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Abstract
For image super-resolution (SR), bridging the gap be-

tween the performance on synthetic datasets and real-world
degradation scenarios remains a challenge. This work in-
troduces a novel ”Low-Res Leads the Way” (LWay) train-
ing framework, merging Supervised Pre-training with Self-
supervised Learning to enhance the adaptability of SR mod-
els to real-world images. Our approach utilizes a low-
resolution (LR) reconstruction network to extract degrada-
tion embeddings from LR images, merging them with super-
resolved outputs for LR reconstruction. Leveraging unseen
LR images for self-supervised learning guides the model
to adapt its modeling space to the target domain, facili-
tating fine-tuning of SR models without requiring paired
high-resolution (HR) images. The integration of Discrete
Wavelet Transform (DWT) further refines the focus on high-
frequency details. Extensive evaluations show that our
method significantly improves the generalization and de-
tail restoration capabilities of SR models on unseen real-
world datasets, outperforming existing methods. Our train-
ing regime is universally compatible, requiring no network
architecture modifications, making it a practical solution
for real-world SR applications.

1. Introduction
Image super-resolution (SR) aims to restore high-resolution
(HR) images from their low-resolution (LR) or degraded
counterparts. The inception of the deep-learning-based SR
model can be traced back to SRCNN [14]. Recently, ad-
vancements in deep learning models have substantially en-
hanced SR performance [1, 6, 8–10, 12, 25–27, 39, 51, 52,
54, 56], particularly in addressing specific degradation types
like bicubic downsampling. Nevertheless, the efficacy of
SR models is generally restricted by the degradation strate-
gies employed during the training phase, posing great chal-
lenges in complex real-world applications.
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Figure 1. Our proposed training method combine the benefits
of supervised learning (SL) on synthetic data and self-supervised
learning (SSL) on the unseen test images, achieve high quality and
high fidelity SR results.

In the realm of real-world SR, as shown in Figure 2,
training approaches can primarily be categorized into three
main paradigms. (a) Unsupervised Learning with Un-
paired Data: Methods within this paradigm [2, 3, 15, 38,
40, 45, 46, 55] commonly utilize Generative Adversarial
Networks (GAN) architecture to learn target distributions
without paired data. Using one or multiple discriminators,
they distinguish between generated images and actual sam-
ples, guiding the generator to model accurately. However,
as this approach heavily relies on external data, it encoun-
ters significant challenges when facing scarce target domain
data, particularly in real-world scenarios. The GAN frame-
work for unsupervised learning also has some drawbacks.
Firstly, it inherently struggles with stability during training,
leading to noticeable artifacts in SR outputs. Secondly, it
is difficult for a single 0/1 plane modelled by a discrimina-
tor to accurately separate the target domain [31]. This can
result in imprecise distribution learning. (b) Supervised
Learning with Paired Synthetic Data: BSRGAN [47] and
Real-ESRGAN [42] have largely enhanced the SR model’s
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generalization ability by simulating more realistic degrada-
tion. However, synthetic data, despite mimicking certain
real-world conditions, inadequately captures the complex
and variable nature of real scenarios, the gap between syn-
thetic and real degradation persists. Consequently, the lim-
ited degradation patterns in synthetic data may lead to an
over-smoothness issue, sacrificing crucial details and tex-
tures. Adapting effectively to complex, variable, or un-
known degradations thus remains a formidable challenge.
(c) Self-supervised Learning with a Single Image: Tech-
niques falling within this category [11, 34, 37] leverage the
intrinsic statistical characteristics of natural images, elimi-
nating the necessity for external datasets. Generally, these
methods enable self-supervised learning directly from the
input LR image. Despite its inherent flexibility, this ap-
proach may exhibit reduced efficacy when handling images
lacking repetitive patterns. As a result, in real-world scenar-
ios, where necessary recurring structure are absent, these
techniques tends to underperform compared to supervised
learning methods that employ paired synthetic data.

It’s notable that real LR/HR image pairs in the target
domain are often prohibitively expensive or unavailable.
Furthermore, a significant gap persists between synthesized
data and real-world data. Given the intrinsic limitations of
current methodologies, a critical question arises: Is there an
approach that combines the strengths of these diverse strate-
gies? In addressing this, we propose the novel ”Low-Res
Leads the Way” (LWay) training framework, which merges
supervised learning (SL) pre-training with self-supervised
learning (SSL) (see Figure 2 (d)). This approach aims to
narrow the disparity between synthetic training data and
real test images, as depicted in Figure 1. By integrating su-
pervised learning’s predictive capabilities with the ability to
swiftly adapt to unique characteristics present in test LR im-
ages, this framework effectively produces high-quality re-
sults for unseen real-world images.

