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Abstract

Rotation invariance is an important requirement for
point shape analysis. To achieve this, current state-of-the-
art methods attempt to construct the local rotation-invariant
representation through learning or defining the local ref-
erence frame (LRF). Although efficient, these LRF-based
methods suffer from perturbation of local geometric rela-
tions, resulting in suboptimal local rotation invariance. To
alleviate this issue, we propose a Local-consistent Trans-
formation (LocoTrans) learning strategy. Specifically, we
first construct the local-consistent reference frame (LCRF)
by considering the symmetry of the two axes in LRF. In
comparison with previous LRFs, our LCRF is able to pre-
serve local geometric relationships better through perform-
ing local-consistent transformation. However, as the con-
sistency only exists in local regions, the relative pose in-
formation is still lost in the intermediate layers of the net-
work. We mitigate such a relative pose issue by devel-
oping a relative pose recovery (RPR) module. RPR aims
to restore the relative pose between adjacent transformed
patches. Equipped with LCRF and RPR, our LocoTrans
is capable of learning local-consistent transformation and
preserving local geometry, which benefits rotation invari-
ance learning. Competitive performance under arbitrary
rotations on both shape classification and part segmen-
tation tasks and ablations can demonstrate the effective-
ness of our method. Code will be available publicly at
https://github.com/wdttt/LocoTrans.

1. Introduction
Point cloud analysis [1, 6, 10, 20, 37, 42, 45] is a fundamen-
tal task in 3D vision. Existing works [21, 29] have achieved
excellent performance in classification and part segmenta-
tion for pre-aligned point cloud data. However, these works
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Figure 1. Illustration of LRFs and the points transformation. For
two reference points marked by Blue and Cyan, we use the LRF
in OrientedMP [16] and our proposed LCRF to transform the lo-
cal patches centered in them, respectively. By observing (a) and
(b), we can find that our LCRF is able to yield local-consistent
transformation and thus preserve the local shapes better. In com-
parison, OrientedMP only generates consistent orientation in one
axis (marked by Red) but fails in the other (marked by Green).

tend to suffer severe performance drops when processing
3D objects with arbitrary rotations, as they do not learn the
rotation-invariant feature representations. The lack of the
capability for rotation invariance limits the application of
the point cloud analysis model in practical situations. Cur-
rently, many attempts [2, 12, 16, 34, 41] have been made to
improve the performance under arbitrary rotations.

To achieve rotation invariance, previous works [2, 34,
43] propose to exploit local relative geometric relationships
that remain unchanged under rotations, such as distance and
angle, for feature learning, instead of the 3D coordinates.
However, such a strategy does not fully use 3D geomet-
ric information. Recently, some methods [4, 16, 41] aim
to learn rotation-invariant representations by building local
reference frames (LRFs). These LRF-based methods con-
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struct three orthonormal basis vectors for each point as the
reference frame and then project the original local points
into the frame. The orientations of LRF can be defined from
geometric information, such as local barycenter, global cen-
ter, and normal vector, or learned from input point cloud
data. For instance, OrientedMP [16] is a pioneering work
that employs the equivariant network to extract local fea-
tures for building LRF.

However, constructing local rotation-invariant represen-
tation via existing LRFs inevitably changes the original lo-
cal geometry. As shown in Fig. 1(a), for two adjacent points
(marked by Cyan and Blue), we transform the local regions
centered by them using the LRF built by OrientedMP, and
different orientations are observed. As a result, the net-
work might be struggling to learn identical representations
for them due to the loss of relative pose. Moreover, this
perturbation may lead to an ambiguous representation when
applying vanilla convolution directly to points that have lost
their relative pose and been assigned within a local patch af-
ter a k-nearest-neighbors (KNN) operation, as observed in
existing works [4, 41]. To analyze the reason causing such
an issue, we further visualize the learned orientations along
two axes in OrientedMP. As illustrated in Fig. 1(a), the lo-
cal consistency only exists in one orientation but not in the
other. Therefore, we attribute the perturbation of geometry
relationships to the local inconsistency of learned LRF.

Motivated by the analysis above, we propose Local-
consistent Transformation (LocoTrans) learning strategy,
aiming to learn local-consistent reference frame and achiev-
ing better local geometry preservation. Specifically, follow-
ing OrientedMP, we also exploit the equivariant network
for constructing LRF, as the equivariant information can be
leveraged to eliminate rotations existing in data. Orient-
edMP utilizes this property to construct two axes of LRF
based on Gram-Schmidt orthogonalization with equivariant
features. However, it suffers from a learning imbalance be-
tween the two axes due to the asymmetry of their defini-
tion. Therefore, to address this issue, we select two axes of
LRF that satisfy the symmetry based on the angular bisec-
tor of the equivariant features. Then two constraints includ-
ing orthogonality and consistency are employed to optimize
the LRF, yielding local-consistent reference frame (LCRF).
Thus, LCRF is able to achieve local-consistent transforma-
tion during the construction of local rotation-invariant rep-
resentation, mitigating disturbances in local geometry. As
shown in Fig. 1(b), our LCRF achieves consistent orienta-
tions in both two axes for the two neighboured points. Nev-
ertheless, since we can only achieve consistency in a local
region, in the intermediate layers of the network, the rela-
tive pose between adjacent points is still changed, which is
called the relative pose issue [4, 41]. We alleviate this is-
sue by developing a relative pose recovery (RPR) module.
In our RPR, we utilize the equivariant features that contain

original global information to improve the learned rotation-
invariant features.

