam-
ples by choosing 2 random samples for each score ranging
from 0 to 10 with interval 0.1 for each theme. We employ
the official implementation of SAAN[72] as the baseline for
this task while removing the final average pooling and BN
layers. Additionally, we incorporate extra convolutions to
obtain Xg with size of 8× 8.

Illumination Estimation: We use reprocessed Color
Checker [18, 60] dataset, one of the most widely adopted
datasets in illumination estimation. Following FC4 [31], the
evaluation metric is the Recovery Angular Error. To facil-
itate better comparisons, we use the linear fully connected
version of FC4-net as the baseline, instead of the non-linear

Table 4. Results on Aesthetic Benchmark TAD66K.

method Pub. Basic MSE
RAPID [41] ACMMM2014 incorporate heterogeneous 0.0200

PAM[50] ICCV2017 residual-based, active learning 0.0200
ALamp[42] CVPR2017 layout-aware, multi-patch 0.0190
NIMA [63] TIP2018 predict distribution 0.0210
MPada [59] ACMM2018 attention, multi-patch 0.0220
MLSP [30] CVPR2019 staged training,multi-level features 0.0190
UIAA [73] TIP2019 unified probabilistic formulation 0.0210
HGCN [56] CVPR2021 graph convolution networks 0.0200
TANet [27] IJCAI2022 attention, adaptive features 0.0161
SAAN [72] CVPR2023 AdaIN,self-supervised Pretraining 0.0185
TDT(ours) - Triangular Distribution 0.0172

weight pooling version. With additional convolutional lay-
ers, we obtain Xg ∈ RN×C×8×8. When comparing with
the FC4 model, we randomly select 128 samples from the
training set as the prior set. However, when comparing with
the method proposed by Tang et al. [64] that utilizes the ex-
tended external sRGB datasets, we choose same images for
scene classification as the prior set, but only 1280 samples.

Following previous AWB works[18, 31, 60], 3-fold
cross-validation is used. Standard metrics (mean, median,
tri-mean of all the errors, the mean of the lowest 25%, and
the mean of the highest 25% of errors, the 95th percentile
error) are reported in terms of angular error in degrees.

4.2. Results and Analysis

Facial Age Estimation
The quantitative comparison of a list of top-performing

methods on the MegaAge-Asian Dataset is shown in Ta-
ble 2. From the table, we can find that even stocked with
pre-training on large-scale datasets, methods like [39, 78]
are inferior to ours. Compared with SSR-Net, our improve-
ment is over 8%. PVP [78] gets higher CA(3) and CA(5)
indexes, due to the massive pretraining on ImageNet[11],
IMDB-WIKI[53], and AFAD[45]. DAA[8], published in
2023, shares the same setting with our proposed method,
while TDT obtains better scores in all CA indexes.

To better prove the effectiveness of TDT, we also profile
TDT on FG-Net [47], reported in Table 3. Using MAE as
the metric, TDT leads the board with the smallest MAE,
surpassing the same-setting competitor DAA.
Aesthetic Assessment.

In Table 4, we list the MSE scores for the selected and
close-related aesthetic works. In an overall manner, TDT
ranks second with an MSE score of 0.0172. This improve-
ment simply originates from the deployment of the TDT
plugin over SAAN [72], whose MSE is 0.0185, again show-
ing the advantage of the label discriminative ability of TDT.
Illumination Estimation.

In Table 5, we report the statistics of the predicted angu-
lar error for a set of AWB algorithms on the Color Checker
Dataset. On metrics like mean, and median values, the TDT
based on FC4 outperforms other state-of-the-art methods,
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Table 5. Results on AWB Dataset Color Checker Dataset.

models mean med. tri. best25% worst 25% 95th pct.
FFCC [3] 1.80 0.95 1.18 0.27 4.65 -

FC4(Weighted) [31] 1.65 1.18 1.27 0.38 3.78 4.73
FC4[31] 1.84 1.27 1.39 0.46 4.20 5.46

AlexNet FC4 [31] 1.77 1.11 1.29 0.34 3.78 4.29
Multi-Hypothesis [37] 2.10 1.32 1.53 0.36 5.10 -

IGTN [67] 1.58 0.92 - 0.28 3.70 -
MDLCC [66] 1.58 0.95 1.11 0.37 3.77 -

TLCC+sRGB [64] 1.51 0.98 1.07 0.33 3.52 -
TDT+FC4 1.64 1.12 1.25 0.41 3.80 4.53

TDT+FC4+sRGB 1.46 0.85 1.05 0.26 3.61 4.61

Table 6. Loss ablation analysis on MegaAge-Asian. ✓ and −
indicate whether to add this loss to the final loss.

LS LM LP CA(3) CA(5) CA(7)
- ✓ ✓ 67.74 84.33 92.51
✓ - ✓ 68.43 84.62 92.60
✓ ✓ ✓ 69.60 85.42 93.26

such as MDLCC [66] and TLCC [64]. On top of FC4, TDT
also boosts the performance by a noticeable gap.