The initial step involves training an LR reconstruction
network specifically designed to extract a degradation em-
bedding from the LR image. This degradation embed-
ding is then applied to the HR image, facilitating the re-
generation of LR content. Upon encountering a test im-
age, we derive its super-resolved result from an off-the-
shelf SR model pre-trained on synthetic data. This output
is fed into the fixed LR reconstruction network to produce
the corresponding degraded counterpart. Subsequently, a
self-supervised loss is computed by comparing this de-
graded counterpart to the original LR image, thereby up-
dating specific parameters within the SR model. Given our
observation that pre-trained SR models adeptly handle low-
frequency domains but falter in high-frequency areas, we
incorporate Discrete Wavelet Transform (DWT) to isolate
high-frequency elements from the LR image. This compo-
nent effectively shifts the model’s focus to the recuperation
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Figure 2. Comparison of different learning approaches for real-
world image SR.
of high-frequency nuances, and avoids negative impacts on
low-frequency areas.

With this innovative framework, our approach eliminates
the need for paired LR/HR target domain images, signifi-
cantly enhancing the performance of SL pre-trained mod-
els on unseen real-world data. Our method not only re-
tains the essential content of LR images but also adds high-
definition characteristics, ensuring a balance between fi-
delity and quality. Moreover, this training regime requires
no modifications to the network architecture, offering broad
compatibility across all SR models. Through extensive
evaluations on real-world datasets, we have demonstrated
our method’s substantial improvements in generalization
performance.

2. Related Work
2.1. Supervised Learning for Real-World SR
While recent years have witnessed significant advance-
ments in the field of super-resolution (SR), conventional
SR models such as SRCNN [14], VDSR [19], EDSR [29],
RCAN [50], among others [1, 6, 9, 10, 12, 20, 23–27,
32, 51, 52, 54], have predominantly relied upon prede-
fined degradation processes, such as bicubic downsampling.
This simplification, while contributing to the theoretical un-
derstanding of SR, often falls short in capturing the intri-
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cate and diverse degradations inherent in real-world imag-
ing scenarios, limiting practical adaptability across appli-
cations. Consequently, there is a pressing need to explore
more sophisticated and realistic degradation models.

To this end, recent efforts have been directed to-
ward methods capturing paired low-resolution (LR) and
high-resolution (HR) images from real-world environ-
ments, as demonstrated by datasets like RealSR [4] and
DRealSR [44]. However, these methods face challenges,
including precise image alignment, complex hardware se-
tups, and specific degradation characteristics (e.g., Canon
5D3 and Nikon D810 cameras in RealSR), posing obstacles
to practicality and scalability. Recent techniques, including
Real-ESRGAN [42] and BSRGAN [47], have attempted to
address these shortcomings by synthesizing LR images with
more realistic degradation. Despite these advancements, a
notable disparity persists between synthesized and authen-
tic degradation. This often results in over-smoothed images
that sacrifice fine textural details, as illustrated by [49]. Cer-
tain studies [7] have endeavored to enhance the generaliz-
ability using limited degradation data; however, the practi-
cal application scenarios remain restricted.

As a result, there is a growing demand for innovative ap-
proaches that are capable of adapting to the intricate and
mixed degradation patterns that typify real-world applica-
tions. The SR results should not only exhibit high resolution
but also encompass rich detail, ensuring fidelity.

2.2. Unsupervised Learning for Real-world SR
Unsupervised super-resolution [2, 3, 15, 38, 40, 45, 46, 55]
serves as a technique to mitigate generation bias inher-
ent in synthetic datasets. These approaches deviate from
the conventional reliance on extensive paired data by har-
nessing the data-generating capabilities inherent in convolu-
tional neural networks (CNNs). Ulyanov et al. [40] posited
CNNs as implicit priors for capturing natural image statis-
tics, a concept further explored by the Zero-Shot Super-
Resolution (ZSSR) [37] model, which uniquely tailors SR
algorithms to the repeating patterns within the input image
itself. Generative Adversarial Networks (GANs) have sig-
nificantly propelled the field forward. KernelGAN [2], for
instance, aligns the statistical distribution of downscaled
images with their original versions, enhancing the refine-
ment of SR methods’ outputs. CinCGAN [46] marks an
early exploration into utilizing unpaired data for implicit
degradation modeling. It employs a strategy that transforms
LR images into noise-free ‘clean’ states through bicubic
downsampling. This approach, backed by a dual Cycle-
GAN architecture [55], fosters a cycle-consistent adaptation
that eliminates the need for paired datasets. The unsuper-
vised approach utilizing GANs also encompasses methods
such as Degradation GAN [3], FSSR [15], DASR [45] and
pseudo-supervision [33], which all employ discriminators
to learn the distributions of HR or LR images, or even clean

LR images. These methods are instrumental in constraining
the network to transform the generated images to align with
the corresponding distributions.