Our LocoTrans is implemented through a fusion network
comprising equivariant and invariant branches, with the in-
variant branch relying on the equivariant one to achieve
LCRF and RPR. The key contributions of this paper can
be summarized as follows:
• We propose LocoTrans to achieve rotation-invariant fea-

ture learning while keeping local geometric information.
• We develop LCRF by a new definition for axes of LRF

satisfying the symmetry, which is able to learn local-
consistent reference frame; We also design an RPR mod-
ule to address the relative pose issue.

• We conduct experiments to evaluate whether our network
is rotation-invariant to arbitrary rotations in both classifi-
cation and part segmentation tasks. The results show the
effectiveness of our method.

2. Related Works
2.1. Point Cloud Shape Analysis

Methods for 3D point cloud shape analysis can be catego-
rized into three primary groups: projection-based [19, 25],
voxel-based [17, 30], and point-based [20, 21, 29]. The
first two categories are constrained by geometric informa-
tion loss and high computational costs, respectively, which
currently have been explored by some works [9, 13]. In
contrast, point-based methods work on point clouds with-
out additional operations, with PointNet [20] pioneering di-
rect processing of point sets. Subsequent works consider
local context and prioritize various aspects, such as abstract-
ing strategies [21, 44], convolution operations [35, 46], and
feature aggregation [3, 32]. However, a common drawback
in many existing methods is a lack of robustness to rota-
tions, leading to a significant performance decline when
confronted with arbitrarily rotated data. In our work, we
address this limitation by introducing rotation invariance to
the 3D network by exploring the construction of local refer-
ence frames.

2.2. Rotation Invariance Methods

Recently, some works [14, 33, 39] address the challenge
of rotations by converting rotated point clouds to canoni-
cal poses through principal component analysis (PCA) to
obtain rotation-invariant features. Li et al. [14] compre-
hensively summarize ambiguities in canonical poses and
mitigate their impact through blending strategies. Despite
these efforts, complete elimination of ambiguities remains
challenging, necessitating extensive augmentation for ap-
proximate invariance. Additionally, constructing rotation-
invariant features within local patches has been widely ex-
plored, involving handcrafted features with local geome-
try replacing Cartesian coordinates as input. RI-CNN [43]
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designs a four-dimensional feature with distance and an-
gle while PaRI-Conv [4] utilizes the normal vector to ex-
tend it to eight dimensions. In the absence of normal vec-
tors, SGMNet [34] connects every pair of points in a lo-
cal neighborhood for a full geometrical description. LRF-
based methods [4, 12, 16, 41] introduce rotation invariance
through building local reference frames, which can be used
to transform local coordinates. However, these methods of-
ten sacrifice the original pose information between local
patches, resulting in performance limitations. To address
this issue, some methods [4, 41] attempt to restore relative
pose with hand-crafted features. In this paper, we first alle-
viate relative pose changes with local-consistent reference
frame and then leverage equivariant network to capture lo-
cal geometry for restoring relative pose.

2.3. Rotation Equivariance Methods

Currently, typical solutions to equivariance can be divided
into tensor field-based and vector-based. Tensor field-based
methods [8, 18, 27] constrain convolutional kernels to ad-
here to the spherical harmonics family to achieve equivari-
ance but are limited by significant memory requirements. In
comparison, vector-based methods [5, 11, 23, 24, 26] trans-
form standard neural network representations from scalar to
vector to achieve equivariance. Typically, activation func-
tions are often used to introduce non-linearity into the net-
work for better learning. However, maintaining equivari-
ance in vector-based networks requires linear layer com-
positions in encoders, limiting network performance. To
address this limitation, some works [5, 11] explore intro-
ducing non-linearity through a combination of linear lay-
ers. VNN [5] achieves this through vector truncation opera-
tions, while GVP [11] scales vectors based on their norms.
In our paper, we leverage features output by an equivariant
network to enhance the learning of local rotation-invariant
representation.

3. Method
In this paper, our objective is to learn local rotation-invariant
representation with local-consistent reference frames. In the
following, we first introduce the overview of our method
in Sec. 3.1, then detail our Local-consistent Transformation
(LocoTrans) learning in Sec. 3.2 by outlining the compo-
nents of the local-consistent reference frame (LCRF) con-
struction and the relative pose recovery (RPR) module.