4.3. Ablation Study

We conduct an ablation study on the loss choice, the number
of distributions and prior samples.
Loss function

It is vital to study the impact of different losses in Eq.8
and the results are presented in Table 6. We observe that
removing any loss incurs a decrement in the overall perfor-
mance. And symmetry loss brings the most improvement.

We design a toy experiment to further analyze the loss
function Eq.7. The age loss LP is a supervisory loss due to
the label is needed for computing LP , while the symmetry-
related loss LS and the commutativity-related loss LM are
unsupervisory losses. Switching off all nonsupervisory
loss, as seen in the top two rows of Table 7, we see a
clear CA score drop, indicating the advantage brought by
the nonsupervisory loss.

If we cut off the access to unsupervisory loss for part1
(in other words, for only 75% data, the unsupersiory loss
is calculated), as reported in the bottom half of Table 7, we
claim: with increasing unlabeled data, the performance is
massively improved, which again verifies the functionality
of the symmetry-related and commutativity-related loss.
Distribution and Prior Number

Besides the loss selection, the number of distributions is
a vital factor. On the same MegaAge-Asian Dataset, we test
the number of distributions from the set 32, 64, 128, 256.
Table 8 shows that in general, the number of distributions
has a minor effect on the final results and when feature is
set 128-dimensional the performance is optimal.

The selected prior samples work like expert voting,
hence we exploit the factor of the prior sample number. Ta-
ble 8 proves that as the number of samples increases, the

Table 7. Loss analysis on MegaAge-Asian. The whole dataset is
divided into part1 and part2, with a ratio of 25% and 75%.

LS , LM LP label accessed to CA(3) CA(5)
No all all 68.26 84.26
Yes all all 69.60 85.42

part2 part2 part2 60.23 78.54
all part2 part2 66.59 83.62

Table 8. Experiments on feature distributions and prior samples.

types numbers CA(3) CA(5) CA(7)

feature distributions

256 68.77 84.82 92.70
128 69.60 85.42 93.26
64 68.39 84.59 92.85
32 67.80 85.04 92.90

prior samples
256 69.60 85.42 93.26
128 68.73 84.94 92.80
64 67.34 83.42 91.38

credibility of the results improves, yet the enhancement in
credibility gradually diminishes.

4.4. Visualization of what TDT learns

Fig.3 shows that: once the training is completed, we see fea-
ture difference approximates a triangular distribution func-
tion on varying symmetric age. The same property can be
found for the predicted delta age (Inset (b)) in Fig.3). This
results from TDT learning. From the inset (c) in Fig.3, we
observe that the symmetry loss range is almost the same,
meeting the feature symmetry assumption.

Fig.4 shows some qualitative comparison on illumina-
tion estimation task. Starting from raw image, different
prior sample gives a close-to-groundtruth predicted white
point, averaged to form the final robust white point. For
the 3rd row, the prediction slightly shifts away from the
groundtruth, which we guess it is due to multi-illumination.

As shown in Fig.5, we study the performance of TDT
learning the symmetry axis location. For any pair of fa-
cial images, for example an age-a image from test set and
an age-b image from the prior set, thus the symmetry axis
should locate at (a + b)/2. With (a + b)/2 fixed, we alter
the testing image and prior image, and draw a histogram of
the resulted Xs, which in fact gather around the symmetry
axis. For pairs of {age-3, age-34}, the mean of predicted
symmetric age is 18.27, close to the symmetric age 18.50.

5. Conclusion
A learning framework based on the Triangular Distribution
Transform is proposed in this paper. It connects the non-
linear feature difference and the corresponding label dif-
ference in a verified linear, symmetric, and commutativity
manner. This transform can be used as a portable plug-in
for vision regression tasks, e.g., we verify its application on
three vision tasks. On facial age estimation, aesthetic as-
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Figure 3. Relationship between symmetric age with the feature discrepancy, predicted delta age, and symmetric loss. (a) feature discrep-
ancy; (b) predicted delta age; (c) symmetric loss

Figure 4. Qualitative comparison of the final color correction result and those from individual prior samples. In the fourth column, the
predictions from different priors (their color corrected images are given in right insets) are shown clustered around the ground truth location,
with limited variance. In the rightmost column, prior samples are given.

Figure 5. Study on the symmetry learnt in Xs. For any pair of
age-a image from test set and age-b image from the prior set, we
draw a histogram of the resulted Xs, which in fact gather around
the symmetry axis (a+ b)/2, w.r.t. the histogram figure.

sessment, and illumination estimation, the proposed TDT
obtains on-par or even better performance than the prior
arts, without much modification on the affiliated backbone.
In the future, we will explore the application of TDT in a
wider context, for example shape and pose estimation.
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