Despite considerable advancements in unsupervised
methods, they still exhibit certain limitations. For instance,
ZSSR and similar methods typically rely on the prerequisite
assumption that images possess repetitive patterns. GAN-
based approaches, in particular, require substantial data to
fit certain specific degradation types effectively. They also
face stability challenges during training, which often results
in artifacts in SR outputs. Furthermore, the challenge for a
discriminator to accurately distinguish the target domain us-
ing a binary (0/1) plane model can lead to imprecise learn-
ing of distributions. These constraints pose challenges to
the practical utility of these methods in real-world scenar-
ios. Exploring more generalized and flexible approaches
becomes imperative.

3. Method
In the pursuit of practical applications for image SR, we in-
troduce an unprecedented training methodology. This novel
strategy marks a departure from established paradigms, fus-
ing the precision of supervised pre-training with the innova-
tion of self-supervised learning to address the complexities
of real-world image degradation. Our proposed framework
is detailed in Figure 3.

3.1. LR Reconstruction Pre-training
We introduce an LR reconstruction branch that plays a piv-
otal role in finetuning our SR model S on test images de-
rived from real-world environments. Central to this pro-
cess is the Degradation Encoder E , engineered to distill
the degradation signatures from LR images ILR into a con-
cise degradation embedding e. The dimension is 512, for-
mulated as e = E(ILR). Subsequently, the Reconstructor
R employs e and a high-resolution image IHR to synthe-
size an estimated LR image ÎLR, aiming to fulfill ÎLR =
R(IHR, e). To ensure the integrity of e, we incorporate
a dual-component loss function L, integrating both an L1
norm and the Learned Perceptual Image Patch Similarity
(LPIPS) metric. The combined loss function is thus articu-
lated as L(ILR, ÎLR) = L1+LLPIPS, meticulously tuning the
reconstruction fidelity. Notably, LR reconstruction branch
has great robustness, requiring only minimal data for train-
ing, is precisely why we advocate for the inclusion of an LR
reconstruction branch. This ensures that even when faced
with new forms of degradation, its support in the finetuning
of the SR model remains uncompromised. The efficiency
and robustness of this approach, pivotal in our methodology,
will be detailed and validated in the following sections.

3.2. Self-supervised Learning on Test Images
Our approach innovatively fine-tunes a subset of parame-
ters in a SR network, specifically tailored for processing
previously unseen real-world images. This method refines
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Figure 3. The proposed training pipeline (LWay) consists of two steps. In Step 1, we pre-train a LR reconstruction network to capture
degradation embedding from LR images. This embedding is then applied to HR images, regenerating LR content. Moving to Step 2, for
test images, a pre-trained SR model generates SR outputs, which are then degraded by the fixed LR reconstruction network. We iteratively
update the SR model using a self-supervised learning loss applied to LR images, with a focus on high-frequency details through weighted
loss. This refinement process enhances the SR model’s generalization performance on previously unseen images.

the SR network to adeptly handle the complexities of actual
degradation patterns. For an real-world LR test image I test

LR ,
the SR network S initially produces a super-resolved im-
age I init

SR . The pre-trained LR reconstruction branch, with its
parameters frozen, extracts a degradation embedding etest

from I test
LR , expressed as etest = E(I test

LR ). The self-supervised
fine-tuning then commences, leveraging I init

SR and etest to ad-
just a specific subset of the SR network’s parameters θft.
This fine-tuning is formulated as an optimization problem:

θ∗ft = argmin
θft

L(R(Sθ(I
test
LR ), etest), I test

LR ) ,

where θ∗ft is the optimized parameters from full model θ.
This strategic adjustment enhances the SR network’s ca-

pability to reconstruct images with high fidelity to the LR
inputs, enhances the SR network’s ability to generalize to
real-world degradation without the need for paired data.
Focused enhancement of high-frequency details. Con-
ventional SR methods tend to proficiently reconstruct low-
frequency regions but often neglect or inadequately restore
high-frequency details. In addition, the low-frequency re-
gions do not require LR reconstruction due to the absence
of detailed texture. Therefore, our approach aims to con-
centrate the LR reconstruction process specifically on high-
frequency areas, thereby preventing the introduction of ar-
tifacts into the low-frequency areas. Specifically, we ap-
ply Discrete Wavelet Transform (DWT) to obtain the high-
frequency component, and then normalize it to yield a
weight map W ∈ [0, 1]. This weight map is then utilized

to calculate a weighted loss, ensuring the fidelity to high-
frequency details:
L = L1(W⊙Î test

LR ,W⊙I test
LR )+LLPIPS(W⊙Î test

LR ,W⊙I test
LR ) ,

where ⊙ denotes element-wise multiplication. The com-
bined loss effectively guides the network to restore high-
frequency details with greater precision, improving the per-
ceptual quality of the super-resolved image without com-
promising low-frequency content.

3.3. Discussion
By combining supervised learning (SL) on synthetic data
with self-supervised learning (SSL) on test images with un-
known degradation, we dynamically adjust the modeling
space based on the intrinsic features of test images, steer-
ing the SL space towards a more precise SSL space. Fig-
ure 4 shows the effectiveness of our method during the fine-
tuning process. Our method achieves high-quality and high-
fidelity SR while maintaining general compatibility across
all models. The primary advantages of our approach com-
pared to other methods are included in the following:
General Degradation Modeling. The transformation from
LR to HR images is recognized as a challenging task, while
the reverse HR to LR transformation is comparatively sim-
pler and more robust. Our method capitalizes on this ob-
servation, avoiding excessive reliance on extensive paired
datasets. Instead, we opt to pre-train a universal degradation
embedding extraction and LR reconstruction model. This
characteristic ensures that our approach is not bound by as-
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Figure 4. The SR model advances through the proposed fine-tuning iterations, moving from the supervised learning (SL) space of synthetic
degradation to the self-supervised learning (SSL) space learned from test images. This results in enhanced SR quality and fidelity.

sumptions of uniform degradation across image datasets.
During the training of the SR model, these parameters re-
main fixed, allowing the SR model for flexible adaption to
unknown distributions in real-world scenarios. On the con-
trary, CycleGAN-based methods simultaneously learn the
mappings from LR to HR and HR to LR. This process re-
lies heavily on a substantial amount of data. Furthermore,
because CycleGAN implicitly learns the HR to LR map-
ping without an explicit degradation extraction process, its
underlying assumption is that the degradation across the en-
tire dataset is consistent. Consequently, it can only fit cer-
tain degradation patterns, largely impacting its performance
in real-world scenarios with limited data availability.
Dense pixelwise self-supervision. Through self-supervised
learning, our method operates independently of external la-
bels, leveraging dense LR pixel-level signals for supervi-
sion. This allows the model to learn richer texture features
from the intrinsic image structure. This stands in contrast
to traditional supervised approaches that rely on discrimina-
tors, which may learn inaccurate features due to the sparsity
of supervision signals, leading to suboptimal results.
Robust regularization. Our approach can be viewed as a
form of regularization constraint. By integrating degrada-
tion embedding extraction and decoupling it from the LR
image reconstruction, our method maintains effectiveness
in guiding the reconstruction process even when faced with
imperfect degradation prediction. This substantially boosts
the robustness of our approach, enabling it to learn rich and
accurate texture information from the test images.

4. Experiments
4.1. Experimental Settings
Testing methods. Our proposed method serves as a univer-
sally applicable self-supervised learning strategy for vari-
ous cutting-edge blind SR models, eliminating the neces-
sity for architectural modifications. We conduct evalua-
tions on a diverse range of advanced SR methods, including
BSRGAN [47] and Real-ESRGAN+ [42] employing con-
ventional CNN frameworks, SwinIR-GAN [27] integrating
Transformer structures, FeMaSR [5] utilizing VQGAN, and
StableSR [41] based on pre-trained diffusion. We use of-
ficially released SR models as baselines and conduct self-
supervised fine-tuning on targeted test datasets. While fine-