3.1. Overview

The overall framework of our approach is shown in Fig. 2.
Our LocoTrans achieves LCRF and RPR with equivariant
features. Thus, in our framework, we introduce a fusion
network comprising two branches: the invariant branch and
the equivariant branch. Given the significant success of
DGCNN [29] in the field of point cloud shape analysis,

we adopt it as the backbone for both branches. Our fu-
sion network takes raw point clouds as input. Initially, we
feed the raw points into the equivariant branch to get equiv-
ariant features that are then used to construct LCRF and
used in RPR module of the invariant branch. At the out-
put stage, the attention mechanism, widely applied in fea-
ture fusion [36, 47] to aggregate information, is employed
to fuse features from the invariant branch and the equivari-
ant branch.

Before delving into the details of our method, we
establish some notations. Given a point cloud P =
[p1, p2, ..., pN ] ∈ RN×3 and an arbitrary rotation R ∈
SO(3), the rotation-invariant representation δ(p) satisfies:

δ(Rp) = δ(p), (1)

where p ∈ P and δ(·) is the function to build rotation-
invariant representation. The equivariant features we re-
quire in our LocoTrans are generated from an equivariant
network h which satisfies:

h(Rp) = Rh(p) = Rv, (2)

where v ∈ R3×C represents the feature output from the
equivariant network for each point.

3.2. Local-consistent Transformation Learning

To mitigate geometry perturbation caused by local inconsis-
tency of previous LRF, LocoTrans proposes LCRF to per-
form a local-consistent transformation. The RPR module is
also presented to further restore the relative pose. We intro-
duce these modules separately.
Local-consistent Reference Frame. Given a reference
point pr in a point cloud, its LRF Ur ∈ R3×3 is composed
of three orthonormal basis:

Ur = [ur,1, ur,2, ur,1 × ur,2], (3)

where ur,1 and ur,2 are orthogonal normalized vectors. The
LRF is widely used to construct local rotation-invariant rep-
resentation based on each reference point and its corre-
sponding neighbors.

To leverage equivariant features for constructing a LRF,
these features are first projected to ṽr = [ṽr,1, ṽr,2] ∈ R3×2

with a Multi-Layer Perceptron (MLP). The resulting nor-
malized vectors, ṽr,1 and ṽr,2, are then employed to define
ur,1 and ur,2 within the LRF through the Gram-Schmidt
process, as outlined below:

ur,1 = ṽr,1, (4)

ur,2 =
ṽr,2 − ⟨ṽr,2, ur,1⟩ur,1

∥ṽr,2 − ⟨ṽr,2, ur,1⟩ur,1∥
, (5)

where ∥ · ∥ denotes the vector norm and ⟨·, ·⟩ represents the
inner product. This process is depicted in Fig. 3(a).
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Figure 2. Overall framework of our LocoTrans. Our network consists of the invariant branch and the equivariant branch. To reduce the
local geometric perturbation caused by local region transformation, we construct LCRF using the features from the equivariant branch
to perform the local-consistent transformation. However, such a perturbation is difficult to completely eliminate. The RPR module is
presented to alleviate this issue, restoring the relative pose between local patches. At the output level, we merge the features from two
branches to aggregate information.

Figure 3. Comparison between the ways of generating LRF with
equivariant features. (a) Gram-Schmidt process. (b) Our LCRF.
The two red dashed arrows in (b) are orthogonal. We present the
visualized results of ur,1 and ur,2 in LRF generated by Gram-
Schmidt process.

However, as shown in Fig. 3(a), ur,1 maintains orienta-
tion consistency in the local area, while ur,2 does not. This
phenomenon arises because ur,1 and ur,2, constructed using
the Gram-Schmidt process, exhibit an imbalance in learn-
ing, stemming from disparities in their definitions. Con-
structing local rotation-invariant representations with such
inconsistent LRFs can lead to serious perturbation of local
geometric relationships.

To address this issue, as shown in Fig 3(b), our LCRF
introduces a vector vr that has the same direction as the an-

gular bisector of ṽr,1 and ṽr,2 to construct the symmetric
ur,1 and ur,2. Specifically, the length of vr is first defined
to be equal to sin θ + cos θ to make ur,1 and ur,2 orthogo-
nal, where θ is half the angle between ṽr,1 and ṽr,2. Then
ur,1 and ur,2 are obtained by subtracting ṽr,1 and ṽr,2 from
vr and normalizing to the unit vector. This process can be
written as:

sin θ =

√
1− ṽTr,1ṽr,2

2
, cos θ =

√
1 + ṽTr,1ṽr,2

2
, (6)

vr =
(ṽr,1 + ṽr,2)

∥ṽr,1 + ṽr,2∥
(sin θ + cos θ), (7)

ur,1 =
vr − ṽr,1
∥vr − ṽr,1∥

, ur,2 =
vr − ṽr,2

∥vr − ṽr,2∥
. (8)

Analysis of the orthogonality of ur,1 and ur,2 can be found
in the Supplementary. Although LCRF achieves the learn-
ing balance between ur,1 and ur,2, it still needs to be op-
timized for local consistency. Given a set of reference
points Pr in the point cloud P , for two reference points
pa, pb ∈ Pr within the local area, we construct LRFs with
normalized vectors ṽa,1, ṽa,2 and ṽb,1, ṽb,2 from equivari-
ant network, respectively. The LRFs constructed by the
above process for pa and pb can be represented as Ua =
[ua,1, ua,2, ua,1 × ua,2] and Ub = [ub,1, ub,2, ub,1 × ub,2].
The cosine of the angle between their axes is defined as the
consistency metric between Ua and Ub. Taking ua,1 and
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ub,1 as an example, the computation is as follows:

uTa,1ub,1 =
(va − ṽa,1)

T (vb − ṽb,1)

∥va − ṽa,1∥∥vb − ṽb,1∥
, uTa,1ub,1 ∈ (−1, 1) ,

(9)
where va and vb are obtained by Eq. 6 and Eq. 7 with
ṽa,1, ṽa,2 and ṽb,1, ṽb,2 as input.

To learn the local-consistent LRF, we design a two-step
optimization strategy to maximize the consistency. First, to
better maximize the consistency of ua,1 and ub,1, we sim-
plify the representation of uTa,1ub,1. Observing the defini-
tions of ua,1 and ub,1, we find that ua,1 and ub,1 can be
defined with just one of the equivariant vectors when two
equivariant vectors are orthogonal. Hence, for two refer-
ence points pa and pb, we encourage the two normalized
vectors (ṽ1, ṽ2) ∈ {(ṽa,1, ṽa,2), (ṽb,1, ṽb,2)} from equivari-
ant network to be orthogonal by an orthogonality loss:

Lorth = ṽT1 ṽ2. (10)

Once ṽ1 and ṽ2 are orthogonal, as shown in the center of
Fig. 3(b), Eq. 9 can be rewritten as:

uTa,1ub,1 = ṽTa,2ṽb,2. (11)

In this way, maximizing the consistency between ua,1 and
ub,1 is converted to maximizing the consistency between
ṽa,2 and ṽb,2. Next, we define consistency loss Lconsist to
make ṽ1 and ṽ2 learn from each other, thereby maximizing
both ṽTa,1ṽb,1 and ṽTa,2ṽb,2 as follows:

Lconsist = (ṽTa,1ṽb,1 − ṽTa,2ṽb,2)
2. (12)

Maximizing the consistency between ua,2 and ub,2 can also
be achieved by the above process. With our two-step op-
timization strategy, we can effectively enhance local con-
sistency for both axes of LRF to alleviate the changes in
relative pose.
Relative Pose Recovery. We can generate local rotation-
invariant representation via the constructed LCRF and
extract features with convolution operations. Taking
DGCNN’s edge convolution [29] as an example, two con-
secutive convolution operations are defined as follows:

xr = max
j∈N (pr)

ψ(UT
r pr, U

T
r (pj − pr)), (13)

x
′

r = max
j∈N (xr)

ϕ(xr, xj − xr), (14)

where N (·) represents the neighbors around the input with
KNN operation. xr represents the feature corresponding
to the reference point pr, and xj means the feature corre-
sponding to pj , the neighbor of pr. Both ϕ and ψ are MLPs.
Analysis of how Eq. 13 achieves rotation invariance can be
found in the Supplementary.

In Eq. 13, each reference point and its neighbors are
transformed with respect to our LCRF. However, as the
consistency is only maintained in local regions, the relative
pose between adjacent points still changes in the interme-
diate layers of the network. Previous works [4, 41] have
introduced a dynamic kernel Wj for each neighbor in the
local patch, aiming to restore the original relative pose be-
tween neighbors and the reference point:

x̂j =Wj(F j
r )xj , (15)

where F j
r represents the original relative pose between each

neighbor and the reference point. The refined edge convo-
lution is then given by:

x
′

r = max
j∈N (xr)

ϕ(xr, x̂j − xr). (16)

These methods obtain F j
r by hand-crafted features such

as the rotation matrix and translation vector [41] and point
pair feature [4]. However, these hand-crafted features may
not adequately represent complex geometric relationships
for constructing the relative pose. Hence, we introduce
the RPR module, utilizing an equivariant network to cap-
ture essential geometric relationships for restoring the rela-
tive pose. The equivariant network can process the rotated
point cloud without altering the relationship between local
patches. The features extracted from it are employed to en-
code the correct relative pose:

F j
r = UT

r (vj − vr), (17)

where vr and vj represent the equivariant features corre-
sponding to pr and pj , respectively. As shown in Eq. 2,
equivariant features preserve the rotation matrix when input
data is rotated, necessitating the use of the LRF to eliminate
rotation.
Training Losses. We input the features from the invariant
branch, equivariant branch, and fusion layer to three differ-
ent classifiers separately for classification or segmentation.
The total loss of our fusion network L can be written as:

L = Li+Le+Lf +λorthLorth+λconsistLconsist, (18)

where Li, Le, and Lf are the cross-entropy loss for pre-
dictions from the invariant branch, equivariant branch, and
fusion layer, respectively. λorth and λconsist are the corre-
sponding hyperparameters to weight Lorth and Lconsist.