tuning a single image can lead to superior performance, for
improved training efficiency, we opt to fine-tune the entire
test dataset collectively. All experiments are conducted un-
der this configuration unless otherwise specified.
Implementation details. We adopt the Adam [21] opti-
mizer. For StableSR, we set the learning rate to 5e-5 and
the batch size to 1. For the remaining models, a learning
rate of 2e-6 and a batch size of 6 are used. Each model un-
dergoes rapid fine-tuning on a single V100 GPU. The dura-
tion of training varies among models and images, typically
spanning 150 to 500 iterations. More details are provided
in the supplementary materials.
Training datasets. Our self-supervised fine-tuning ap-
proach is directly applied to the test set, without the need for
a separate training set. The only prerequisite training is al-
located for the LR reconstruction network, which is trained
using 6,000 real paired images collected in-house. It is crit-
ical to note that these data were invisible to the SR network.
Testing datasets. Our method is evaluated on real-world
paired datasets, including RealSR [4] and DRealSR [44].
These datasets are meticulously curated from diverse de-
vice sensors to reflect various degradation characteristics.
To ensure a fair comparison with other methods, we follow
the standard setting of cropping each image into multiple
patches for a 4× SR. The LR image patch size is 128 ×
128, while the corresponding HR size is 512 × 512.
Evaluation metrics. We employ LPIPS [48], DISTIS [13],
and NLPD [17] metrics that closely align with human per-
ception [16, 18]. Additionally, traditional metrics such as
PSNR, SSIM [43], and MAD [22] are included for a com-
prehensive assessment. Six different metrics provide a com-
prehensive evaluation.

4.2. Improvements on Existing Methods
The results outlined in Table 1 compellingly demonstrate
our method’s effectiveness in significantly advancing SR
quality. Notably, improvements are consistently observed
across all models, datasets, and metrics, underscoring
the universal applicability of our approach. For CNN-
based models like Real-ESRGAN+, our method achieves
a notable enhancement on the Nikon dataset, delivering a
1.77dB improvement in PSNR and a 0.0388 increase in
SSIM. These improvements contribute to more precise re-
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CNN-based Transformer-based VQ-based Diffusion-based
Dataset Sensors Metrics

Real-ESRGAN+ + LWay Gain BSRGAN + LWay Gain SwinIR-GAN + LWay Gain FeMaSR + LWay Gain StableSR + LWay Gain

PSNR ↑ 27.51 29.18 +1.67 28.81 28.85 +0.04 28.12 28.96 +0.84 25.72 28.16 +2.44 25.50 27.22 +1.72
SSIM ↑ 0.8348 0.8688 +0.034 0.8473 0.8496 +0.0023 0.8486 0.8579 +0.0093 0.7811 0.8383 +0.0572 0.7684 0.8043 +0.0359
LPIPS ↓ 0.1947 0.1479 -0.0468 0.1988 0.1572 -0.0416 0.1850 0.1469 -0.0381 0.2543 0.1747 -0.0796 0.2636 0.2019 -0.0617
MAD ↓ 133.96 111.91 -22.05 119.08 116.77 -2.31 125.17 111.71 -13.46 143.38 117.48 -25.90 145.36 124.15 -21.21
NLPD ↓ 0.2807 0.2437 -0.037 0.2594 0.2569 -0.0025 0.2670 0.2541 -0.0129 0.3239 0.2778 -0.0461 0.3426 0.3074 -0.0352

Canon

DISTIS ↓ 0.1621 0.1444 -0.0177 0.1794 0.1558 -0.0236 0.1557 0.1352 -0.0205 0.2116 0.1808 -0.0308 0.1897 0.1596 -0.0301

PSNR ↑ 26.81 28.58 +1.77 28.13 28.65 +0.52 27.54 28.55 +1.01 25.41 27.87 +2.46 25.54 26.92 +1.38
SSIM ↑ 0.7861 0.8249 +0.0388 0.8012 0.8057 +0.0045 0.8043 0.813 +0.0087 0.7314 0.7936 +0.0622 0.7370 0.7686 +0.0316
LPIPS ↓ 0.2300 0.1769 -0.0531 0.2302 0.1750 -0.0552 0.2154 0.176 -0.0394 0.2738 0.2028 -0.071 0.2711 0.2156 -0.0555
MAD ↓ 131.62 108.18 -23.44 118.48 105.64 -12.84 122.65 106.73 -15.92 137.54 110.79 -26.75 139.26 119.29 -19.97
NLPD ↓ 0.3061 0.2667 -0.0394 0.2805 0.2758 -0.0047 0.2844 0.272 -0.0124 0.3419 0.297 -0.0449 0.3513 0.3215 -0.0298