4. Experiment
We evaluate the effectiveness of our method on three
tasks: 3D shape classification on ModelNet40 [31] dataset
(Sec. 4.2), real-world shape classification on ScanOb-
jectNN [28] dataset (Sec. 4.3), and part segmentation on
ShapeNetPart [38] dataset (Sec. 4.4). Moreover, we provide
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comprehensive ablation studies and visualization of LCRF
in Sec. 4.5 and Sec. 4.6. More results can be found in the
Supplementary.

4.1. Implemented details

We use the SGD optimizer and set the initial learning rate
to 0.1. For classification tasks, the learning rate will be ad-
justed with cosine annealing [15], and the batch size is set to
32; for the part segmentation task, the learning rate is scaled
by 0.3 every 30 epochs, and the batch size is set to 16. The
maximum training epoch of all tasks is set to 250.

To evaluate the performance of our method under various
rotations, we follow existing training/test settings [7], i.e.,
z/z, z/SO(3)1, and SO(3)/SO(3), to conduct experiments.
Here z denotes that the input data is rotated around the ver-
tical axis while SO(3) means rotating input arbitrarily.

4.2. 3D Shape Classification

Dataset. ModelNet40 [31] is widely used in the 3D shape
analysis task, which provides 12,311 CAD models from 40
object categories. The dataset is split into 9,843 samples
for training and 2,468 samples for testing. We follow prior
work [19] to randomly extract 1,024 3D points from each
sample for both training and testing.
Results. Existing methods can be categorized into
three groups: rotation-sensitive, rotation-equivariant, and
rotation-invariant methods. We compare our method with
them in the Tab. 1. The results show that our method
achieves consistent performance under three training/test
settings and outperforms all methods under z/SO(3) and
SO(3)/SO(3). For rotation-sensitive methods, their perfor-
mance excels in z/z but drops significantly in the z/SO(3)
setting. Although in SO(3)/SO(3) setting this issue is al-
leviated with additional data augmentation, a notable gap
still remains in comparison with rotation-invariant methods.
This indicates that these methods struggle to handle unseen
rotations during testing. Rotation-equivariant methods are
robust to rotations, but their performance is restricted by
their linear network structure. In comparison with previ-
ous rotation-invariant methods, our method can achieve ro-
tation invariance while better preserving the local geome-
try information by constructing local-consistent reference
frames and restoring the relative pose, leading to improved
performance.

4.3. Real-world Shape Classification

Dataset. ScanObjetNN [28] is a real-world dataset con-
taining 15,000 incomplete objects scanned from 2,902 real-
world objects. To test the effectiveness of our method in
the real-world scenario, we choose the OBJ BG subset of

1It means we apply rotation in vertical axis during training while ro-
tating the point cloud arbitrarily for testing. The other two have similar
definitions.

Method Input z/z z/SO(3) SO(3)/SO(3)

Rotation-sensitive

PointNet [20] (2017) pc 89.2 16.4 75.5
PointNet++ [21] (2017) pc 89.3 28.6 85.0
PointNet++ [21] (2017) pc+n 91.8 18.4 77.4

DGCNN [29] (2019) pc 92.2 20.6 81.1

Rotation-equivariant

TFN [27] (2018) pc 88.5 85.3 87.6
TFN-NL [18] (2021) pc 89.7 89.7 89.7

VN-DGCNN [5] (2021) pc 89.5 89.5 90.2
SVNet-DGCNN [26] (2022) pc 90.3 90.3 90.0

Rotation-invariant

SF-CNN [22] (2019) pc 91.4 84.8 90.1
RI-CNN [43] (2019) pc 86.5 86.4 86.4
RI-GCN [12] (2020) pc 89.5 89.5 89.5
AECNN [41] (2020) pc 91.0 91.0 91.0
SGMNet [34] (2021) pc 90.0 90.0 90.0
Li et al. [14] (2021) pc 90.2 90.2 90.2

PaRI-Conv [4] (2022) pc 91.4 91.4 91.4
OrientedMP [16] (2022) pc 88.4 88.4 88.9

PaRot [40] (2023) pc 90.9 91.0 90.8
Ours pc 91.6 91.6 91.5

Table 1. Classification accuracy (%) on ModelNet40 dataset. ‘pc’
and ‘n’ denote the 3D coordinates and normal vectors of input
data, respectively.

ScanObjetNN which contains background noise. The sub-
set consists of 2,890 samples in 15 categories, which are
split into 2,312 samples for training and 578 samples for
testing.
Results. As shown in Tab. 2, for the challenging real-world
scenario, our method still achieves the best performance in
all three settings. It is worth noting that PaRI-Conv [4],
which relies on hand-crafted LRF, exhibits poorer perfor-
mance than its performance on ModelNet40. The effec-
tiveness of hand-crafted LRF is limited in real-world ap-
plications for the use of geometry information such as the
global center that is sensitive to background noise. In com-
parison, we construct LRF with features output by equiv-
ariant branch to alleviate the impact of background noise.
Although efficient, a certain absolute accuracy difference
(0.5%) occurs when the training setting is different (z/SO(3)
v.s. SO(3)/SO(3)). We guess that this is because different
training augmentations change the randomness of the net-
work, which will affect learning-based LCRF. The above
results demonstrate our method can also effectively tackle
real-world rotations.

Method Input z/z z/SO(3) SO(3)/SO(3)
PointNet [20] (2017) pc 73.3 16.7 54.7

PointNet++ [21] (2017) pc 82.3 15.0 47.4
DGCNN [29] (2019) pc 82.8 17.7 71.8
RI-CNN [43] (2019) pc - 78.4 78.1
Li et al. [14] (2021) pc 84.3 84.3 84.3

PaRI-Conv [4] (2022) pc 77.8 77.8 78.1
PaRot [40] (2023) pc - 82.1 82.6

Ours pc 85.0 85.0 84.5

Table 2. Classification accuracy (%) on ScanObjectNN dataset.

4.4. Shape Part Segmentation

Dataset. We adopt ShapeNetPart dataset [38] to evaluate
our method on the shape part segmentation task. ShapeNet-
Part contains 16, 881 3D samples from 16 categories, which
are further subdivided into 50 parts. We refer to the data
split in [20] and sample 2,048 points for each 3D object.
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Results. In order to fairly compare with existing methods,
we report our results with mean Intersection-over-Union
(mIoU) over all instances and all classes together in Tab. 3.
The results show our method is competitive on Class mIOU
and achieves the best performance on Insta. mIOU. Fur-
thermore, compared to our backbone DGCNN, LocoTrans
significantly boosts the performance by 42.7% in z/SO(3)
setting. We also give visualized segmentation results of 3D
objects in Fig. 4, and the figure indicates our network is ro-
bust to arbitrary rotations in segmentation.

Method Input z/SO(3) SO(3)/SO(3)
Class mIOU Insta. mIOU Class mIOU Insta. mIOU

PointNet [20] (2017) pc 37.8 - 74.4 -
PointNet++ [21] (2017) pc 48.2 - 76.7 -

DGCNN [29] (2019) pc 37.4 - 73.3 -
RI-CNN [43] (2019) pc 75.3 - 75.5 -
AECNN [41] (2020) pc 80.2 - 80.2 -
RI-GCN [12] (2020) pc 77.2 - 77.3 -

VN-DGCNN [5] (2021) pc - 81.4 - 81.4
Li et al. [14] (2021) pc 74.1 81.7 74.1 81.7

PaRI-Conv [4] (2022) pc - 83.8 - 83.8
PaRot [40] (2023) pc 79.2 - 79.5 -

Ours pc 80.1 84.0 80.0 83.8

Table 3. Part segmentation results on ShapeNetPart dataset. ‘Class
mIOU’ stands for mIoU (%) over all classes while ‘Insta. mIOU’
denotes mIoU over all instances.

Figure 4. Visualization of part segmentation results on ShapeNet-
Part dataset under z/SO(3) setting. From top to bottom, we present
the segmentation results for four categories: airplane, chair, car,
and pistol. The leftmost column is the ground truth and the right
four columns are the predictions of our network under arbitrary
rotations.

4.5. Ablation Studies

In this section, we conduct experiments to demonstrate the
effectiveness of each component in LocoTrans. Further ab-
lation studies are also designed on the LCRF and the RPR
module for deep analysis. If no otherwise specified, all ex-
periments are performed on ModelNet40 dataset under the
z/SO(3) setting and reported with accuracy (%).

Row Baseline Aggregation LCRF RPR z/SO(3)coordinate feature
#1 ✓ 89.1
#2 ✓ 90.4
#3 ✓ ✓ 90.7
#4 ✓ ✓ 90.8
#5 ✓ ✓ 91.3
#6 ✓ ✓ ✓ 91.6

Table 4. Ablation study of our method on ModelNet40 dataset
in z/SO(3) setting. ‘coordinate’ denotes the coordinates of point
cloud while ‘feature’ represents the equivariant features.

Effects of Different Components. We carry out a series of
experiments to validate our method and report the perfor-
mance in Tab. 4. We take the output of the invariant branch
of our network as the Baseline in Row #1 without using
LCRF and RPR module. Aggregation in Row #2 refers to
fusing the output of the invariant branch and the equivariant
branch, which contributes to the improvement of classifica-
tion accuracy. In Row #3 we replace the LRF built through
the Gram-Schmidt process with our LCRF. Compared to
Row #2, our LCRF improves the performance by alleviat-
ing the perturbation of local geometry with local-consistent
transformation. We also test the performance of the RPR
module with the original coordinates and the equivariant
features as input. The results in Row #4 and Row #5 show
both variations can enhance the performance of the network
for addressing the loss of relative pose. Notably, the com-
parison between Row #4 and Row #5 highlights that fea-
tures extracted by the equivariant branch outperform orig-
inal coordinates in representing relative pose. Finally, our
network performs optimally when all modules are in use.