RealSR

Nikon

DISTIS ↓ 0.1950 0.1714 -0.0236 0.2102 0.1791 -0.0311 0.1842 0.1639 -0.0203 0.2340 0.2042 -0.0298 0.2131 0.1837 -0.0294

PSNR ↑ 30.16 31.4 +1.24 30.47 31.23 +0.76 29.92 30.77 +0.85 27.51 29.75 +2.24 28.63 29.28 +0.65
SSIM ↑ 0.8326 0.8597 +0.0271 0.8260 0.8442 +0.0182 0.8213 0.8398 +0.0185 0.7725 0.8096 +0.0371 0.7648 0.7785 +0.0137
LPIPS ↓ 0.2488 0.2341 -0.0147 0.2685 0.2469 -0.0216 0.2565 0.2383 -0.0182 0.3228 0.2931 -0.0297 0.3331 0.3017 -0.0314
MAD ↓ 125.20 112.1 -13.10 123.22 115.14 -8.08 124.85 114.09 -10.76 140.50 125.52 -14.98 141.13 130.01 -11.12
NLPD ↓ 0.3032 0.2751 -0.0281 0.3034 0.2857 -0.0177 0.3105 0.2895 -0.021 0.3502 0.3152 -0.035 0.3503 0.3402 -0.0101

sony

DISTIS ↓ 0.1859 0.1765 -0.0094 0.2115 0.1934 -0.0181 0.1883 0.1783 -0.01 0.2314 0.2168 -0.0146 0.2296 0.2176 -0.012

PSNR ↑ 29.53 29.88 +0.35 29.16 29.4 +0.24 28.94 29.57 +0.63 26.42 28.26 +1.84 28.69 29.05 +0.36
SSIM ↑ 0.8050 0.8206 +0.0156 0.7931 0.7944 +0.0013 0.8002 0.8071 +0.0069 0.6976 0.7557 +0.0581 0.7460 0.7487 +0.0027
LPIPS ↓ 0.3107 0.308 -0.0027 0.3275 0.2926 -0.0349 0.3184 0.3093 -0.0091 0.4129 0.3762 -0.0367 0.3853 0.3800 -0.0053
MAD ↓ 127.91 125.04 -2.87 130.94 126.87 -4.07 131.73 126.04 -5.69 151.35 138.85 -12.50 137.60 132.71 -4.89
NLPD ↓ 0.3016 0.2899 -0.0117 0.3157 0.3129 -0.0028 0.3093 0.3005 -0.0088 0.3897 0.3425 -0.0472 0.3410 0.3353 -0.0057

olympus

DISTIS ↓ 0.2130 0.2118 -0.0012 0.2276 0.2145 -0.0131 0.2181 0.2109 -0.0072 0.2552 0.2406 -0.0146 0.2412 0.2371 -0.0041

PSNR ↑ 29.81 30.83 +1.02 29.98 31.05 +1.07 29.11 30.94 +1.83 27.83 29.44 +1.61 29.13 29.88 +0.75
SSIM ↑ 0.8094 0.8283 +0.0189 0.7987 0.8236 +0.0249 0.7918 0.8193 +0.0275 0.7413 0.7798 +0.0385 0.7428 0.7554 +0.0126
LPIPS ↓ 0.2592 0.2581 -0.0011 0.2738 0.2624 -0.0114 0.2688 0.2517 -0.0171 0.3144 0.2973 -0.0171 0.3143 0.3021 -0.0122
MAD ↓ 124.51 116.18 -8.33 124.38 114.04 -10.34 126.61 112.79 -13.82 137.50 124.81 -12.69 132.36 122.85 -9.51
NLPD ↓ 0.304 0.2825 -0.0215 0.3109 0.2852 -0.0257 0.3184 0.2869 -0.0315 0.3604 0.3215 -0.0389 0.3444 0.3312 -0.0132

DRealSR

panasonic

DISTIS ↓ 0.2000 0.1974 -0.0026 0.2130 0.2021 -0.0109 0.2046 0.1948 -0.0098 0.2243 0.2121 -0.0122 0.2255 0.2196 -0.0059

Table 1. The performance improvements across various model types utilizing our proposed training methodology.