Effects of LCRF. We also conduct experiments to explore
the role of different LRFs in local rotation-invariant rep-
resentation construction in Tab. 5. In Row #1, we hand-
craft LRF with the global center and local barycenter, while
leveraging features from the equivariant network to con-
struct LRF based on the Gram-Schmidt process in Row
#2. Due to the lack of local consistency, generating local
rotation-invariant representation with either hand-crafted
LRF or learning-based LRF built by Gram-Schmidt process
results in worse performance. Our LCRF brings improve-
ment by achieving the learning balance between two vec-
tors from an equivariant network. Moreover, comparing the
results on ModelNet40 and ScanObjectNN, LCRF brings
more significant improvement in the latter containing back-
ground noise because data in the former is clean and easier
to classify.

Row LRF z/SO(3)
ModelNet40 ScanObjectNN

#1 hand-crafted 91.2 82.8
#2 Gram-Schmidt process 91.3 84.2
#3 LCRF 91.6 85.0

Table 5. Ablation study on LRF construction.

Effects of RPR Module. We compare the effects of using
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Figure 5. Visualization of u1
r (Red) and u2

r (Green) in LRF. (a) LRF generated with the Gram-Schmidt process. (b) LCRF. While the
Gram-Schmidt process fails to maintain local consistency in u2

r , Our LCRF learns local-consistent orientation in both axes.

different features to represent the relative pose in Tab. 6.
In Row #1 we directly utilize the coordinates of the point
cloud to represent the relative pose while in Row #2, Row
#3, and Row #4, we use features extracted from the coor-
dinates in different ways. In Row #2 hand-crafted feature
means the APPF-w/oDirection proposed by PaRI-Conv [4]
which encodes the relative Euclidean distance and angle in
the local patch. Equivariant feature in Row #3 represents
the feature extracted from the equivariant branch while in-
variant feature in Row #4 represents the feature extracted
from the invariant branch. The comparison of Row #1 and
Row #2 shows hand-crafted features cannot improve perfor-
mance because they may not adequately represent essential
geometric relationships. In comparison, equivariant branch
can better capture the local geometry information to encode
relative pose, leading to the improvement of classification
accuracy in Row #3. The performance in Row #4 declines
because the invariant feature itself suffers from the relative
pose issue.

Row Relative pose representation z/SO(3)
#1 coordinate 91.0
#2 hand-crafted feature 91.0
#3 equivariant feature 91.6
#4 invariant feature 90.8

Table 6. Ablation study on relative pose representation.

Computational Burden. We provide the number of pa-
rameters, FLOPs, and accuracy of the DGCNN-based net-
works in Tab. 7. The two branches of both ‘Ours-base’ (no
LCRF and no RPR, Row #2 in Tab. 4) and ‘Ours’ are built
upon DGCNN (1.81M Params) and VN-DGCNN (2.89M
Params). Tab. 7 shows that the two-branch structure in-
deed requires more costs. Note that, the fusion layer and
projection layer in ‘Ours-base’ and ‘Ours’ cause extra pa-
rameters than the sum of DGCNN and VN-DGCNN. How-
ever, ‘Ours-base’ v.s. Li et al. [14] and ‘Ours-base’ v.s.
PaRI-Conv [4] reveal that naively increasing parameters
does not necessarily enhance performance (even degrada-
tion occurs). The ‘Ours-base’ v.s. ‘Ours’ shows that while
our proposed LCRF and RPR introduce minor additional
costs, they significantly improve performance, highlighting
the effectiveness of our proposed strategies. Nonetheless,

the added equivariant branch does increase overall costs,
prompting us to seek more cost-effective ways to leverage
equivariant information in future research.

Li et al. [14] PaRI-Conv [4] Ours-base Ours
Params 2.91M 1.85M 6.22M 6.27M
FLOPs 3747M 1938M 7552M 7998M

Acc.(ModelNet40) 90.2 91.4 90.4 91.6
Acc.(ScanObjectNN) 84.3 77.8 82.8 85.0

Table 7. Computational burden on the classification network.

4.6. Visualization of LCRF

We visualize two types of LRFs in Fig. 5. For the Gram-
Schmidt process, it can always maintain local-consistent
orientation in u1r but not in u2r . With these kinds of LRFs,
points on similar local structures are transformed into dif-
ferent reference frames, which is not conducive for network
to learn the local structure. In contrast, our LCRF maintains
consistency across different axes and preserves the local ge-
ometry.

5. Conclusion
In this paper, we proposed Local-consistent Transformation
(LocoTrans) learning to effectively achieve local rotation-
invariant representation. LocoTrans is built upon the equiv-
ariant network and consists of two modules. Specifically,
the LCRF constructs local-consistent reference frames to
preserve local geometry relationships when performing
transformation via LRF. However, the relative pose between
adjacent points still changes. To further restore relative
pose, our RPR module leverages the equivariant network to
encode pose information from the original local coordinates
and fuses pose information with neighbor features. Experi-
mental results demonstrate the effectiveness of our method.

6. Acknowledgment
This work was supported by the National Natural Science
Foundation of China under Grant 62076101, Guangdong
Basic and Applied Basic Research Foundation under Grant
2023A1515010007, Guangdong Provincial Key Laboratory
of Human Digital Twin under Grant 2022B1212010004,
CAAI-Huawei MindSpore Open Fund, and TCL Young
Scholars Program.

5425



References
[1] Mohamed Afham, Isuru Dissanayake, Dinithi Dissanayake,

Amaya Dharmasiri, Kanchana Thilakarathna, and Ranga Ro-
drigo. Crosspoint: Self-supervised cross-modal contrastive
learning for 3d point cloud understanding. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9902–9912, 2022. 1

[2] Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen, Meng
Wang, and Liang Lin. Clusternet: Deep hierarchical clus-
ter network with rigorously rotation-invariant representation
for point cloud analysis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 1

[3] Jiajing Chen, Burak Kakillioglu, Huantao Ren, and Senem
Velipasalar. Why discard if you can recycle?: A recycling
max pooling module for 3d point cloud analysis. In Pro-
ceedings of the IEEE/CVF conference on Computer Vision
and Pattern Recognition, pages 559–567, 2022. 2

[4] Ronghan Chen and Yang Cong. The devil is in the
pose: Ambiguity-free 3d rotation-invariant learning via
pose-aware convolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7472–7481, 2022. 1, 2, 3, 5, 6, 7, 8

[5] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard,
Andrea Tagliasacchi, and Leonidas J. Guibas. Vector neu-
rons: A general framework for so(3)-equivariant networks.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 12200–12209, 2021. 3,
6, 7

[6] Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong,
Gui-Song Xia, and Dacheng Tao. Condaformer: Disassem-
bled transformer with local structure enhancement for 3d
point cloud understanding. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. 1

[7] Carlos Esteves, Christine Allen-Blanchette, Ameesh Maka-
dia, and Kostas Daniilidis. Learning so(3) equivariant repre-
sentations with spherical cnns. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2018. 6

[8] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max
Welling. Se(3)-transformers: 3d roto-translation equivariant
attention networks. In Advances in Neural Information Pro-
cessing Systems, pages 1970–1981. Curran Associates, Inc.,
2020. 3

[9] Benjamin Graham, Martin Engelcke, and Laurens van der
Maaten. 3d semantic segmentation with submanifold sparse
convolutional networks. CVPR, 2018. 2

[10] Zhao Jin, Munawar Hayat, Yuwei Yang, Yulan Guo, and Yin-
jie Lei. Context-aware alignment and mutual masking for
3D-language pre-training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10984–10994, 2023. 1

[11] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael
John Lamarre Townshend, and Ron Dror. Learning from
protein structure with geometric vector perceptrons. In In-
ternational Conference on Learning Representations, 2021.
3

[12] SEOHYUN KIM, JaeYoo Park, and Bohyung Han. Rotation-
invariant local-to-global representation learning for 3d point
cloud. In Advances in Neural Information Processing Sys-
tems, pages 8174–8185. Curran Associates, Inc., 2020. 1, 3,
6, 7

[13] Roman Klokov and Victor Lempitsky. Escape from cells:
Deep kd-networks for the recognition of 3d point cloud mod-
els. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2017. 2

[14] Feiran Li, Kent Fujiwara, Fumio Okura, and Yasuyuki Mat-
sushita. A closer look at rotation-invariant deep point
cloud analysis. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pages
16218–16227, 2021. 2, 6, 7, 8

[15] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 6

[16] Shitong Luo, Jiahan Li, Jiaqi Guan, Yufeng Su, Chaoran
Cheng, Jian Peng, and Jianzhu Ma. Equivariant point cloud
analysis via learning orientations for message passing. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 18932–18941,
2022. 1, 2, 3, 6

[17] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-
volutional neural network for real-time object recognition.
In 2015 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pages 922–928. IEEE, 2015. 2

[18] Adrien Poulenard and Leonidas J. Guibas. A functional ap-
proach to rotation equivariant non-linearities for tensor field
networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
13174–13183, 2021. 3, 6

[19] Charles R. Qi, Hao Su, Matthias Niessner, Angela Dai,
Mengyuan Yan, and Leonidas J. Guibas. Volumetric and
multi-view cnns for object classification on 3d data. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 2, 6

[20] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.
1, 2, 6, 7

[21] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in Neural Informa-
tion Processing Systems. Curran Associates, Inc., 2017. 1, 2,
6, 7

[22] Yongming Rao, Jiwen Lu, and Jie Zhou. Spherical fractal
convolutional neural networks for point cloud recognition.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 6

[23] Vıctor Garcia Satorras, Emiel Hoogeboom, and Max
Welling. E (n) equivariant graph neural networks. In Inter-
national conference on machine learning, pages 9323–9332.
PMLR, 2021. 3
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