# of Fine-tuning
Images Per Model Description LPIPS ↓ DISTIS ↓ MAD ↓

0
baseline,

without fine-tuning 0.3136 0.2353 117.71

1
fine-tuning

on every single images 0.2351 0.1919 111.46

10
fine-tuning

on the entire testset 0.2536 0.2044 111.63

50
fine-tuning with 40 additional
images from the same sensors 0.2571 0.2037 108.62

Table 2. The impact of the number of images used for a single fine-
tuning training. Our method can be fine-tuned either on individual
images or on the entire test set, which greatly reduces cost.

construction of high-quality images. Furthermore, the val-
idation of enhanced perceptual quality is evident through
an LPIPS reduction of 0.0532. Additionally, when applied
to Transformer models such as SwinIR-GAN, our method
showcases considerable improvements. On the Olympus
dataset, we observe a 0.63 dB increase in PSNR and a sig-
nificant decrease in MAD by 5.69, highlighting the frame-
work’s capacity to enhance fidelity and sharpness.

As depicted in Figure 5, in the first example, all SR mod-
els fail to preserve the original textures present in the input
images, resulting in excessively smoothed fabric patterns.
However, upon applying our self-supervised fine-tuning
method, significant improvements are observed across all
approaches, successfully reconstructing clear fabric tex-
tures. A similar improvement is evident in the second ex-
ample of oil paintings. The existing SR models struggle to
capture the intricate details of the paintings. Conversely, our
method effectively restores the artistic effects, particularly
showcasing notable enhancement for StableSR. For other

examples, the results are similar as well, our method signif-
icantly improving high-frequency detail recovery, yielding
results that were both sharp and rich in detail.
4.3. Application on Real-world Scenes
Old films often exhibit issues like graininess, color fad-
ing, and lower resolution, making them an ideal testbed
for evaluating the practical capabilities of SR models. To
conduct a comprehensive comparison, we curate a selection
of state-of-the-art real-world SR models. These encompass
various methodologies: ZSSR [37], a self-supervised learn-
ing model; DASR [28], a degradation-adaptive approach;
large diffusion models such as LDM [36], DiffBIR [30],
and StableSR [41]; DARSR [53], which leverages unsu-
pervised techniques for enhanced model performance; and
CAL GAN [35], a photo-realistic SR model. We employ
StableSR as the base model and implement the proposed
self-supervised learning strategy. The first case in Fig-
ure 6 involves a 480p low-resolution film, namely “My Fair
Lady”. Among the assessed models, ZSSR, DASR, and
DARSR exhibit minimal improvements, while DiffBIR in-
troduces unpleasing artifacts. Other models achieve slightly
smoother results. Notably, our model not only accurately
reproduces the hat with clear fabric textures but also effec-
tively restores facial features, including wrinkles and con-
tours. In contrast to some methods that may introduce
unnatural effects or overly smooth distortions, our model
adeptly balances the restoration of fine textures with pre-
serving overall image clarity.
User study. We conducted a user study with the partici-
pation of 24 experienced researchers. Each participant was
tasked with assigning a visual perceptual quality score rang-
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BSRGAN BSRGAN + LWay SwinIR-GAN SwinIR-GAN + LWay FeMaSR FeMaSR + LWayLR HR

FeMaSR FeMaSR + LWay StableSR StableSR + LWayBSRGAN BSRGAN + LWayLR HR

Real-ESRGAN+ Real-ESRGAN+ + LWayLR HR SwinIR-GAN SwinIR-GAN + LWayLR HR

FeMaSR FeMaSR + LWayLR HR StableSR StableSR + LWayLR HR

Figure 5. Qualitative comparisons on real-world datasets. The content within the blue box represents a zoomed-in image.

Figure 6. Qualitative comparisons on two old films.

LR  LWay HRBaseline trained on real data LR  LWay HRBaseline trained on real data

Figure 7. Supervised fine-tuning a baseline model on one real dataset doesn’t perform well on another due to dataset gaps. Our proposed
method self-supervised fine-tuned model for specific test images achieves superior performance.

ing from 0 to 10 to every image. The results, depicted
in the Figure 8, reveal a significant lead of our proposed
method over alternative approaches, surpassing the second-
best method by more than 2 points. Notably, the scores for

DASR, DiffBIR, and DARSR were even lower than those
for LR images, indicating a limited effectiveness of these
methods in handling real-world images.
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Training Type
Number of

Sensors
Number of

Images LPIPS ↓ DISTIS ↓

- (baseline) - - 0.2302 0.2102

Synthetic Data - 2K 0.1836 0.1885
- 6k 0.1816 0.1873

Real-world Data

1 0.6K 0.2003 0.1970
2 2K 0.1785 0.1793
2 4K 0.1722 0.1772
3 6K 0.1800 0.1830

Table 3. Ablation on training data of LR reconstruction.
baseline 128 256 512 1024 2048 4096

PSNR↑ 28.13 28.92 28.54 28.85 29.10 29.56 29.20
LPIPS↓ 0.2302 0.1804 0.1776 0.1722 0.1736 0.1629 0.1669
DISTS↓ 0.2192 0.1792 0.1818 0.1772 0.1749 0.1630 0.1656

Table 4. Ablation on dimensions of degradation embedding.

Method LPIPS ↓ DISTIS ↓
baseline 0.2302 0.2102
baseline + real data 0.2268 0.1989
LWay (ours) 0.1722 0.1772

Table 5. Our method versus super-
vised real data fine-tuning.

HF Loss LPIPS ↓ DISTIS ↓
0.1858 0.1879
0.1722 0.1772

Table 6. Ablation study on
high-frequency (HF) loss.

4.4. Ablation Study
We conducted an ablation study on the RealSR Nikon test
set using BSRGAN. We trained 65% of the model parame-
ters to achieve the lowest LPIPS score on this test set.
Training data of LR reconstruction. In this section, we
demonstrate the robustness of the LR reconstruction net-
work trained with limited data, which forms the cornerstone
of our design. As depicted in Table 3, we incorporated two
types of training data. The first category includes synthetic
data created using BSRGAN degradation, while the second
involves real paired images collected for training. Both set-
tings result in improved performance. Specifically, com-
pared to synthetic data, which brings a 0.0486 improvement
in LPIPS, the utilization of only 600 images brings a 0.0299
improvement, and 4000 images notably boosts LPIPS by
0.058. Adding more images beyond this threshold did not
yield any further advancement. We attribute this to the in-
herent ease in mapping from HR to LR compared to the
reverse LR to HR mapping, mitigating the necessity for ex-
tensive training data. This assertion finds further support
in Figure 9, where t-SNE visualization distinctly separates
distinct degradations, even for unseen degradation types.
Degradation embedding dimensions. Table 4 tests dif-
ferent embedding dimensions, all variants significantly en-
hance performance. While a dimension of 512 (default) is
effective, higher one (2048) can further improve results.
Our method versus supervised fine-tuning. To compre-
hensively illustrate the efficacy of our method, we conduct
additional supervised fine-tuning of the baseline model us-
ing the gathered real paired data. As depicted in Table 5,
we note marginal improvements. This aligns with our con-
tention that LR to HR mapping poses inherent difficulties.
Training with data from one sensor type showed negligible
benefits for another, suggesting a significant gap in degra-
dation patterns. This was further corroborated by Figure 7,

Figure 8. User study on the visual
perceptual quality of results from
different methods on real images.

Figure 9. t-SNE visual-
ization of embeddings from
LR degradation encoder.

where it generates over-smoothed outputs. Conversely, our
method showcases robustness and substantially enhances
the final SR quality, and is more effective.
Number of images used in fine-tuning. We employ self-
supervised LR reconstruction fine-tuning on test images to
optimize the SR model. This section investigates the im-
pact of the number of fine-tuning images on the final per-
formance. As indicated in Table 2, we establish a baseline
without fine-tuning using ten real-world images. Conduct-
ing single-shot fine-tuning on individual images yields the
most favorable results, allowing models to best adapt to the
distribution of input images. Next, we conduct experiments
involving collective fine-tuning of ten images. Results show
significant improvements compared to the baseline but are
not as effective as fine-tuning individual images separately.
Furthermore, we extend our study by fine-tuning the model
using an additional forty images to investigate whether ac-
quiring more images from the same sensor would refine the
model further. Our findings indicate that compared to train-
ing on ten images, there is a decline in LPIPS, while DIS-
TIS and MAD exhibit slight improvements. This suggests a
trade-off between fine-tuning performance and efficiency.
High-frequency loss. Table 6 illustrates the impact of the
introduced high-frequency loss. The integration of the high-
frequency loss results in a notable improvement. Impor-
tantly, it enhances high-frequency recovery and avoids the
negative impact of our method on low-frequency areas.

5. Conclusion
In conclusion, our proposed super-resolution training strat-
egy, termed “Low-Res Leads the Way”, represents an inno-
vative approach that successfully bridges the disparity be-
tween synthetic data supervised training and real-world test
image self-supervision. Demonstrating impressive perfor-
mance and robustness across various SR frameworks and
real-world benchmarks, our method marks a advancement
toward achieving effective real-world applications.
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